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Developmental plasticity may accelerate the evolution of phenotypic novelty

through genetic accommodation, but studies of genetic accommodation

often lack knowledge of the ancestral state to place selected traits in an

evolutionary context. A promising approach for assessing genetic accommo-

dation involves using a comparative framework to ask whether ancestral

plasticity is related to the evolution of a particular trait. Bees are an excellent

group for such comparisons because caste-based societies (eusociality) have

evolved multiple times independently and extant species exhibit different

modes of eusociality. We measured brain and abdominal gene expression

in a facultatively eusocial bee, Megalopta genalis, and assessed whether

plasticity in this species is functionally linked to eusocial traits in other

bee lineages. Caste-biased abdominal genes in M. genalis overlapped signifi-

cantly with caste-biased genes in obligately eusocial bees. Moreover,

caste-biased genes in M. genalis overlapped significantly with genes shown

to be rapidly evolving in multiple studies of 10 bee species, particularly

for genes in the glycolysis pathway and other genes involved in metabolism.

These results provide support for the idea that eusociality can evolve via

genetic accommodation, with plasticity in facultatively eusocial species

like M. genalis providing a substrate for selection during the evolution of

caste in obligately eusocial lineages.
1. Introduction
Phenotypic plasticity may accelerate the evolution of phenotypic novelty

through genetic accommodation ([1–4], cf. [5]), but studies of genetic accommo-

dation often lack knowledge of the ancestral state to place selected traits in an

evolutionary context. Most empirical support for genetic accommodation

employs artificial selection on experimentally induced phenotypes [6–8].

Other empirical studies demonstrate the necessary phylogenetic relationships

between environmentally sensitive phenotypes in ancestral lineages and more

fixed phenotypes in derived lineages required for genetic accommodation

[9,10] but do not show evidence of selection. For condition-sensitive traits,

the ancestral condition cannot always be inferred accurately from traits of

extant forms [11].

As genomic tools are deployed across a wider array of species, a promising

approach to investigate genetic accommodation is to look for both plasticity in

ancestral lineages and evidence of selection [3,12,13]. Groups with repeated

evolution of traits are ideal for this approach, as comparative genomics can

be used to identify genes under selection for a trait of interest. Social insects,
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and bees in particular, are especially promising for addressing

the role of genetic accommodation in phenotypic innovation

because eusocial behaviour has evolved independently multiple

times [14–17].

A growing volume of published data has identified genes

undergoing selection in social lineages of bees [18–20], provid-

ing a framework to test the role of genetic accommodation in

the evolution of eusociality. Still missing, however, is knowl-

edge of the ancestral phenotypic plasticity of different bee

lineages, and whether this ancestral plasticity is related to

genes under selection in eusociality.

Gene expression data have been used as a measure of

plasticity in many different contexts, including those related

to genetic accommodation [3]. In particular, genes that are

differentially expressed are thought to experience reduced

genetic constraint and evolve more quickly, which has been

confirmed in empirical studies [21,22]. Brain gene expression

differences have been described across caste and many

behavioural contexts in bumblebees [23] and honey-

bees [24,25]. Queen (Q) and worker (W) honeybees are

morphologically distinct and adapted to reproductive and

non-reproductive functions, respectively; these differences

are reflected in a transcriptomic study which reported over

2000 differentially expressed genes (DEGs) in the brain [26].

These genes, along with caste-biased genes in other obligately

eusocial insects, have been found to evolve more rapidly than

genes unrelated to caste [19,21,27]. However, whether these

genes also showed facultative expression along with plas-

ticity in organismal-level phenotypic traits prior to the

evolution of obligate eusociality is unknown.

Robust phylogenetic studies point to a solitary ancestral

lifestyle for bees [28,29]. Some species of bees display faculta-

tive eusociality, with both solitary and social nests existing

either across geographical gradients ([30–34], reviewed in

[35]) or even within the same population [36,37]. It is thus

likely that at least some mechanisms underpinning pheno-

typic differentiation in these facultatively eusocial bees play

roles in evolutionary transitions from solitary to social life

histories. If so, then testing the predictions of genetic accom-

modation in eusocial evolution can use facultatively eusocial

species as proxies for the ancestral state. We did this by using

the facultatively eusocial bee, Megalopta genalis, to measure

environmentally induced plasticity in gene expression and

then compared differentially expressed genes from this

species with genes previously shown to be under selection

in obligately eusocial taxa.

