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We compare the circuit and cellular mechanisms for homeostatic plasticity

that have been discovered in rodent somatosensory (S1) and visual (V1)

cortex. Both areas use similar mechanisms to restore mean firing rate after sen-

sory deprivation. Two time scales of homeostasis are evident, with distinct

mechanisms. Slow homeostasis occurs over several days, and is mediated

by homeostatic synaptic scaling in excitatory networks and, in some cases,

homeostatic adjustment of pyramidal cell intrinsic excitability. Fast homeo-

stasis occurs within less than 1 day, and is mediated by rapid disinhibition,

implemented by activity-dependent plasticity in parvalbumin interneuron cir-

cuits. These processes interact with Hebbian synaptic plasticity to maintain

cortical firing rates during learned adjustments in sensory representations.

This article is part of the themed issue ‘Integrating Hebbian and

homeostatic plasticity’.
1. Introduction
Experience continually adjusts brain circuits to store information about the

sensory world. To function effectively, the brain must balance this ongoing

adaptive process with homeostatic mechanisms that maintain firing rates, and

perhaps other features of neural activity, within a stable operating range. What

are these homeostatic mechanisms, and how do they balance stability with plas-

ticity? Here, we review recent progress on this question, focusing on sensory areas

of cortex in rodents. Homeostatic plasticity is clearly evident in visual (V1) and

somatosensory (S1) cortex, where it acts to stabilize mean firing rate following

experimental manipulation of sensory activity. This process is termed firing rate

homeostasis (FRH) [1]. FRH has a dual role: first, it maintains mean firing rate

near a constant set point, which may be permissive for appropriate circuit compu-

tations. Second, FRH also appears to directly drive some of the classical changes

in sensory-evoked spiking and sensory tuning that occur in response to visual or

whisker deprivation. Thus, FRH is both a stabilizing process and contributes to

adaptive circuit plasticity that stores information about sensory statistics.

Here, we review the evidence for FRH in rodent primary somatosensory (S1)

and visual (V1) cortex, and compare the circuit and cellular mechanisms for

homeostatic plasticity in each area. Multiple homeostatic mechanisms exist,

with strong similarities between S1 and V1. Slow homeostasis is implemented

by synaptic scaling in excitatory networks, augmented in some cases by changes

in neuronal intrinsic excitability. Rapid homeostasis also exists and is mediated by

active plasticity in inhibitory networks. Rapid disinhibition serves a homeostatic

role, but also may be a critical gate to enable some features of Hebbian plasticity.

Homeostatic mechanisms vary across cortical layers and cell types, perhaps

related to variations in baseline firing rate.

What features of circuit and cellular activity are stabilized by FRH are not

completely known. The simplest hypothesis is that FRH acts to maintain total

mean firing rate (i.e. spontaneous plus sensory-evoked firing) in pyramidal neur-

ons. In this model, FRH would be driven by any sustained change in firing rate,
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and would adjust spontaneous and sensory-evoked spiking

similarly in order to restore the overall firing rate to its set

point. This could be implemented by a cell-autonomous mech-

anism that regulates synaptic strength or intrinsic excitability to

maintain a set point of average cytosolic calcium, for example.

Alternatively, it is possible that FRH regulates spontaneous

and sensory-evoked firing independently, each to their own

set point. However, this is more complex and may require

that spontaneous and sensory-evoked activity engage different

subcircuits. Here, we assume that FRH is driven by, and acts to

stabilize, total mean firing rate in each pyramidal cell or the

local pyramidal cell network.
 il.Trans.R.Soc.B
372:20160157
2. Firing rate homeostasis mediated by synaptic
scaling

FRH in cortical networks was first discovered in cell culture,

where pharmacological or genetic manipulation of network

activity was found to drive synaptic changes that restore

mean firing rate to normal levels [2,3]. The primary mechanism

for this effect is homeostatic synaptic scaling of excitatory

synapses, in which pyramidal cells globally increase or

decrease AMPA receptor-mediated synaptic transmission via

GluA2 receptor trafficking, in order to maintain average

firing rate or calcium levels near a cell-specific set point [4].

Scaling is a relatively slow process, beginning a few hours

after activity manipulation and reaching a plateau over several

days. This is in contrast to long-term potentiation (LTP), long-

term depression (LTD) or other synapse-specific Hebbian

plasticity mechanisms, which occur within minutes of an

appropriate induction protocol.

