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High-protein diets shorten lifespan in many organisms. Is it because protein

digestion is energetically costly or because the final products (the amino

acids) are harmful? To answer this question while circumventing the life-

history trade-off between reproduction and longevity, we fed sterile ant

workers on diets based on whole proteins or free amino acids. We found that

(i) free amino acids shortened lifespan even more than proteins; (ii) the

higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the

lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio,

ants eating free amino acids had more lipid reserves than those eating whole

proteins; and (iv) on whole protein diets, ants seem to regulate food intake

by prioritizing sugar, while on free amino acid diets, they seem to prioritize

amino acids. To test the effect of the amino acid profile, we tested diets contain-

ing proportions of each amino acid that matched the ant’s exome; surprisingly,

longevity was unaffected by this change. We further tested diets with all amino

acids under-represented except one, finding that methionine, serine, threonine

and phenylalanine are especially harmful. All together, our results show certain

amino acids are key elements behind the high-protein diet reduction in lifespan.
1. Introduction
What animals eat—and how much—strongly affects their health and longevity

[1,2]. Modest calorie restriction is well known to increase lifespan across a range

of organisms (review in [3]), but under ad libitum feeding conditions the balance

of macronutrients is more important than calorie intake per se [4]. Notably, the ratio

of protein to carbohydrate strongly affects longevity and measures of late life

health. Diets containing a high protein-to-carbohydrate ratio reduce lifespan in a

diversity of organisms [2,5–7], suggesting that conserved mechanisms underlie

this sensitivity to high-protein, low-carbohydrate diets.

It remains unclear how high-protein, low-carbohydrate diets shorten lifespan.

One hypothesis relates to protein digestion, which is energetically costly [8,9] and

produces potentially toxic nitrogen waste products [10]. Another possibility is

that absorbed amino acids stimulate signalling pathways that regulate lifespan,

such as the canonical target of rapamycin (TOR) pathway [11–13]. A trade-off

between longevity and reproduction complicates attempts to understand the

effect of high-protein diets on lifespan; while decreasing longevity, high-protein

diets improve the reproductive output of individuals [5,7,14,15].

To avoid the complication of reproduction, we used Argentine ant (Linepithema
humile) workers, which are sterile—only the queens reproduce. Like many other

organisms, ant workers die prematurely on high-protein diets [6,16–19]. To find

out why, we first focused on the potential toxicity of protein digestion. We hypo-

thesized that bypassing protein digestion would extend workers’ lives. To test this
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hypothesis, we first examined the performance (survival, fora-

ging effort and lipid storage) of ants fed on diets containing

either whole proteins or an equivalent amount of each free

amino acid, presuming a complete protein digestion. Second,

because ant larvae perform an important digestive function

inside the colony [16], we investigated their role in the digestion

of high-protein diets for whole protein and free amino acid

based diets. Third, aiming to explore the effect of the balance

and interactions among amino acids, we fed ant workers with

a diet based on a direct translation of the Argentine ant

exome (all the exons of the ant genome [20]). We hypothesized

that this diet could better fit the ant needs and therefore reverse

the negative effects of high-protein diets. Finally, and to begin to

consider the isolated roles of single amino acids, we fed ants on

20 diets where one amino acid was over-represented compared

with the others.

The purpose of this study was to understand the under-

lying mechanisms behind the high-protein diet toxicity. Our

results showed that an excess of certain amino acids is key

to this toxicity.
 2
2. Material and methods
See the electronic supplementary material for an extended

version of the methods.

(a) Species studied and rearing conditions
We used foragers of the invasive Argentine ant, L. humile. In the

field, these ants feed on dead insects and honeydew rich in

sugars and amino acids [21]. Ant foragers were collected in

Toulouse (France) two weeks before every experiment and

were provided with a mixed diet of vitamin-enriched diet and

water every 2 days [22] (modified from [23]).

For the experiments, we created subcolonies and housed

them in experimental nests comprising an opaque and humid

box connected to a foraging arena.

All ants were kept in a 14–10 light–dark cycle and at room

temperature (25+28C).