Megalopta genalis (Halictidae) is a Neotropical sweat bee

that displays facultative eusociality [37–40]. Many faculta-

tively eusocial species exhibit social plasticity across

geographical gradients [31–33], but in M. genalis both social

and solitary nests exist within a single population. This

strongly suggests that M. genalis eusociality is at least partially

environmentally determined. The plasticity arises through

variation in reproductive behaviour of nest-founding females

[39–42]. Solitary nests form when females produce only

males in their first broods, with subsequent female production

resulting in dispersal rather than retention of female workers

[42]. By contrast, social nests form when one or more females

produced in the first brood remain as non-reproductive

workers. Expression of alternative reproductive phenotypes

in Megalopta is related to social competition linked to body

size and nutrition [39,42,43], as well as ovary size [40] and hor-

monal differences [44]. Workers in social nests remain sensitive
to environmental and social conditions and have the ability to

mate and reproduce after queen loss or supersedure, becoming

replacement queens with reproductive outputs equivalent to

those of solitary females [41].

We used the naturally occurring phenotypic variation

of M. genalis and comparative genomics to explore the mechan-

isms of genetic accommodation. We compared gene expression

for four female phenotypes (solitary, queen, worker and repla-

cement queen) in both brain and abdominal tissues. We then

assessed the degree to which differences in expression associ-

ated with phenotypic variation in M. genalis are common

across other species of bees to ask whether similar molecular

mechanisms are implicated in caste determination. Finally,

we tested for commonality of caste-biased genes in M. genalis
with genes previously identified as undergoing selection in

eusocial bee lineages to address whether ancestral plasticity

is consistent with genetic accommodation for social traits in

the evolution of eusociality in bees.
2. Material and methods
See the electronic supplementary material for detailed methods.

(a) Sample collection
Megalopta genalis females were collected on Barro Colorado

Island in the Republic of Panama where they are abundant

during the dry season [45]. Frozen tissues were exported with

permission from the National Authority for the Environment of

the Government of Panama (permit Nos. SEX/A-53-13 and

SEX/AH-4-15). Observation nests were created with newly

emerged females and monitored daily until offspring emergence

enabled classification of nests as solitary or social [37–39,46].

Solitary females (S) and queens (Q) were collected following an

egg-laying event in solitary and social nests, respectively. In

half of the social nests, workers (W) were removed on the

same day as queens, and in the other half workers were allowed

to transition into replacement queens (R) before collection (4–18

days following queen removal). All females were collected

during inactive periods so that gene expression differences

were not likely due to acute differences in activity or short-

term behaviours, but rather stable gene expression differences

between groups. Detailed sample information is provided in

the electronic supplementary material, S1.

(b) RNA preparation
Whole brains (n ¼ 30; 7 S, 7 Q, 9 W, 7 R) and abdomens (n ¼ 25;

7 S, 7 Q, 6 W, 5 R; gut tissue and Dufour’s glands removed) were

dissected as in [47], and ovaries were imaged to confirm repro-

ductive state. Abdominal tissues extracted were primarily fat

body and ovarian tissue, but also include the sting sac, muscle

and nervous tissues. To facilitate communication, results will

refer to ‘abdominal tissues’ which denotes these tissues collec-

tively. Total RNA was extracted using QIAGEN RNeasy

columns following the manufacturer’s protocol.

(c) Library preparation and RNA-sequencing
Poly-A RNA was enriched from total RNA and strand-specific

cDNA libraries were prepared using the Bioo Scientific NEXTflex

Directional RNA-Sequencing Kit (dUTP Based) for Illumina.

Paired-end sequencing was performed on an Illumina HiSeq

2500 at the W. M. Keck Center (University of Illinois). Quality

was assessed using FASTQC and read trimming was performed

with Trimmomatic prior to alignment with Bowtie to a

previously assembled transcriptome for M. genalis [47].
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Figure 1. Plot of first two principal components for (a) abdominal and (b) brain gene expression patterns across four female behavioural groups. Points represent
individual samples and shaded ellipses show 95% CIs. Percentage of variance explained by each principal component is shown on axes. Drawings of M. genalis brain
and abdominal tissues by Julie Himes.