FRH mediated by synaptic scaling is also prominent in vivo,

with a similar slow time course. In V1, excitatory synaptic scal-

ing is first detectable in L2/3 pyramidal cells after 2 days of dark

rearing or monocular inactivation as a multiplicative increase in

miniature excitatory post-synaptic current (mEPSC) amplitude,

and is maximal after approximately one week [5–7]. Downscal-

ing of mEPSCs is also detectable during normal development,

appearing as a decrease in mEPSC amplitude that occurs as

synaptogenesis increases synapse number and mEPSC fre-

quency [5]. The time course of FRH has been quantified in

monocular V1 following contralateral eyelid suture (monocular

deprivation, MD). Here, the mean firing rate of extracellularly

recorded regular spiking (RS) units (putative pyramidal cells)

in L2–4 is transiently reduced by MD, with maximal reduction

at 2 days, but during continuing MD, mean firing rate returns to

baseline levels by 4 days of MD [8] (figure 1a). This restoration

coincides with excitatory synaptic scaling in L2/3 pyramidal

cells [8]. Remarkably, despite substantial cell-to-cell variability

in mean firing rate, FRH causes individual neurons to return

to within 15% of their cell-specific baseline firing rate [1].

Thus, V1 neurons show robust cell-specific FRH following

visual deprivation. (For additional discussion, see [17].)

FRH mediated by synaptic scaling also underlies a promi-

nent slow component of ocular dominance plasticity in V1. In

juvenile mice, brief MD (less than 3 days) causes a rapid

decrease in closed-eye evoked visual responses in L2/3 and

L4 of binocular V1. Longer MD (5–6 days) causes a second,

slower effect in which open-eye responses increase [9]. Careful

measurement revealed that this late increase occurs in parallel

for both open-eye and closed-eye responses, suggesting that it

may be a global scaling process in response to visual
deprivation and weakening of closed-eye inputs [18]. The

early weakening of closed-eye responses represents LTD and

other synapse depression mechanisms driven by residual

closed-eye thalamic input, as predicted by Hebbian corre-

lation-based rules [19–22]. The delayed increase of both

open- and closed-eye inputs is absent in mice lacking tumour

necrosis factor (TNF)-a [10], a cytokine that is necessary for

homeostatic synaptic scaling [23] (figure 1b). Thus, open-eye

response potentiation and the partial recovery of closed-eye

responses likely represent FRH mediated by synaptic scaling [24].

In S1, synaptic scaling similarly occurs with a slow time

course following whisker deprivation. Trimming or plucking

a subset of whiskers (often the D row of whiskers) in juvenile

rats or mice causes neurons in deprived S1 columns to rapidly

reduce spiking responses to deprived whiskers, and more

slowly increase spiking responses to spared surrounding whis-

kers [25]. The time course for these depression and potentiation

components of plasticity is similar to the two components of

ocular dominance plasticity in V1. Whisker receptive field plas-

ticity occurs in both L2/3 and L5. In L5, the depression and

potentiation components evoked by D-row whisker depri-

vation are largely segregated between RS and intrinsically

bursting (IB) pyramidal cell subtypes, respectively [26]. Brief

deprivation (less than 3 days) weakens deprived whisker

spiking responses in RS cells, but not in IB cells, which show

only a transient weakening that rapidly reverses. With longer

deprivation (10 days), both deprived and spared whisker

responses increase, with the most prominent potentiation for

spared whisker responses in L5 IB cells [11]. This suggests a

global homeostatic process such as synaptic scaling, perhaps

coupled with additional potentiation of spared responses in

IB cells. Consistent with this hypothesis, both the slow poten-

tiation of spared whisker responses and recovery of deprived

whisker responses are absent in TNF-a knockout mice, which

lack synaptic scaling [11] (figure 1c). Thus, both ocular domi-

nance plasticity in V1, and whisker receptive field plasticity

in L5 of S1, involve rapid weakening of deprived inputs

mediated, in part, by LTD, and a slower FRH that increases

responses to both spared and deprived inputs, and is mediated

by synaptic scaling.