(b) Synthetic diets
(i) Full mixture diets: whole protein and amino acid diets
To examine the role of protein digestion in the high-protein diet

toxicity, we designed 22 diets (see recipes in the electronic sup-

plementary material) varying in their amino acid source (whole

proteins, PWP, or free amino acids, PAA—11 diets per amino acid

source), their protein-to-carbohydrate ratios (P : C—5 : 1, 3 : 1,

1 : 1, 1 : 3, 1 : 5 or 1 : 10) and their protein plus carbohydrate concen-

trations ([P þ C]—0.17, 0.10, 0.5 or 0.3 g g21). The protein content

of the ‘whole protein diets’ consisted of a mixture of casein,

whey powder and white egg proteins as in [6,18,19]. The ‘free

amino acid diet’ contained the same amount of each amino acid

as found in the whole protein diet, but in the form of free amino

acids instead of whole proteins. We used glucose as the carbo-

hydrate source. All diets also contained egg yolk, vitamins,

sodium, choline chloride and ascorbic acid, and were presen-

ted at 4.5 : 1 ratio of dry mass in a 1% agar solution (see [22] for

preparation details).

To further explore the role of amino acids composition, we

prepared another diet based on a direct translation of the entire

Argentine ant exome. This new mix could theoretically better

fit the ant needs and reverse the negative effect of high-protein

diets. The Argentine ant exome proportion was calculated as

the median of the frequency of each amino acid produced in a

hypothetical translation of all genes (courtesy of M. Piper).
Using this new amino acid composition, we designed two diets

at the same concentration ([P þ C] ¼ 0.10 g g21) but varying in

their P : C ratios (5 : 1 and 1 : 5).

(ii) Single amino acid mixture diets
To understand the role of single amino acids in the toxicity of high-

protein diets, we designed 20 different synthetic diets identical to

the 5 : 1 PAA : C diet but adding only one of the 20 free amino

acids, and replacing the rest with 1% agar. As a result, the diets

contained all free amino acids present in the egg yolk (around

0.0001 g g21, calculated using [24]; see the electronic supple-

mentary material) plus the one added (0.0006–0.0106 g g21).

One supplementary control for this experiment consisted of an

artificial diet without amino acid (‘no AA’) except the ones from

the egg yolk.

For full recipes and ingredient manufacturers, see the

electronic supplementary material.

(c) Experiments
(i) Experiment 1: role of amino acid source on ant lifespan,

feeding and lipid storage
In a first experiment to investigate the possible toxic effects of

protein digestion, we fed subcolonies of Argentine ant workers

with artificial diets with either whole proteins or free amino

acids. Subcolonies (208) of approximately 200 ants (mean+ s.d.

196.3+14.9) were confined to a single nutritional diet from the

beginning to the end of the experiment (defined as either when

all ants from the same subcolony were dead or when only 10%

of the initial number of ants remained alive). The nutritional diet

could be any of the described whole protein or free amino acid

diets. Each diet was tested on 5–16 subcolonies. Water and fresh

food were available and renewed every 2 days. Ants never col-

lected all the food offered before it was renewed. As a control,

13 subcolonies were food deprived and received only water.

First, we counted the number of dead ants every 2 days until

the end of the experiment to estimate ant lifespan. Second, we

froze all the dead ants for lipid content analysis, as described

in [17,18]. The lipid contents were measured at different survival

points (when 0.9, 0.7, 0.5, 0.3 and 0.1 of the ants were still alive;

total n ¼ 690, five to seven subcolonies per survival point and

diet, 23 diets). Third, we recovered from the foraging arena all

food pellets, which are leftovers of the original food jettisoned

by the ants. Lastly, we took pictures of the foraging arena

5 min, 2 h and 16 h after supplying the food and counted the

number of ants eating on each picture for 74 days (or, if the sub-

colonies did not survive that long, until the 10% of the ants

remained alive). We calculated the proportion of ants eating as

the number of ants eating divided by number of ants still alive.

The proportion of ants eating after 5 min reflects the initial attrac-

tiveness of the food [25], whereas the proportions of ants eating 2

and 16 h later reflect longer-term homeostatic responses and

hence the amount of food they need to collect to satisfy colony

requirements (electronic supplementary material, figure S1) [6].

