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Morphological data provide the only means of classifying the majority of life’s

history, but the choice between competing phylogenetic methods for the

analysis of morphology is unclear. Traditionally, parsimony methods have

been favoured but recent studies have shown that these approaches are less

accurate than the Bayesian implementation of the Mk model. Here we

expand on these findings in several ways: we assess the impact of tree shape

and maximum-likelihood estimation using the Mk model, as well as analysing

data composed of both binary and multistate characters. We find that all

methods struggle to correctly resolve deep clades within asymmetric trees,

and when analysing small character matrices. The Bayesian Mk model is the

most accurate method for estimating topology, but with lower resolution

than other methods. Equal weights parsimony is more accurate than implied

weights parsimony, and maximum-likelihood estimation using the Mk model

is the least accurate method. We conclude that the Bayesian implementation of

the Mk model should be the default method for phylogenetic estimation from

phenotype datasets, and we explore the implications of our simulations in rea-

nalysing several empirical morphological character matrices. A consequence

of our finding is that high levels of resolution or the ability to classify species

or groups with much confidence should not be expected when using small

datasets. It is now necessary to depart from the traditional parsimony para-

digms of constructing character matrices, towards datasets constructed

explicitly for Bayesian methods.
1. Introduction
The fossil record affords the only direct insight into evolutionary history of life on

the Earth, but the incomplete preservation and temporal distribution of fossils has

long prompted biologists to seek alternative perspectives, such as molecular phy-

logenies of living species, eschewing palaeontological evidence altogether [1].

However, there is increasing acceptance that analyses of historical diversity

cannot be made without phylogenies that incorporate fossil species [2,3] and cali-

brating molecular phylogenies to time cannot be achieved effectively without

recourse to the fossil record [4]. Integrating fossil and living species has become

the grand challenge and there has been a modest proliferation of phylogenetic

approaches to the analysis of phenotypic data. While conventional parsimony

remains the most widely employed method, alternative parsimony [5] and prob-

abilistic [6] models have been developed to better accommodate heterogeneity in
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the rate of evolution among characters and across phylogeny.

Unfortunately, these competing methods invariably yield dis-

parate phylogenetic hypotheses among which it is difficult to

discriminate as the true tree is never known for empirical data.

A number of studies have attempted to establish the efficacy

of competing phylogenetic methods using data simulated from

known trees [7–9], finding that the probabilistic Mkv model

outperforms parsimony methods, among which, conventional

equal-weights parsimony (EW-Parsimony) performs best.

However, these studies were potentially biased by their exper-

imental design: (i) two of the studies employed a generating

tree that was unresolved and, therefore, biased against parsi-

mony methods which recover resolved trees; (ii) these studies

did not discriminate between the impact of the probabilistic

model and its implementation in a Bayesian framework;

(iii) based on single empirical trees, the impact of tree sym-

metry, which is known to confound phylogeny estimation

[10], was not explored; and (iv) only binary characters were

considered, whereas empirical datasets are commonly a

mixture of binary and multistate characters. Therefore,

we compare the performance of EW-Parsimony, implied-

weights parsimony (IW-Parsimony), maximum-likelihood

and Bayesian implementations of the Mk model, based on data-

sets with different numbers of characters, comprising binary

and multistate characters and simulated on a fully balanced

and a maximally imbalanced phylogenetic tree. We find that

Bayesian inference outperforms all other methods, while EW-

Parsimony performs better than IW-Parsimony, and maximum

likelihood performs worst of all. We apply these competing

phylogenetic methods to empirical morphological datasets of

similar sizes to our simulated datasets and explore the efficacy

of the ensuing phylogenetic hypotheses in the light of the

conclusions derived from our simulation-based study.
2. Material and methods
(a) Simulation of morphological matrices
We simulated data on two 32-taxon generating trees at the

extremes of tree symmetry: one fully asymmetrical and one fully

symmetrical (see electronic supplementary material, figure S1).