Table 1. Number of differentially expressed genes (DEGs, FDR , 0.05) for
each pairwise comparison of female groups in both brain and abdominal
tissues. Numbers in parentheses indicate number of genes more highly
expressed in first group of pair (e.g. Q versus W comparison has 157 total
DEGs, 49 of which are more highly expressed in Q compared to W). Q,
queen; W, worker; S, solitary reproductive; R, replacement queen.

comparison abdomen DEGs brain DEGs

Q versus W 8127 (4044) 157 (49)

S versus W 6708 (3827) 542 (219)

R versus W 4206 (3048) 0

Q versus R 510 (88) 18 (8)

S versus R 38 (9) 133 (30)

S versus Q 37 (35) 16 (11)
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(d) Differential expression analyses
Estimated read counts at the putative gene level were obtained

using RSEM following alignment with scripts packaged in

Trinity r20140413 [48]. Gene counts were filtered to include

only genes with at least 1 count per million in the minimum

number of samples per group per tissue type. A surrogate vari-

able analysis [49,50] was performed on each tissue dataset to

identify potential batch effects due to collection year, library

preparation batch, sequencing lane or other unidentified techni-

cal differences. Dispersion estimates and pairwise tests of

differential expression were conducted in edgeR [51] with FDR

correction. DEG lists can be found in the electronic supplemen-

tary material, S2. Annotation of differentially expressed genes

for GO enrichment was conducted using PANTHER for pairwise

lists of DEGs, and a statistical overrepresentation test with Bon-

ferroni correction for multiple testing was used to identify

PANTHER pathways and GO-Slim Biological Processes over-

represented in pairwise lists as presented in the electronic

supplementary material, S3 [52].

(e) Overlap with other studies
Putative orthologues between species were identified using

BLAST reciprocal best hits (RBH) between predicted peptides.

For M. genalis and Bombus terrestris transcriptomes [47,53], pre-

dicted peptides were obtained using TransDecoder. Conversion

lists between microarray probes and annotation versions of

the Apis mellifera genome, along with RBH results, are found in

the electronic supplementary material, S4. For Representation

Factor (RF) gene overlap tests, only genes tested in the study

with a putative orthologue in both species were compared

between any two given studies. Gene lists and complete RF

results are given in the electronic supplementary material, S5

(gene expression studies) and S6 (selection studies).
3. Results
(a) Caste differences in gene expression
Female castes of M. genalis differed in gene expression in both

brain and abdominal tissues (figure 1 and table 1). In

abdominal tissues, variance in gene expression was largely

explained by reproductive activity. The first principal com-

ponent (figure 1a) explained nearly 40% of the variance in

abdominal gene expression and separated workers (who

are non-reproductive) from all reproductive groups. All
reproductive females showed similar patterns of abdominal

gene expression relative to workers, regardless of sociality

(figure 2). Nearly 95% (3618/3827) of the genes that were

more highly expressed in solitary females compared to

workers were also more highly expressed in queens com-

pared with workers, a highly significant overlap

(representation factor: 3.34, p , 0.0001). These 3618 genes

were strongly enriched for GO-Slim Biological Processes

related to DNA metabolism and repair, chromatin organiz-

ation and cell cycle (all GO enrichments listed in the

electronic supplementary material, S3).

Among abdominal worker-biased genes (figure 2a), 2629

genes were more highly expressed in both W . Q and W . S

comparisons. The most enriched GO-Slim Biological Process

for these genes was glycolysis (GO:0006096), with a nearly

fivefold enrichment. Also enriched in worker-biased abdomi-

nal genes compared with queens and solitary females were

steroid metabolic process (GO:0008202), respiratory electron

transport chain (GO:0022904) and monosaccharide metabolic

process (GO:0005996).