In L2/3 of S1, D-row deprivation weakens spiking

responses to deprived whiskers, but spared whisker responses

do not increase [12,27,28], and scaling of mEPSCs is not

observed at the synaptic level even after one week of whisker

deprivation [12,29]. Other whisker deprivation paradigms do

drive spared whisker response potentiation [25], but whether

these are associated with mEPSC scaling is unknown. Why scal-

ing is more prominent in L5 of S1 and L2/3 of V1 than in L2/3

of S1 is unresolved. One possibility is that scaling only occurs in

response to a strong reduction in firing rate. Relative to deeper

S1 layers and V1, L2/3 of S1 has extremely sparse spiking, with

low probability of whisker-evoked firing, low overall firing rate

and single-spike whisker responses [30–32]. Trimming the

columnar whisker reduces mean firing rate by only 20% [33],

which may be insufficient to drive detectable scaling of

mEPSCs. (For new results suggesting that scaling may indeed

drive slow homeostasis in L2/3 of S1, see [34].)

3. Firing rate homeostasis mediated by rapid
disinhibition

As described above, FRH mediated by synaptic scaling is a

slow process, unfolding over multiple days of sensory
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Figure 1. Forms of firing rate homeostasis in V1 and S1 in vivo. (a) Mean firing rate of regular spiking units (RSU) in L2 – L4 of monocular V1, following con-
tralateral monocular deprivation (MD). MD initially reduces firing rates, which then return to normal despite continued deprivation. Dashed curve, schematic of
normal firing rate development. Green, FRH attributed to synaptic scaling of mEPSCs. Data from Hengen et al. [8]. (b) Average population response in binocular
V1 to open- and closed-eye visual stimuli following contralateral MD. MD rapidly decreases closed-eye visual responses, followed by a slower increase in both open-
and closed-eye responses that is attributable to synaptic scaling (green). Points show average data from Frenkel & Bear [9] and Kaneko et al. [10]. (c) Effect of D-row
whisker deprivation on whisker-evoked spiking in L5 IB and regular spiking (RS) pyramidal cells. In RS cells, deprivation reduces both deprived and spared whisker
responses, followed by partial recovery. IB cells show a similar depression-recovery sequence, with preferential response gain for spared whisker responses. In both
cell types, response recovery or potentiation are mediated by synaptic scaling (green). Data from Greenhill et al. [11]. (d ) Rapid disinhibition during whisker depri-
vation in S1. Whisker-evoked spiking in L2/3 pyramidal cells is initially maintained and even transiently increased for 1 – 3 days following D-row whisker deprivation,
prior to subsequent depression (circles). During this 1 – 3 day period, there is already a substantial weakening of excitatory synaptic drive to L2/3 neurons (red),
evident as reduced whisker-evoked EPSCs in L2/3 neurons in vivo and reduced L4-evoked EPSCs in L2/3 pyramidal neurons in S1 slices (squares). Counteracting this
loss of excitation is a rapid decrease in inhibition (blue), as reflected by reduced whisker-evoked IPSCs in L2/3 neurons in vivo and reduced L4-evoked and recurrent
L2/3-evoked IPSCs in L2/3 pyramidal cells in S1 slices (open triangles). Rapid disinhibition also occurs in V1, as seen by reduced visual-evoked spiking of PV neurons
following 1 day of MD (filled triangle). Data from 1: Li et al. [12]; 2: House et al. [13]; 3: Shao et al. [14]; 4: Gainey, SFN abstract [15]; 5: Kuhlman et al. [16].
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deprivation in vivo [8,10,11]. Recently, a more rapid form of

FRH has been discovered in L2/3 of V1 and S1 in vivo that is

mediated by disinhibition within cortical networks, and

which occurs rapidly following sensory deprivation. Rapid

homeostasis is predicted theoretically as an efficient means to

prevent positive feedback instability associated with Hebbian

plasticity during information storage in cortical networks

[35]. In V1, 1 day of MD reduces visually evoked spiking of

L2/3 parvalbumin (PV) interneurons, measured in awake

behaving mice [16]. This is mediated by a rapid, deprivation-

induced reduction in L4 and L5a excitatory synaptic strength

onto L2/3 PV neurons [16]. Similarly, visual deprivation

rapidly reduces the spontaneous firing rate of L2–4 fast-

spiking (presumed PV) interneurons in V1 of awake, freely

moving rats [8] and reduces both average spontaneous activity

of L2/3 GABAergic interneurons and evoked and spontaneous

inhibitory currents in L2/3 pyramidal cells [36]. These changes

are associated with an increase in L2/3 pyramidal neuron
spiking above control levels [16,36] and an increase in the

ratio of L2/3-evoked excitation versus inhibition in pyramidal

neurons [36]. These findings strongly suggest that reduced

activity in PV circuits, and potentially in other interneuron

classes, disinhibits the surrounding excitatory pyramidal cell

network, leading to increased pyramidal cell firing rates.