The foraging effort was estimated as the proportion of ants

eating 2 h after offering fresh food. The approximate nutrient col-

lection for the colony derived from the foraging effort was

calculated using the following equation (inspired from [18]):

P-collection = [PWP] or [PAA]� foraging effort

C-collection = [C]� foraging effort:

)
ð2:1Þ

(ii) Experiment 2: effect of larvae presence on ant lifespan
Ants and larvae continuously exchange food via trophallaxis,

and have different appetites for proteins and carbohydrates;

workers use carbohydrates as their main energy source while
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larvae need proteins to develop [26]. Under high-protein diets,

colonies with larvae live longer than those without, because

larvae help with protein digestion [16]. To explore the effect of

larvae on ant lifespan, we observed the survival of ants eating

high-protein diets based on either whole proteins or free amino

acids with and without larvae. Twenty-four subcolonies of

approximately 100 ants (mean+ s.d. 100.5+7.0) with or with-

out larvae were restricted to either 5 : 1 PWP : C or 5 : 1 PAA : C

from the beginning to the end of the experiment (defined as in

experiment 1). For the 12 subcolonies with larvae, we introduced

0.025 g of larvae (40–50 larvae) into the nest. We fed the ants

every 2 days and followed their survival as in experiment 1.

(iii) Experiment 3: effect of amino acid composition on ant
lifespan

If high-protein diet toxicity is due to amino acid composition,

changing this composition would be expected to affect ant life-

span. Two hundred ants were isolated in individual nests and

constrained to a single free amino acid diet varying in the

amino acid profile (‘casein-whey-egg’ diet or ‘Argentine ant

exome’ diet) and in the protein to carbohydrate ratio (1 : 5 or

5 : 1 PAA : C, [P þ C] ¼ 0.10 g g21) from the beginning to the

end of the experiment. Here, the end of the experiment was

defined as either when all ants under the same diet were dead

or when just 10% of the initial number of ants remained alive.

Each diet was tested on 50 ants. We fed the ants every 2 days

and followed their survival as in experiment 1.

(iv) Experiment 4: effect of single amino acids on ant lifespan
In this last experiment, we aimed to dissect the individual

roles of each of amino acid in protein diet toxicity. This is a

20-dimensional mixture problem, and testing all of the possible

main and interactive effects would be a vast undertaking.

Instead, we proceeded to analyse the effect of diets comprising

all amino acids under-represented except one. A total of 1200

ants were isolated as in experiment 3). Each ant was constrained

to one of 24 nutritional diets (20 single amino acid diets and four

controls: food deprivation, 5 : 1 PAA : C, 1 : 5 PAA : C or No AA)

from the beginning to the end of the experiment (defined as in

experiment 3). Each diet was tested on 50 ants. We fed the ants

every 2 days and followed their survival as in experiment 1.

(d) Statistics
Survival analysis was performed using a log rank test to compare

two groups or Cox proportional hazards regression model con-

sidering censured data. Ants observed in the same subcolony

were clustered together for the survival analysis. Nutritional

response landscapes for survival, foraging effort and lipid pro-

portion were evaluated with surface regression models. To

compare the amount of food pellets left in whole protein diets

and in amino acid diets we used a permutation test. The rest of

the data were analysed with linear mixed-effects models with

subcolony as a random factor. Statistics are described in more

details in the electronic supplementary material.
3. Results
(a) Role of amino acid source on ant lifespan, feeding

and lipid storage
We compared the performance of ants under 11 whole

protein and 11 free amino acid diets. We used nutritional geo-

metry [1] to map the performance as response landscapes

onto arrays of protein versus carbohydrate concentrations in

the dietary treatments.
(i) Whole proteins versus free amino acids effects on ant lifespan
The higher the proportion of protein relative to carbohydrate in

the diet, the higher the mortality rate ( p , 0.001; electronic

supplementary material, table S1), for both whole protein

(figure 1a,b; electronic supplementary material, table S2 and

figure S2) and free amino acid diets (figure 1c,d; electronic sup-

plementary material, table S3 and figure S2). The amino acid

source had a strong effect on mortality: ants fed on free

amino acid diets lived half as long as those feeding on

whole proteins ( p , 0.001; electronic supplementary material,

table S1; figure 1a–d). Nutrient concentration ([P þ C]) had

no effect on survival ( p ¼ 0.123; figure 1a,c; electronic

supplementary material, table S1 and figure S2).