Brain differences in expression were much less pro-

nounced than abdominal differences (table 1), but variance

in brain gene expression explained by the first two principal

components (22.6% of total variance) roughly mapped to the

variance in behaviour seen across castes. Queens and workers



2925
(68.2%)

693
(16.1%) 361

(8.4%)

65
(1.5%)

39
(0.9%)

19
(0.4%)

190
(4.4%)

S > W Q > W

R > W

DNA replication
DNA metabolic 

process
rRNA metabolic 

process

up in reproductives

979
(22.4%)

1650
(37.8%) 1333

(30.5%)

121
(2.8%)

33
(0.8%)

25
(0.6%)

227
(5.2%)

W > S W > Q

W > R

glycolysis
generation of 

precursor metabolites 
steroid metabolic 

process

up in workers (b)(a)

Figure 2. Venn diagrams show genes (a) upregulated in workers relative to reproductive individuals and (b) upregulated in reproductive individuals relative to
workers. Numbers in each subregion show the number of DEGs with an FDR , 0.05, and percentage of genes in that subregion relative to the universe of genes.
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highlighted regions show overlap between solitary and queen versus worker DEGs, respectively, and text refers to the top 3 significant enriched GO terms for
genes in those regions. Q, queen; W, worker; S, solitary reproductive; R, replacement queen. (Online version in colour.)
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were least variable, while both solitary and replacement

queen females showed large variation in brain gene

expression. The latter are the two groups that, at the time of

collection, performed all activities in the nest (cell building,

foraging, provisioning and reproduction). Many of the DEG

lists in brain tissue did not have significant functional

enrichment. However, heterotrimeric G-protein signalling

pathways (P00026 and P00027) and both muscarinic

(P00042 and P00043) and nicotinic (P00044) acetylcholine

receptor signalling pathways were upregulated in both

workers and replacement queens relative to solitary females.

In solitary females, extracellular transport (GO:0006858) was

enriched relative to workers.

(b) Replacement queens shift gene expression to
reproductive-like phenotypes

The shift to reproductive activity in replacement queens fol-

lowing queen removal was associated with a near-complete

shift in abdominal gene expression from worker-like to

queen- and solitary-like (figures 1a and 2). Of the 3618

genes in common between Q . W and S . W abdominal

DEGs, 81% were also more highly expressed in replacement

queens compared with workers.

Replacement queens displayed high variation in brain

gene expression compared with workers and queens, poss-

ibly reflecting the increased behavioural variation in this

group. Three individuals (all collected in 2014) more closely

resembled the reproductive phenotype along the first two

principal components shown in figure 1b, while four individ-

uals (two collected in 2014 and two in 2015) appeared

worker-like in brain gene expression.

(c) Cross-species expression comparisons
Abdominal caste-specific differences in gene expression in

M. genalis overlapped significantly with caste-specific DEGs

in B. terrestris and five worker-related DEG lists in

A. mellifera. In addition, brain caste-specific differences in
gene expression in M. genalis overlapped significantly with

differences in gene expression in two out of four comparisons

with A. mellifera DEGs.

Caste-specific abdominal expression in M. genalis was

compared with previous studies of B. terrestris caste differ-

ences [23] and A. mellifera workers [54,55]. Significant

overlap was observed when comparing queen-biased and

worker-biased genes in M. genalis abdomen and B. terrestris
whole-body extractions (figure 3; RF: 1.5 for Q . W and

RF: 1.6 for W . Q, both p , 0.0001). Of the genes more

highly expressed in B. terrestris queens, 49% were also more

highly expressed in the abdomens of M. genalis queens com-

pared with workers. These genes were enriched for DNA

metabolic process (GO:0006259), cell cycle (GO:0007049)

and nucleobase-containing compound metabolic process

(GO:0006139).

Very strong overlap was observed when comparing

queen-biased and worker-biased genes in M. genalis abdo-

mens with DEGs in the abdomens of laying worker (LW)

and sterile worker (S) honeybees (figure 3; RF: 2.0 for Q .

W,LW . S and 1.7 for W . Q,S . LW; both p , 0.0001;

[54]). Among the reproductive-related (Q . W and LW . S)

overlap, enriched GO-Slim terms included chromatin organ-

ization (GO:0006325), DNA replication (GO:0006260) and

mitosis (GO:0007067). No significant GO enrichment was

observed for the overlapping genes between M. genalis
W . Q and A. mellifera S . LW.