Because this firing rate increase in pyramidal cells would com-

pensate for the loss of sensory drive, disinhibition implements

FRH at the network level.

Rapid disinhibition is also prominent in L2/3 of S1 in

response to deprivation of the D row of whiskers. Brief

D-row deprivation in rats does not change (1 day) or slightly

increases (3 days) mean single-unit spiking responses to the

deprived whiskers, while longer deprivation (5þ days) mark-

edly weakens deprived whisker responses [12] (figure 1d,

black line). This weakening process involves LTD [29,37,38].

As mentioned above, D-row deprivation does not potentiate

spared whisker responses in L2/3, and there is no evidence
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for scaling of mEPSCs in L2/3 pyramidal cells even after a

week of deprivation [12,29]. Instead, the early 1–3 days

period represents rapid FRH mediated by disinhibition. At

3 days of deprivation, whisker-evoked field potentials in

L2/3 are already reduced, suggesting that LTD has already

occurred and has reduced synaptic drive to L2/3 [12,38].

Consistent with this idea, whisker-evoked EPSCs measured

in whole-cell recordings from L2/3 pyramidal cells in vivo
are already substantially weakened at 3 days of deprivation

[12]. This suggests that a rapid homeostatic mechanism

exists in L2/3 to maintain, and transiently elevate, whisker-

evoked spiking despite the rapid weakening of excitatory

synaptic input by LTD. Rapid disinhibition is this mechanism.

At 3 days of deprivation, whisker-evoked inhibitory PSCs

(IPSCs) in L2/3 pyramidal cells, measured by whole-cell

recording in vivo, are strongly decreased, and whisker-evoked

excitation/inhibition ratio is increased [12]. Disinhibition

occurs very rapidly, with feed-forward L4–L2/3 inhibition

being strongly reduced in just 1 day of deprivation in mouse

S1 [15]. Disinhibition persists with longer whisker deprivation

[12], mediated by reduced L4 synaptic excitation to PV inter-

neurons [13] and reduced L2/3 recurrent inhibition [14].

Thus, whisker deprivation drives rapid disinhibition in L2/3

of S1, which is mediated by plasticity in PV circuits, and

which implements a rapid form of FRH in the surrounding pyr-

amidal cell network (figure 1d). This appears to be the same

process that occurs with visual deprivation in V1. A rapid,

inhibitory circuit-mediated FRH also occurs in L4 of S1,

where overstimulation of a whisker drives increased inhibition

and inhibitory synaptogenesis to restore whisker-evoked firing

rate [39]. Inhibitory homeostasis may also occur in deeper

layers, but this has not been examined.

Disinhibition was originally proposed as a mechanism for

the immediate unmasking of novel sensory responses in S1

following digit amputation or inactivation [40]. The current

findings differ in that they do not simply reflect an acute

loss of sensory drive to inhibitory circuits, but involve experi-

ence-dependent, adaptive plasticity of PV circuits that further

reduces spiking excitability of these networks within 24 h of

deprivation [15,16]. Decreased PV network activity in

awake behaving animals presumably reflects a combination

of both acute and plastic effects.

Current data implicate PV neurons in rapid disinhibition.

Interestingly, PV neurons are uniquely positioned to effectively

drive network-level homeostasis, because a single PV neuron

receives input from a high proportion of local pyramidal

cells, and densely inhibits nearly all of these neurons [41,42].

PV neurons could therefore, in principle, sense average local

network activity, and via a cell-autonomous plasticity process,

homeostatically regulate a sizeable chunk of a cortical column.