A closer inspection of the lifespan of ants under the differ-

ent diets suggests a consistent scaling relationship between

whole protein and free amino acid diets, with the impacts of

free amino acid diets being the same as those of a fivefold quan-

tity of whole protein (figure 1e,f). Hence, ants fed free amino

acid in a 1 : 5 PAA : C ratio survived similarly to those ants

eating whole proteins in a 1 : 1 PWP : C ratio. This was the

case for the two concentrations we tested ([P þ C] ¼ 0.10 and

0.05 g g21; figure 1f,g ). The ants fed 1 : 1 PAA : C diet, also sur-

vived more similarly to ants eating the richer protein diet 5 : 1

PWP : C than ants eating 1 : 1 PWP : C for both concentrations

(figure 1e,f). Therefore, bypassing digestion did not help ants

to survive better on a high protein, lower carbohydrate diet;

rather it provided an approximately five times more potent

dose effect.

(ii) Whole proteins versus free amino acids effects on collective
foraging behaviour

One possible explanation for ants dying faster on free amino

acid diets is that they eat less and suffer consequences of

under-nutrition (electronic supplementary material, figure S1).

When ants were fed on whole protein diets (figure 2a; electronic

supplementary material, table S4), their foraging effort was

greater the higher the P : C ratio ( p , 0.001; electronic sup-

plementary material, table S5), with nutrient concentration

per se having no effect ( p ¼ 0.676). In contrast, ants on free

amino acid diets (figure 2b; electronic supplementary material,

table S6) increased foraging as the food P : C ratio decreased

( p , 0.001; electronic supplementary material, table S7). Ants

feeding on whole proteins foraged more than ants feeding on

free amino acids ( p , 0.001; electronic supplementary material,

table S8). Ants compensated for sugar scarcity in high PWP : C

ratio diets by foraging more, therefore achieving roughly the

same final amount of carbohydrates collected, regardless of

their concentration in the diet (figure 2c). However, when fed

amino acid diets this strategy was not seen (figure 2c inset):

instead, the higher the P : C ratio, the less the ants foraged,

such that the quantity of amino acid rather than the quantity

of carbohydrate was largely conserved.

We observed that ants left waste pellets in the foraging

arena. The amount of pellets increased as the dietary P : C

ratio increased ( p , 0.001; electronic supplementary material,

table S9). Ants left, on average, 20 times more pellets on

whole protein than on free amino acid diets ( p , 0.001).

(iii) Whole proteins versus free amino acids effects on lipid
reserves

Given that ants collected less free amino acid than whole

protein diets, they might have died faster in free amino acid
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diets because they did not consume enough sugar and instead

had to deplete their lipid reserves [19]. We found that ants on

whole protein diets (figure 3a; electronic supplemen-

tary material, table S10) had less body lipid the higher the

P : C ratio ( p , 0.001; electronic supplementary material,

table S11). For ants on free amino acid diets (figure 3b; elec-

tronic supplementary material, table S12), the ratio had no

influence ( p ¼ 0.227; electronic supplementary material, table

S13) but the higher the nutrient concentration [P þ C], the

fatter the ants ( p ¼ 0.032; electronic supplementary material,

table S13). Unexpectedly, ants fed free amino acid diets were

on average fatter than those eating whole proteins ( p ¼ 0.002;

electronic supplementary material, table S14).
(b) Effect of larvae presence on ant lifespan
To explore the effect of larvae on colony survival, we moni-

tored subcolonies of ants eating high-protein diets with and

without larvae. We found that larvae increased the ant survi-

val, regardless of the amino acid source ( p ¼ 0.038; figure 4;

electronic supplementary material, table S15).

(c) Effect of amino acid composition on ant lifespan
The following experiment was conducted on isolated ants, and

it is important to note that the response of isolated ants to diet-

ary P : C ratio is qualitatively similar to that of subcolonies

(electronic supplementary material, figure S3 and table S16).
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To explore whether amino acid balance modulates high-

protein diets toxicity, we fed ants with the previous free

amino acid diets and new ones matching the translation of

Argentine ant exome. The ‘Argentine ant exome’ diet had a

higher proportion of glutamic acid, glutamine or proline but

lower proportions of alanine, cysteine or serine than the
‘casein-whey-egg’ diet (figure 5a). We hypothesized that the

‘Argentine ant exome’ diet would not produce the deleterious

effect of high-protein diets because it could theoretically better

fit the ant need for amino acids. However, we found no statisti-

cally significant difference in the survival between those two

free amino acids compositions, regardless of the P : C ratio
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(figure 5b; p ¼ 0.130; electronic supplementary material,

table S17).
(d) Effect of single amino acids on ant lifespan
After finding that free amino acids were more toxic than whole

proteins, we investigated the individual roles of each of them.