For each tree, we simulated matrices of three sizes: 100, 350

and 1000 characters. We generated matrices using the HKY þ G

Continuous model of molecular substitution, with k ¼ 2, the

shape (set equal to rate) of the gamma distribution and underlying

substitution rate for each replicate sampled from indepen-

dent and identically distributed exponential distributions with

a mean of 1, and character state stationary frequencies fixed as

p ¼ [0.2,0.2,0.3,0.3]. We used a fixed and uneven stationary distri-

bution of nucleotide frequencies to ensure our simulation model

did not collapse into the Mk model, as this would bias the analysis

in favour of Mk model-based approaches. We simulated 1000 repli-

cate matrices with unique substitution parameters for each tree

and each character number, resulting in a total of 6000 matrices.

We set two types of character within each matrix, binary and multi-

state, and we simulated a proportion of 55 binary : 45 multistate

characters, based on the mean ratio found in a survey of empirical

morphological data matrices [11]. We established binary characters

by converting data simulated under the HKY model to R/Y coding

(i.e. 0/1): morphological multistate characters were simulated by

converting DNA bases to integers.

To ensure that our simulated data are realistic, we generated

each set of 1000 unique replicate matrices such that the among-

matrix distribution of homoplasy approximated the distribution

of empirical homoplasy, characterized by the consistency index
(CI), reported by Sanderson & Donoghue [12]. To approximate

this distribution of homoplasy, we placed the Sanderson

and Donoghue data into quantized bins of CI spanning 0.05,

between the empirical bounds of 0.26 and 1.0, and simulated

matrices until we matched this expected density per bin (electronic

supplementary material, figure S2).

The code used to simulate these data is available in the

electronic supplementary material.

(b) Phylogenetic analysis
We analysed the simulated matrices with EW-Parsimony,

IW-Parsimony (k ¼ 2) and the Mk model [6] under both

maximum-likelihood and Bayesian implementations. EW-

Parsimony and IW-Parsimony estimation of topology was

performed in TNT [13]. We used the Mk þ G model for maxi-

mum-likelihood estimation of topology in RAxML v. 7.2 [14],

and Bayesian estimation of topology in MRBAYES v. 3.2 [15]. As

the approximate likelihood calculation of RAxML may be

distant from the true likelihood [16], we conducted a sensitivity

test by re-analysing a subset of our data with the likelihood

implementation of the Mk model in IQ-tree [17]; both methods

gave effectively identical results, indicating results from the

likelihood Mkv model are not software specific.

The Mkv model is inappropriate due to the lack of acquisition

bias in the simulated data. For maximum-likelihood and Bayesian

analyses, we applied the discretized gamma distribution model to

account for between-character rate heterogeneity. For Bayesian ana-

lyses, the posterior distribution was sampled 1 million times by four

chains using the Metropolis-coupled Markov-chain Monte Carlo

algorithm with every 100th sample stored, resulting in 10 000

samples; two independent runs were performed for each replicate

and the two resulting posterior samples were combined after quali-

tative assessment of convergence. For parity, we characterized the

result of all phylogenetic methods as the majority-rule consensus

of resultant tree samples. We did not employ bootstrap methods

to measure support for parsimony and likelihood analyses because

phenotypic data does not meet the assumption that phylogenetic

signal is distributed randomly among characters.

We used the Robinson–Foulds metric [18] to compare the

similarity of estimated topologies against their respective gener-

ating tree. We also noted the per-node resolution, and the

variation of node accuracy across the topology.

(c) Empirical analyses
We analysed four published palaeontological phenotype charac-

ter matrices that encompass a range of character numbers and a

diverse sample of taxa from the Tree of Life [19–22]. We resolved

any ambiguities in character coding to their most derived state

for each matrix to make analyses compatible across the different

phylogenetic methods, facilitating comparison of results. We

analysed each matrix by applying the same settings used to ana-

lyse our simulated matrices: EW-Parsimony, IW-Parsimony, as

well as Bayesian and maximum-likelihood implementations of

the Mk model. Empirical morphological matrices are rarely con-

structed to contain invariant or parsimony uninformative

characters. Therefore, the Mkv extension of the Mk model,

which uses conditional likelihood to correct for such acquisition

biases, is more appropriate than the Mk model for analysis of

these empirical data matrices [6].
3. Results
(a) Simulated data
Accuracy is higher for trees inferred from data simulated

on a symmetrical topology compared with trees
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Figure 1. Contour plots of Robinson – Foulds distance against phylogenetic resolution, indicating the higher accuracy of Bayesian implementations against all other
methods with data generated on the asymmetrical phylogeny. The spectrum of red to yellow, reflect lower to higher density of trees. As the number of characters
increases all methods converge on the correct phylogeny, although Bayesian phylogenies are generally the least resolved. The other methods achieve higher res-
olution but at a cost of lower accuracy. Data generated on the symmetrical phylogeny shows similar patterns but with much less variance and higher accuracy for all
iterations; this lack of variance means point estimates cannot be shown as density estimates. (Online version in colour.)
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estimated from data simulated on the asymmetrical topology