PV circuits are well known to modulate sensory gain in cortical

networks [43,44]. In this sense, PV-mediated circuit homeosta-

sis would represent an adjustment of sensory gain in response

to recent history of activity. Thus, adaptive changes within a

small number of PV neurons could rapidly modulate sensory

gain and implement FRH in an entire cortical column. This

column-level homeostasis would be predicted if PV cells dis-

played similar sensory tuning as surrounding pyramidal

cells. Another interesting functional outcome is predicted if

PV cells had broader sensory tuning than their pyramidal

cell targets, as may be the case in some systems [45]. In this

case, cross-channel compensatory plasticity is predicted in

which reduced sensory input on one channel (e.g. one whisker
or one visual orientation) drives rapid disinhibition that affects

nearby channels. This would elevate sensory gain for sur-

rounding non-deprived columns, which may provide

effective behavioural compensation. Whether other inter-

neuron classes besides PV cells are also involved in network

homeostasis seems likely, but has not been examined.

In addition to restoring network firing rate, rapid disinhibi-

tion may also potentially serve as a gate for subsequent

Hebbian plasticity in the excitatory network. Both LTP and

LTD are critically dependent on dendritic depolarization in

pyramidal cells, and GABA-A inhibition powerfully sup-

presses both these forms of plasticity [46–48]. An early

model of the V1 critical period posited that maturation of inhi-

bition ends the critical period by suppressing LTP and LTD

[49–51]. Rapid disinhibition is likely to promote LTP and

LTD, thus enabling Hebbian synaptic reorganization in the

pyramidal cell network. Consistent with this idea, visual depri-

vation drives rapid disinhibition in V1 that precedes the loss of

visual-evoked spiking in pyramidal cells [8,36,52], and main-

taining normal PV spiking levels reduces ocular dominance

plasticity [16]. This suggests that disinhibition gates or pro-

motes LTD or other Hebbian depressive mechanisms [53,54].

In S1, the precise timing of excitatory and inhibitory synapse

weakening following D-row deprivation has not been deter-

mined. However, whisker deprivation is known to promote

spike timing-dependent LTP in L2/3 of S1 by weakening

inhibition [55], suggesting it may play a similar role.

Rapid disinhibition may be mediated by loss of GABA-

ergic interneuron synapses and axons, which are rapidly

plastic in sensory cortex. In V1, 6 h of MD is sufficient to

induce a loss of inhibitory spine synapses during the critical

period in vivo [52], and several studies report inhibitory

synapse loss over 1–2 days after deprivation in adult mice

[56–58]. V1 inhibitory synapses show rapid constitutive

rates of synapse removal and reformation, which are altered

by MD to drive a net loss of inhibition [59]. In S1, whisker

deprivation drives retraction of inhibitory axons in deprived

whisker columns in as little as 2.5 h [60]. PV (fast-spiking)

interneurons also show rapid physiological plasticity of

synaptic input and intrinsic excitability [61–63]. PV inter-

neurons remain plastic in adulthood, where this plasticity

may regulate some forms of adult learning [64].

4. Intrinsic excitability
Adjustment of intrinsic excitability can also contribute to

homeostasis. This was first discovered in response to chronic

activity manipulation in cortical cultures [65]. In vivo, visual

deprivation can drive a slow, homeostatic increase in intrinsic

excitability of pyramidal cells in V1. For example, 6 days of

monocular or binocular deprivation increases intrinsic excit-

ability of L2/3 pyramidal neurons in binocular V1, as

revealed by increased spiking to somatic current injection

(F–I curves). This reflects both higher input resistance and

reduced spike threshold [66]. Briefer MD (1–3 days) does

not alter intrinsic excitability in binocular V1 [66] but does

in monocular V1 [63], perhaps reflecting the fact that binocu-

lar V1 is still receiving open-eye input. Thus, homeostatic

regulation of pyramidal cell excitability can occur in vivo,

although it is a relatively slow process when networks still

receive some sensory input. Prolonged deprivation, therefore,

drives FRH in L2/3 of binocular V1 through both increased

intrinsic excitability and excitatory synaptic scaling [66].
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Plasticity of intrinsic excitability also occurs in L5 of S1,

where prolonged one to five week whisker deprivation

increases burst firing in pyramidal neurons via increased

dendritic excitability and downregulation of hyperpolariz-

ation-activated cyclic nucleotide-gated channels [67]. In L2/

3 of S1, the situation seems different. Two weeks of D-row

whisker deprivation does not alter L2/3 pyramidal cell excit-

ability in deprived columns [37]. However, when all but one

whisker is plucked, synaptic potentiation is rapidly elicited in

the spared column, and this is associated with a modest

reduction in L2/3 pyramidal cell intrinsic excitability in the

spared column [68]. Thus, in both V1 and L5 of S1, depri-

vation predominantly drives slow homeostatic changes in

pyramidal cell intrinsic excitability.