Ants lived the longest in the ‘no AA’ diet (P : C ratio � 1 : 6,

[P þ C] ¼ 0.02 g g21), indicating little need for amino acids;

and, as expected, ‘food deprivation’ and 5 : 1 PAA : C dramati-

cally shortened ant survival (figure 6). Most of the single

amino acid diets shortened lifespan with respect to ‘no AA’

diet, except glutamate, tyrosine and tryptophan (figure 6;

electronic supplementary material, table S18). Among those

that shortened lifespan, four were especially harmful: phenyl-

alanine, serine, threonine and methionine (figure 6).

Methionine shortened lifespan by as much as the 5 : 1 PAA : C

and ‘food deprivation’ diets ( p ¼ 0.597 and p ¼ 0.115;

electronic supplementary material, table S19–S20). The differ-

ences in concentration between amino acids do not explain the

differences in amino acid toxicity ( p ¼ 0.440; electronic

supplementary material, table S21). In the single amino acid,

the total amino acid concentration is much lower than that of

the 5 : 1 PAA : C diet (on average, 1/20), because we added

only one amino acid instead of 20. Accordingly, the PAA : C

ratios were much lower than 5 : 1 (approx. between 1 : 6 and

2 : 3). It is remarkable that such low concentrations of a single

amino acid can have such a dramatic effect.
4. Discussion
We have found that, for sterile Argentine ant workers, bypass-

ing the possible harmful side effects of protein digestion (by

providing free amino acids directly) did not increase the survi-

val on high-protein diets; on the contrary, it increased mortality,

producing an approximately five times more potent dose effect.

Digested proteins are absorbed in the insect midgut as small

peptides or amino acids [27,28]; however, ant workers have a

reduced enzymatic presence in their midguts [29,30] that

might limit their capacity to break down proteins into amino

acids. Ants eating whole proteins might then absorb just a

small proportion of amino acids, whereas those eating free

amino acids amino might potentially absorb all of them. The

increased mortality under free amino acid diets indicates that
the ultimate products of protein digestion, the amino acids,

are responsible for the high-protein diet toxicity [2,5–7].

An excess in amino acids might increase potentially toxic

nitrogen waste products [10] or over-stimulate nutrient-sensing

pathways that regulate lifespan (such as the TOR pathway

[11–13]). The gut microbiota, which is important for ant nutri-

tion [31] and sensitive to dietary macronutrients [32], might

also play an important role in the physiological response to

the diet. Additionally, ant workers do not seem to need pro-

teins in their diet (figure 6) [6,26] and might have a reduced

expression of hexamerins (storage proteins) [33], leading to a

less efficient way to deal with the amino acid excess under

high-protein diets. Ant larvae, on the contrary, have higher

levels of protease activity [30] and hexamerin expression [33].

Indeed, we found that, regardless of the amino acid source,

colonies with larvae lived longer under high-protein diets

than those without. This suggests that larvae process the

amino acid excess under high-protein diets.

In addition to the effects on lifespan, we found that ants

showed a very different foraging strategy when presented

with whole proteins or free amino acids. Similarly to other

ants [6,16–18], Argentine ants compensated for the insufficient

amount of sugar in high-protein diets by collecting more food,

thereby stabilizing sugar collection across a wide range of P : C

ratios, irrespective of the excess of protein ingested. However,

for free amino acid diets, ants followed the opposite rule: the

more amino acids in the food, the less food the ants collected.

Alternatively, instead of adapting their foraging strategy to

the free amino acid presence, ants could be intoxicated by the

amino acid excess and therefore eat less. However, the strategy

for free amino acid diets was established on the first day of the

experiments (electronic supplementary material, figure S4),

just 2 h after the first food administration, whereas significant

differences in survival appeared only after 4 days for 5 : 1 treat-

ments and after 30 days for the 1 : 5 treatments. This suggests

that ants might stop collecting food once the target for

amino acid has been reached, irrespective of the shortfall of

carbohydrate ingested.

The underlying mechanisms supporting a different strat-

egy for free amino acid and for whole protein foods might be

twofold. First, ants might not be able to ‘detect’ the presence

of whole proteins in the high-protein diet and perceive it

more as a diluted carbohydrate diet. Indeed, ants increase

their consumption of food when faced with highly diluted

carbohydrate diet [25]. Free amino acid taste receptors have

not yet been described in ants, but they presumably exist

given that they are widespread among insects [34,35] and

that ants react differently to food sources presenting free

amino acids [36,37]. In a previous study, we have shown

that, when given the choice between 5 : 1 PWP : C versus 5 : 1

PAA : C, Argentine ants prefer free amino acid diets over

whole protein diets [38]. The perception of free amino acids,

through their corresponding taste receptors, might underlie

their nutritional regulation strategy via satiation effects. Work

on locusts has shown that an elevated level of amino acids in

the blood triggers protein repletion and a desensitization of

taste receptors detecting the amino acids in the food [39].