(cf. figures 2 and 3). Bayesian consensus phylogenies are

generally the least well-resolved (figure 1). All methods esti-

mated topologies with greater accuracy as the number of

analysed characters increased (figures 2 and 3; electronic sup-

plementary material, table S5–S7). All methods, apart from

maximum likelihood, produced phylogenies with greater

resolution with higher numbers of characters (figure 1).

For all implementations and dataset sizes, the Bayesian

implementation of the Mk model achieves higher accuracy

compared with other methods (table 1; figures 1–3). The

two parsimony methods achieved the next highest levels of

accuracy, EW-Parsimony achieving greater accuracy than

IW-Parsimony. Maximum likelihood was the least accurate

method for topology reconstruction for both the symmetrical

and asymmetrical phylogenies (table 1). The relative accuracy

of these phylogenetic methods remains the same across all

dataset sizes and the two simulation topologies (table 1;

figures 1–3).

Nodes closer to the tips are significantly more accurately

reconstructed in the asymmetrical phylogenies across all data-

set sizes (table 2 and figure 2; electronic supplementary

material, figure S8). In the symmetrical trees, there was no sig-

nificant correlation between distance from the tips and the

accuracy of node reconstruction, except in the maximum-

likelihood analysis of 100 characters (figure 2 and table 2).
(b) Empirical phylogenies
Patterns of resolution achieved from the simulated datasets are

similar for the empirical datasets. The Bayesian implementation

of the Mk model estimates the least resolved phylogenies and

maximum likelihood produces fully resolved trees (full trees

are shown electronic supplementary material, figure S9–S15).

Kulindroplax, from the Sutton et al. [22] dataset, is supported

as a crown-mollusc based on maximum likelihood, EW-

Parsimony and IW-Parsimony (figure 4a–d). The results of

the IW-Parsimony analysis are most similar to the original

results [22], with Kulindroplax resolved as a crown-aplaco-

phoran; maximum-likelihood analysis of the dataset resolved

Kulindroplax as the stem-aplacophoran. The result of the

Bayesian analysis of the dataset is largely unresolved, and

Kulindroplax is not discriminated as a member of any clade

within molluscs or even as a member of total-group Mollusca.

The anthophyte hypothesis (non-monophyletic gymnos-

perms sister to seed ferns plus angiosperms) recovered by

Hilton & Bateman [19] is supported by our EW-Parsimony

and maximum-likelihood analyses of their dataset which recov-

ered a paraphyletic seed ferns plus Gnetophyta as sister

to angiosperms (figure 4f,g); the results of Bayesian and IW-

Parsimony analyses of the same dataset contradict the

anthophyte hypothesis (figure 4e,h). The Bayesian analysis pro-

duced a non-monophyletic gymnosperms with the relationships

between them and seed ferns unresolved with the exception of
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Figure 2. Accuracy of nodes is higher for those closer to the tips in the asymmetrical trees. The percentage of times a node was accurately reconstructed is shown as a
proportion of a quarter of a circle in anticlockwise order for Bayesian, maximum likelihood, EW-Parsimony and IW-Parsimony at each node. Accuracy of reconstructions is
significantly lower in the 100 character dataset (a), and increases in the 350 character (b) and 1000 character datasets (c). (Online version in colour.)
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Bennettitales which resolved as a gnetophyte, and Caytonia as

sister to the angiosperms.

Analyses of the Luo et al. [20] dataset yielded congruent

results with the original study, with the placement of

Haramiyavia outside of crown-Mammalia and multitubercu-

lates, although some haramiyids are resolved as crown

mammals in the IW-Parsimony analysis (figure 5a–d).

Nyasasaurus is recovered as a member of Dinosauria in the

maximum likelihood, EW-Parsimony and IW-Parsimony

analyses of the dataset from Nesbitt et al. [21] (figure 5e–h).