Significant overlap was also observed when comparing the

M. genalis Q versus W abdomen DEG list and genes differen-

tially expressed in the fat body of worker honeybees fed high

versus low pollen diets [55]: Q . W genes had marginal over-

lap with Low . High pollen (RF: 1.1, p , 0.049) and W . Q

genes had strong overlap with High . Low pollen-responsive

genes (RF: 1.6, p , 0.0001; figure 3). For the remaining

comparisons, M. genalis workers showed gene expression con-

sistent with both worker phenotypes in honeybees. Genes that

were more highly expressed in the abdomens of workers than

in queens of M. genalis overlapped significantly with nurse (N)

and forager (F) biased genes, genes both upregulated and
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Figure 3. Representation factors for overlap of M. genalis abdominal (a) worker . queen DEGs and (b) queen . worker DEGs with previous studies in Bombus
terrestris (whole body [23]) and Apis mellifera (laying versus sterile worker, abdomen [54]; all other comparisons, fat body [55]). For each comparison, DEGs are split
into two bars and labelled with the group more highly expressed (e.g. the black bar labelled ‘Bter worker’ in (a) shows the representation factor for W . Q genes
in M. genalis and W . Q genes in B. terrestris). A representation factor (RF) of 1 indicates a level of overlap expected by chance, while RF . 1 indicates more
overlap than expected and RF , 1 indicates less overlap than expected; n.s. not significantly different from RF ¼ 1 (hypergeometric p . 0.05), all other bars are
significantly different from RF ¼ 1 (hypergeometric p , 0.05) in the direction shown.
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downregulated by exposure to QMP, and vitellogenin (Vg)-

responsive genes in the honeybee fat body ([55], figure 3).

No significant overlap was observed when comparing

brain Q versus W DEGs in M. genalis and A. mellifera [26].

The majority of A. mellifera brain gene expression studies

have compared behaviourally distinct subcastes of workers.

Honeybee workers as a whole resemble M. genalis castes in

terms of their behavioural flexibility (e.g. performance of both

nurse-like and forager-like tasks). We therefore tested for over-

lap of our M. genalis Q versus W brain DEGs and DEGs from

two A. mellifera N versus F experiments [56,57], as well as from

an RNAi experiment looking at the effects of peripheral Vg
knockdown on worker brain gene expression [58].

Significant overlap (RF: 2.0, p , 0.021) was found when

comparing M. genalis Q versus W DEGs and DEGs from

one N versus F study [56] but not the other ( p , 0.379,

[57]). Among the 11 overlapping DEGs between the M. gena-
lis Q versus W and A. mellifera N versus F lists are serine/
threonine-protein kinase ICK-like, apyrase precursor and two

transporter proteins. A significant degree of overlap was

found when comparing worker-biased genes in M. genalis
(W . Q) and genes more highly expressed in Vg knockdown

bees relative to control bees [58] (RF: 2.1, p , 0.017). Four of

the 10 VgRNAi-overlapping genes were also within the 11

genes that overlap between M. genalis Q versus W and

A. mellifera N versus F lists, including serine/threonine-protein
kinase ICK-like, apyrase precursor, and an excitatory amino acid

transporter. Lists of overlapping genes and tests for significance

are found in the electronic supplementary material, S5.

(d) Insights from comparative molecular evolution
studies

Worker-biased genes expressed in the abdomen of M. genalis
were enriched for many GO terms related to metabolism. This

was noteworthy because previous molecular evolution studies

identified metabolic genes as one of the more prominent
categories of genes undergoing selection in social bee lineages

(figure 4; [18,20]). To more formally test the association between

worker-biased genes in M. genalis and genes under selection in

other bee species, we compared our abdomen W . Q DEG list

with genes identified in three studies of molecular evolution

[18–20]. In all three comparisons, the genes that were more

highly expressed in the abdomens of workers relative to

queens in M. genalis were also overrepresented among genes

undergoing positive selection in social lineages of bees (table 2;

electronic supplementary material, S6).

Among the Harpur et al. [19] genes showing positive selec-

tion in A. mellifera that have putative M. genalis orthologues,

nearly 40% (254/639) were worker-biased in expression (RF:

1.4, p , 0.0001; table 2). These genes were enriched for GO pro-

cesses relating to respiratory electron transport chain

(GO:0022904) and the generation of precursor metabolites and

energy (GO:0006091). In contrast with worker-biased genes,

queen-biased genes were underrepresented among the Harpur

et al. [19] genes showing positive selection (RF: 0.7, p , 0.0001).