According to such a mechanism, when ants have eaten suffi-

cient free amino acids, they would stop feeding irrespective

of the amount of sugar ingested. This strategy might be similar

to the human regulation of protein intake [40].

Second, the free amino acid mixtures might provide a

greater effective dose to the ants than whole proteins and
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therefore elicit an early satiation. We observed that ants left

food pellets outside the nest when fed whole protein diets, a be-

haviour also seen in other ant species [16,17]. As in previous

studies, the amount of pellets was higher when the protein-

to-carbohydrate ratio was high. Chemical analysis of pellets

have revealed that ants are able to separate the proteins from
the sugar and discard the excess proteins as pellets [16,17].

Interestingly, when ants were confined to free amino acid

diets, they left almost no pellets. This observation suggests

that while ants were able to manipulate the protein content

before digestion of whole protein diets, they could not do it

when the diet was based on free amino acids. This confirms
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that amino acid diets provided a greater effective dose of amino

acids to the ants than the whole protein diets.

To examine the physiological response of ants to the various

diets, we measured their lipid storage. Some species of ants

respond to high-protein diets by increasing their lipid reserves

as a possible strategy to survive sugar scarcity [17,18] and

others, as observed here in the Argentine ant, see their lipid

reserves decrease [19,41,42]. In our experiment, ants collected

less free amino acid than whole protein diet, but they presented

on average a higher body mass proportion of lipids than those

feeding on whole proteins. Therefore, the cause of death cannot

be the result of the depletion of the lipid reserves. We might

speculate that lipid reserves in ants on free amino acid diets

were higher because (i) ants had a lower activity rate owing

to diet toxicity [43], (ii) they synthesized lipids from amino

acids or (iii) they died before lipid depletion occurs.

The amino acid composition of food might be expected to

modulate the response to high-protein diets as it is known to

affect vital functions [44]. Here, we have shown that two

different amino acid profiles have similar effects on ant survival

(even though the ‘exome’ diet profile was especially designed to

anticipate the amino acid requirement of the ants). Thus, we

further explored the individual role of each amino acid on the

high-protein toxicity and we found that the over-representation

of methionine (Met), serine (Ser), threonine (Thr) and phenyl-

alanine (Phe) were especially harmful. These amino acids

when in excess decrease growth and/or lifespan in a wide var-

iety of life forms such as unicellular algae (Met, Thr and Ser [45]),

yeasts (Met, Thr and Ser [46–48]), roundworms (Phe [49]), flies

(Met [50,51]), rodents (Met, Thr, Ser and Phe [46,52–54]), and

even cancer tumour cells (Met and Phe [55]) and other human

cells (Met [46]). Methionine is proposed to be related to oxi-

dative stress processes [56]. Interestingly, injections of

phenylalanine in rats induce metabolic disorders also associated

with oxidative stress [57] and, in the African honeybee, the use
of an antioxidant reduces the life-shortening effect of foods with

an excess of free essential amino acids [58]. Despite their toxicity

at high concentrations, these amino acids are essential (Met, Thr,

Phe) or conditionally essential (Ser) for insects [59]. Indeed,

some ants prefer sugar solutions enriched with these amino

acids over solutions of pure sugar [36].
5. Conclusion
This study suggests us a potential role of amino acids on the

regulatory feeding strategy of ants and has showed that amino

acids are key elements triggering the reduction of lifespan

under high-protein diets. Furthermore, we have identified

four amino acids that are especially harmful when present at

high concentrations relative to other amino acids and whose tox-

icity had been independently reported in organisms from yeasts

to mammals.
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37. Blüthgen N, Fiedler K. 2004 Preferences for sugars
and amino acids and their conditionality in a
diverse nectar-feeding ant community. J. Anim.
Ecol. 73, 155 – 166. (doi:10.1111/j.1365-2656.2004.
00789.x)

38. Arganda S, Nicolis SC, Perochain A, Péchabadens C,
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