The Bayesian analysis recovers Nyasasaurus in a polytomy

with the two major clades of dinosaurs, corroborating the

conclusion of Nesbitt et al. [21] that, given the data, its precise

phylogenetic position is uncertain.
4. Discussion
(a) Simulations indicate that the Bayesian

implementation of the Mk model outperforms all
other methods and implementations

Previous simulation-based analyses that have attempted to

evaluate the performance of likelihood and parsimony-
based phylogenetic methods for analysing phenotypic data

have found that the probabilistic model performs best [7,8].

However, these studies were biased against parsimony

because they employed an unresolved generating tree that

is problematic as parsimony methods will attempt to recover

a fully resolved tree from the simulated data yielding a non-

zero RF distance from the generating tree, even if the two

trees are effectively compatible. Furthermore, since previous

simulation studies considered the Mk model only within a

Bayesian framework, they did not distinguish between the

impact of the probabilistic model of character evolution and

the statistical framework in which it was implemented.

Our analyses control for these shortcomings of previous

simulation studies and show consistently that the Bayesian

implementation of the Mk model performs best. In line with pre-

vious simulations [8], we found that EW-Parsimony performs

better than IW-Parsimony. There is overlap between model

performance shown by the distribution of Robinson–Foulds

distances (table 1), but there is reason to have different degrees

of confidence in the models; only the Bayesian implementation

produces a relatively small distribution of tree performance

compared with the large tails signifying worse performance in

the two parsimony methods (table 1). We also found that the

Bayesian implementation of the Mk model outperforms the
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Figure 3. Accuracy of nodes is high for all nodes in the symmetrical phylogeny. The percentage of times a node was accurately reconstructed is shown as a
proportion of a quarter of a circle in anticlockwise order for Bayesian, maximum likelihood, EW-Parsimony and IW-Parsimony at each node. Accuracy of reconstruc-
tions is high in each dataset size, but there is a non-significant increase in accuracy as dataset size increases (a – c). (Online version in colour.)

Table 1. Bayesian approaches produce the most accurate trees for all character sets. Mean and range (in brackets) of Robinson – Foulds distances are lower for
topologies estimated using Bayesian methods for both the symmetrical and asymmetrical generating tree. Maximum likelihood is the generally the most
inaccurate method for the symmetrical generating tree, and implied weights parsimony performs worst for the asymmetrical generating tree.

equal weights parsimony implied weights parsimony maximum likelihood Bayesian

asymmetrical generating phylogeny

100 34.89 (22 – 56) 37.85 (22 – 56) 45.84 (20 – 58) 28.1 (18 – 39)

350 26.57 (11 – 51) 29.2 (12 – 51) 26.49 (6 – 58) 19.21 (7 – 35)

1000 17.82 (3 – 40) 19.16 (2 – 33) 11.94 (0 – 58) 9.34 (0 – 31)

symmetrical generating phylogeny

100 8.08 (0 – 33) 9.29 (0 – 29) 10.1 (0 – 58) 7.51 (0 – 29)

350 1.33 (0 – 28) 1.43 (0 – 28) 1.8 (0 – 52) 1.2 (0 – 28)

1000 0.32 (0 – 26) 0.31 (0 – 26) 0.51 (0 – 52) 0.31 (0 – 26)
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maximum-likelihood implementation, indicating that it is

not merely the probabilistic transition model that outper-

forms parsimony methods, but the implementation of the Mk

model within a Bayesian statistical framework. Indeed, the
maximum-likelihood implementation of the Mk model was

the worst-performing method, worse even than IW-Parsimony.

In part, the poor performance of the maximum-likelihood-Mk

method is because we did not capture phylogenetic uncertainty



Table 2. p-Values from Spearman’s rank correlation between the percentage
of nodes being accurately reconstructed and their distance from the root.
Nodes closer to the tips are significantly more likely to be accurately
reconstructed in asymmetrical trees but this is not generally true for
symmetrical phylogenies.

asymmetrical
tree

symmetrical
tree

MB 100 ,0.001 0.09919

maximum likelihood 100 ,0.001 0.027295

EW 100 ,0.001 0.106712

IW 100 ,0.001 0.092736

MB 350 ,0.001 0.638242

maximum likelihood 350 ,0.001 0.057809

EW 350 ,0.001 0.19683

IW 350 ,0.001 0.148108

MB 1000 ,0.001 0.256976

maximum likelihood

1000

,0.001 0.085987

EW 1000 ,0.001 0.179186

IW 1000 ,0.001 0.287058
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associated with this phylogenetic method. This is normally

achieved in analyses of molecular datasets through bootstrap-

ping methods, but these are inappropriate for the analysis of

phenotypic data as the basic methodological assumption, that

the phylogenetic signal is randomly distributed across sites

(characters), is not true for morphological data.