Genes identified under positive selection in Woodard et al.
[18] included 50 that were also worker-biased in expression in

M. genalis, eight of which are in the glycolysis pathway

(figure 4; RF: 1.3, p ¼ 0.015). These 50 genes were enriched

for cellular amino acid metabolic process (GO:0006520), and

seven were also among the Harpur et al. [19] genes, including

aldehyde oxidase-like, aspartate aminotransferase, prostaglandin
reductase 1-like, bifunctional ATP-dependent dihydroxyacetone
kinase and 6-phosphofructokinase.

Genes identified as undergoing positive selection (103, 70

of which have M. genalis putative orthologues) across social

lineages in Kapheim et al. [20] also overlapped significantly

with abdominal worker-biased genes in M. genalis (28

genes; RF: 1.5, p ¼ 0.014). These genes were not enriched

for GO terms, but four of the 28 genes are in the glycolysis

pathway (figure 4), including beta-lactamase-like protein 2 hom-
ologue, glyceraldehyde-3-phosphate dehydrogenase 2 isoform 1,
phosphoglycerate mutase 2-like and enolase-like.



acetyl-CoA

GB44983

oxaloacetate

dihydrolipoamide-E

citrate cycle
 (TCA cycle)

GB53566

acetate

GB52788

GB44426

GB48308

GB44209

GB45834

GB52783

GB42922

pyruvate

GB47079

GB45110

alpha-D-glucose

beta-D-glucose

pyruvate
metabolism

TPP

2-hydroxyethyl-ThPP

S-acetyldihydrolipoamide-E

alpha-D-glucose 
6-phosphate

GB51634

GB54661

alpha-D-glucose 1-phosphate

beta-D-fructose 
6-phosphate

GB48135

GB48134

GB48132

GB48133

ethanol

GB54369

starch and sucrose
metabolism

glycerone
phosphate

GB45538

beta-D-glucose
6-phosphate

PEP

2-phospho-D-glycerate

GB46285

3-phosphoglycerate

1, 3-bisphospho-D-glycerate

lipoamide-E

ethanal
GB53314

glyceraldehyde 
3-phosphate

beta-D-fructose 1, 6-bisphosphate

GB50901

GB47079

GB40783

GB40783

GB40783

GB50943

GB40735

GB50902

GB40302

GB46214

GB54753

GB46565

GB55496
GB40726

GB53086

GB49562

GB40734

GB45037

GB50443

GB47210

GB41591

GB51494

GB46290

GB55496

GB51283 GB55701GB49240

GB51335

queen > worker

worker > queen

under selection in
social lineage(s)

non-DEG

not in dataset

Figure 4. Differentially expressed genes (FDR , 0.05) between queen and worker M. genalis abdominal tissues in the glycolysis/gluconeogenesis pathway. DEGs were
mapped onto putative honeybee orthologues modified from KEGG pathway ame00010 (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/) and
[18]. Genes labelled as under selection were identified as undergoing positive selection in at least one of three studies of selection in bees [18 – 20]. Genes not in dataset
are honeybee genes without a BLAST reciprocal best hit to the M. genalis transcriptome or genes that are not expressed in the abdomen of M. genalis.
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Table 2. Overlap of genes more highly expressed in the abdomens of M. genalis workers than queens and three independent studies of selection across bees.
Woodard et al. [18] genes are those identified as rapidly evolving in highly eusocial lineages of bees. Harpur et al. [19] genes are those with signatures of positive
selection in A. mellifera. Kapheim et al. [20] genes are those undergoing positive selection across two independent origins of eusociality. Gene lists were restricted to
those that had a putative orthologue in M. genalis (based on BLAST reciprocal best hit) and were expressed in the abdomen of M. genalis females. RF:
Representation Factor, p-value is from hypergeometric test of overlap. GO terms listed are from PANTHER overrepresentation tests (Bonferroni corrected p , 0.05).

source genes under selection no. W > Q RF p-value GO enrichment

Woodard et al. 130 50 1.3 0.015 cellular amino acid metabolic process

Harpur et al. 639 254 1.4 ,0.0001 respiratory electron transport chain, generation

of precursor metabolites and energy

Kapheim et al. 70 28 1.5 0.014 none
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4. Discussion
The fact that eusociality has evolved independently multiple

times in bees has provided rich material for comparative

analyses. Recent work has demonstrated that different

origins of eusociality have involved both common and

unique pathways, often with changes in gene regulatory

networks [18,20,59]. We found that abdominal caste-specific

differences in gene expression in a facultatively eusocial bee,

M. genalis, overlapped significantly with caste-specific

differences in gene expression in other eusocial bee species.