Intrinsic excitability is also plastic in interneurons, which

may contribute to deprivation-induced disinhibition and

rapid homeostasis. In motor cortex, 2 days of activity suppres-

sion by muscimol reduce intrinsic excitability of fast-spiking,

presumed PV, interneurons [69]. In S1, whisker deprivation

decreases excitability of L4 fast-spiking cells, measured by F–I

curves, but the time course of this effect is not known [70].

This is owing, in part, to regulation of A-type potassium

channel currents, which elevates spike threshold [70]. In L2/3,

1 day of D-row whisker deprivation reduces intrinsic

excitability of PV neurons, by affecting multiple aspects of

near-threshold excitability including spike threshold and first-

spike latency [15]. Interestingly, two studies have identified a

molecular pathway that could mediate activity-dependent

regulation of intrinsic excitability in L2/3 PV cells. In these

neurons, the transcription factor Er81 regulates intrinsic excit-

ability by promoting the expression of Kv1.1, which increases

spike threshold and increases the latency to first spike after cur-

rent injection [61,71]. Er81 expression varies across PV cells,

with high-expressing cells having more Kv1.1 and elevated

spike threshold, and low-expressing cells having a reduced

spike threshold and shorter time to first spike [61]. Notably,

chandelier cells, a subtype of PV cells with a shorter time to

first spike, lack Er81. In acute S1 slices, 2 h of increased network

activity (induced by KCl or kainate treatment) reduces Er81

expression and reduces first-spike latency in PV cells, which

should promote more PV spiking. Correspondingly, reducing

network activity (with nifedipine) increases Er81 expression

and PV spike latency, which should reduce overall PV spiking.

In vivo, reducing mean network activity by expression of Kir2.1

upregulates Er81 in L2/3 PV neurons, and training mice on a

learning task downregulates Er81 [61]. These changes are all

appropriate in sign to homeostatically control network spiking

by regulating intrinsic excitability of PV neurons. The lack of

Er81 in chandelier cells suggests that different subtypes of PV

neurons may differentially contribute to network homeostasis.

Thus, the Er81–Kv1.1 regulatory pathway is a strong candidate
for rapid activity-dependent adjustment of PV intrinsic excit-

ability in order to homeostatically regulate firing rate in local

pyramidal cells.
5. Conclusion
FRH occurs by multiple common mechanisms in both S1

and V1, operating on two distinct time scales. Rapid FRH

is expressed less than 1 day after sensory deprivation in

both areas, and is caused by disinhibition implemented by

a reduction in activity of PV interneuron circuits. This

reduction is not simply the loss of ongoing sensory drive

to PV neurons, but reflects changes in synaptic or intrinsic

properties of PV neurons rapidly induced in response to

deprivation. The same rapid disinhibition may also gate sub-

sequent Hebbian components of plasticity. A slower FRH

process also exists that is mediated by synaptic scaling and,

in some cases, homeostatic adjustment of intrinsic excit-

ability, in excitatory neurons. Slow FRH develops gradually

over several days, and restores firing rates after early-stage

Hebbian plasticity. It is also a major process underlying the

slow increase in open-eye or spared-whisker responses that

occur following deprivation in V1 and S1. While compu-

tational studies have explored the functional consequences

of synaptic scaling on network stability and information sto-

rage, the consequences of rapid disinhibition remain more

poorly understood. We suggest that adaptive regulation of

PV inhibition could serve to adjust sensory response gain

as a function of recent activity levels, so that networks that

were recently inactive respond more strongly to remaining

sensory stimuli.

A key feature of homeostasis in both areas is that multiple

mechanisms are engaged cooperatively to stabilize cortical

firing. Some of these mechanisms may not appear homeo-

static if examined in isolation—for example, PV neurons do

not stably maintain their own firing rate, but further reduce

their firing rate following deprivation, in order to restore

firing in the pyramidal cell network. Somehow, this coordi-

nated regulation of multiple neural systems achieves an

overall stabilization of cortical firing rate, and potentially

other aspects of cortical function. This dynamic, coordinated

multi-point control to achieve stability in a complex system

has been termed allostasis in organismal biology [72]. How

such complex coordination appropriately balances stability

and plasticity remains to be discovered.
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