However, irrespective of the phylogenetic method used,

dataset size correlated positively with both phylogenetic accu-

racy and resolution, diminishing differences in the relative

performance of the competing phylogenetic methods. All phy-

logenetic methods also performed best when attempting to

recover a symmetrical target tree; all methods found recovery

of asymmetrical trees challenging and phylogenetic accuracy

diminished from tip to root. The impact of tree topology is of

particular concern since empirical phylogenetic trees are invari-

ably asymmetric [23], and trees of fossil species are infamous for

their asymmetry [24,25]. However, there is a broad spectrum of

tree symmetry, with fully symmetric and fully asymmetric trees

representing end-members. Palaeontological trees with the

dimensions used in our simulations are typically far from the

fully asymmetric pectinate-generating tree we employed

(Ic ¼ �0.4 for 32 species) [25]. Furthermore, the asymmetry of

many palaeontological trees is often a representational artefact

of attempting to summarize character evolution, or an analytic

artefact of analysing the relationships among diverse clades

based on representative species or higher taxa [26]. Thus, the

challenge of recovering trees of extinct taxa may not be as

great as a simplistic interpretation of our results might suggest.
(b) Analyses of empirical data bear out conclusions
based on simulations

Maximum-likelihood, IW-Parsimony and EW-Parsimony

methods of the simulated datasets commonly identify a

single optimal tree, but the differences between the optimal

trees derived from these methods provides no confidence
that any one of the inferred topologies is accurate with refer-

ence to the placement of a taxon of interest. This view is

corroborated by our reanalysis of empirical datasets which

recovered poorly resolved trees using the Bayesian implemen-

tation of the Mk model, and in a number of instances, indicate

that the conclusions drawn in the corresponding original

studies are not supported by the data.

In an extreme example, our re-analyses of the dataset pub-

lished by Sutton et al. [22], which attempted to demonstrate a

crown-aplacophoran mollusc affinity for Kulindroplax, yielded

disparate hypotheses of affinity. EW-Parsimony and IW-

Parsimony recovered the published result, while maximum

likelihood recovered Kulindroplax as a stem-aplacophoran,

and Bayesian could not discriminate Kulindroplax as a total-

group mollusc (figure 4a). This poor resolution is unlikely to

be a result of poor fossil evidence but, rather, the lack of discri-

minatory power in the small character matrix. Among the

analyses of the dataset from Hilton & Bateman [19], we recov-

ered some of the principal competing topologies that have

featured in debate over the affinity of seed plants in past

decades. However, the Bayesian analysis of the dataset

recovered a topology that is largely unresolved in terms of

the relationships among key clades. This suggests that the

available data are insufficient to discriminate among the com-

peting hypotheses, and this long-standing debate is largely an

artefact of the false resolution of parsimony methods.

Bayesian analyses need not overturn the results from pre-

vious analyses based on deterministic phylogenetic methods

like EW-Parsimony, IW-Parsimony and maximum likelihood.

A phylogenetic position for haramiyids, outside crown-

Mammalia, is corroborated by our Bayesian analysis of the

dataset from Luo et al. [20]—in contrast with the crown-Mam-

malia affinity recovered for some haramiyids through IW-

Parsimony analysis of the same data (figure 5d). Similarly, Nya-
sasaurus was posited as the earliest dinosaur, and this

conclusion is supported by the Bayesian analyses (figure 5e)

although this is not supported by EW-Parsimony, IW-Parsi-

mony and maximum-likelihood analyses (figure 5f–h).

However, the Bayesian analysis is more robust in expressing

the phylogenetic ambiguity identified by the original authors

[19], as Nyasasaurus falls in a polytomy alongside the two

major clades of dinosaurs.