Our findings suggest common mechanisms involved in

caste regulation across lineages with different types of euso-

ciality. Moreover, we found that worker-biased abdominal

genes in M. genalis overlapped significantly with genes

shown to be rapidly evolving in eusocial lineages of bees

from three independent studies of selection. With M. genalis
serving as a proxy for ancestral variation, these results pro-

vide support for genetic accommodation in the evolution of

eusociality in bees. According to this hypothesis, pheno-

typic plasticity exhibited by facultatively eusocial species

may have enabled selection for permanent reproductive

and non-reproductive castes.

Dramatic differences in gene expression were observed in

abdominal tissues when comparing workers with reproduc-

tively active females. While DNA-related processes

dominated the reproductive signal in abdominal tissues,

workers showed a bias for expression of many metabolic

pathways, including glycolysis (figure 4). In contrast with

the abdominal results, brain gene expression differences

were more subtle. The number of DEGs between queens

and workers was more similar to that seen in the primitively

eusocial wasp Polistes dominula [60] than in the highly derived

eusocial honeybee [26].The striking differences in DEG num-

bers between the brain and abdomen suggest that signalling

between the reproductive system and the brain plays a role in

mediating behaviour of M. genalis females. This is similar to

hypotheses from the honeybee literature [61–63], where it

has been reported that surgical implantation of supernumer-

ary ovaries in workers leads to a shift in the age at onset of

foraging [63]. An alternative explanation for the differences

in DEG numbers between brain and abdominal comparisons

is that collection of individuals during inactive periods led to

a reduction in the genes that were differentially expressed in

the brain.

Theory predicts that social traits may be subject to relaxed

selective constraint and higher levels of polyphenism [64,65].
Our results are consistent with predicted relaxed constraints

on worker traits, which may predispose worker-biased

genes to accumulate mutations to be screened by selection

[12,66]. Consistent with theory, the genes identified by

Harpur et al. [19] with signatures of adaptive evolution in

honeybees were also worker-biased, and worker-biased

genes have been reported to be more derived in multiple

social insect species [19,67,68]. Overlap of M. genalis
worker-biased genes and those under selection in eusocial

lineages include many involved in glycolysis (figure 4),

which has been implicated in caste determination not only

in bees but also in other social insects [59].

Phenotypes that are originally environmentally induced

can be selected upon and shaped, such that inherited variants

can express the trait absent the environmental induction [4].

Genetic accommodation predicts selection on genes that are

environmentally sensitive if there is a selective advantage to

the environmentally induced phenotype. Eusocial insects

have evolved a worker caste that is reproductively inactive

and often specialized for non-reproductive behaviours rela-

tive to the ancestral solitary state. In multiple social insect

lineages, this specialization was enabled by selection on

genes that are now worker-biased in their expression

[19,67,68]. Our study implicates some of the same genes in

the flexible worker phenotype of M. genalis, which suggests

a role for genetic accommodation in the evolution of special-

ized worker castes. If genetic accommodation facilitated

worker specialization, we would expect ancestral plasticity

in gene expression associated with worker-related genes.

Consistent with this prediction, we found that worker-

biased genes in M. genalis share significant identity with

genes identified as undergoing selection in three independent

tests of positive selection across eusocial lineages of bees

[18–20]. Plasticity in these genes in the ancestors of obligately

eusocial species may have facilitated the evolution of derived

worker castes through genetic accommodation, leading to a

more fixed caste determination system as seen in many

obligately eusocial groups.

We provide support for the idea that genetic accommo-

dation may have played a role in the evolution of caste,

with ancestral environmentally induced plasticity leading to

selection on worker traits in the evolution of eusociality in

bees. Future research investigating allele frequency change

within M. genalis itself would strengthen this support if

caste-biased genes were found to be under selection in this

species. As molecular data from other incipiently social

lineages are integrated with knowledge from complex
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eusocial species [35,69], it will be possible to explore the role

of genetic accommodation in eusociality more rigorously.
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