Some of the differences between methods may simply

reflect the dimensions of the dataset. The two datasets that

cannot resolve relationships under Bayesian inference and exhi-

bit significant topological discordance among phylogenetic

methods [19,22] are both comparatively small (34 taxa, 48 char-

acters and 48 taxa, 82 characters). These both fall within the

scope of simulated datasets that yield low resolution from the

Bayesian method and, from other phylogenetic methods, high

resolution but low accuracy (figure 1). The two empirical data-

sets that yield trees with greater congruence from the different

phylogenetic methods, are both larger: Luo (114 taxa, 497 char-

acters) and Nesbitt (82 taxa, 413 characters). The size of these

matrices is comparable with our simulation results in which

we see marked increases in topological accuracy and agreement

between methods (figure 1, between 350 and 1000 characters).

(c) Implications for phylogenetic analysis of phenotypic
data

The results of our simulation studies indicate that the cadre of

phylogenetic hypotheses generated from phenotypic data
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using parsimony methods require reassessment using the

Bayesian implementation of the Mk model. It is likely that

many evolutionary interpretations are contingent on precise

but inaccurate phylogenetic hypotheses. In this undertaking,

it is important that the implications of our simulation studies

are considered in the design of phylogenetic studies.

Firstly, phylogenies of fossils tend towards strong asym-

metries [25] and, like all phylogenetic methods, Bayesian

inference struggles with the recovery of deep nodes within

asymmetric trees. Therefore, it is important that outgroups

are sampled extensively, ensuring that contentious in-group

relationships are closer to the tips, where topological accuracy

is highest. Further, in-group lineages should be sampled in a

manner that does not accentuate tree asymmetry.

Secondly, phylogenetic accuracy and resolution correlates

positively with the relative dimensions of the dataset.

Accordingly, phylogenetic resolution or certainty should

not be expected from cladistic analyses of small morphologi-

cal datasets (i.e. those around 100 characters or fewer),

particularly if they include fossils. There are finite limits to

the number of available phylogenetically informative charac-

ters [27] and, for well-studied clades, it may be perceived that

these phylogenetically informative characters have already

been found. However, it is important to note that the
concept of phylogenetic informativeness is different within

a likelihood versus a parsimony framework: in parsimony

characters that undergo few changes are prized in favour of

homoplastic characters. Under the likelihood model, branch

length, informed by the number of character changes, con-

tributes to topology estimation. Thus, traditionally ‘bad’

phylogenetic characters (those exhibiting homoplasy) may

find utility in expanding the dimensions of phenotypic char-

acter matrices as long as homoplasy falls within the limits

that the model can accommodate. In a Bayesian framework,

this can be tested using posterior predictive tests of model

adequacy (e.g. [28]).

Finally, we may need to alter our expectations to anticipate

less well-resolved but more accurate phylogenetic hypo-

theses, which will both constrain and guide research. Greater

resolution may be found by generating matrices suited to like-

lihood- rather than parsimony-based phylogenetic methods.

However, we must also come to terms with the prospect

that for some groups of organisms, or their fossil remains,

there may be insufficient data. As such, their evolutionary

relationships might not therefore be resolvable using morpho-

logical data alone and, if they are fossils, their evolutionary

significance may never be realized. Nevertheless, resolving

phylogenies is not the end game for evolutionary biology.
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Incompletely resolved trees can still be used as a basis for inves-

tigating interesting macroevolutionary questions, and methods

exist for incorporating tree uncertainty in phylogenetic com-

parative methods (e.g. [29]).
5. Conclusion
A growing consensus shows that the Bayesian Mk model is

the most accurate method of phylogenetic reconstruction,

and here we show that this remains true across dramatically

different tree shapes, when analysing datasets composed of

both multistate and binary characters, and when compared

with maximum-likelihood estimation using the Mk model.

We recommend that Bayesian implementations of the Mk

model should become the default method for phylogenetic

analyses of cladistic morphological datasets, and we should

expect low levels of resolution with small datasets. As parsi-

mony methods appear to be less effective than probabilistic

approaches, it may be necessary to alter data collection prac-

tices by moving away from choosing a selection of characters

that undergo few changes, and moving towards scoring all
possible characters from the available taxa irrespective of

their expected homoplasy.
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