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ABSTRACT The 14-3-3 protein family orchestrates a complex network of molecular
interactions that regulates various biological processes. Owing to their role in regu-
lating the cell cycle and protein trafficking, 14-3-3 proteins are prevalent in human
diseases such as cancer, diabetes, and neurodegeneration. 14-3-3 proteins are ex-
pressed in all eukaryotic cells, suggesting that they mediate their biological func-
tions through evolutionarily conserved protein interactions. To identify these core
14-3-3 client proteins, we used an affinity-based proteomics approach to character-
ize and compare the human and Drosophila 14-3-3 interactomes. Using this ap-
proach, we identified a group of Rab11 effector proteins, termed class I Rab11 family
interacting proteins (Rab11-FIPs), or Rip11 in Drosophila. We found that 14-3-3 binds
to Rip11 in a phospho-dependent manner to ensure its proper subcellular distribu-
tion during cell division. Our results indicate that Rip11 plays an essential role in the
regulation of cytokinesis and that this function requires its association with 14-3-3
but not with Rab11. Together, our results suggest an evolutionarily conserved role
for 14-3-3 in controlling Rip11-dependent protein transport during cytokinesis.
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The evolutionarily conserved 14-3-3 family of pSer/Thr-binding proteins dynamically
regulates the functions of various client proteins involved in diverse biological

processes (1). Whereas vertebrates express seven distinct 14-3-3 proteins (�, �, �, �, �,
�, and �), only two isoforms exist in Drosophila melanogaster (� and �), belonging to the
two main 14-3-3 conservation groups (2). Structurally, 14-3-3 orthologues are very
similar, as they adopt a dimeric U-shaped configuration with amphipathic grooves
capable of accommodating two phosphorylated peptides (3). This feature allows 14-3-3
proteins to simultaneously bind two phosphorylated residues on one or two target
proteins, thereby acting as scaffolding molecules. 14-3-3 proteins recognize the con-
sensus sequence motifs RXX(pS/T)XP and RXXX(pS/T)XP (where X is any amino acid) in
client proteins (4). However, phosphorylation-dependent sites that diverge significantly
from these motifs have been described, with some 14-3-3 interaction being indepen-
dent of phosphorylation (5). Molecularly, 14-3-3 binding may allosterically stabilize
conformational changes, leading to activation or deactivation of the target or to
interaction between two proteins (6). Furthermore, 14-3-3 binding may mask or expose
interaction sites, often leading to changes in the subcellular localization of client
proteins (7). While there are bound to be kingdom-specific 14-3-3 functions, the high
level of structural conservation between 14-3-3 orthologues suggests that they regu-
late core cellular processes through evolutionarily conserved protein-protein interac-
tions.
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Rab GTPases constitute a large family of proteins that regulate all stages of intra-
cellular membrane trafficking (8). When they are active, Rab proteins interact with
downstream effectors, which then perform diverse cellular functions necessary for
vesicle formation, motility, docking, and fusion. Members of the Rab11 subfamily
(Rab11a, Rab11b, and Rab25) localize to the endosomal recycling compartment and
have been implicated in a variety of biological process, including cell division (9). Rab11
function is mediated by several effector proteins, including the Rab11 family interacting
proteins (Rab11-FIPs; also known as FIPs). The FIPs constitute an evolutionarily con-
served family of Rab11 effectors known to bridge from Rab GTPases to different
molecular motors, ensuring vesicle motility (10). The FIPs are divided into two different
classes, based on whether they possess phospholipid-binding C2 domains (class I) or
EF-hand domains (class II) (10). Mammalian class I FIPs (FIP1, FIP2, and FIP5) are involved
in polarized transport of cargos during epithelial cell polarity and are known to be
regulated through phosphorylation (11–14). Rip11 is the only class I FIP in Drosophila
and was shown to be involved in rhodopsin transport to the apical surface of photo-
receptor cells (15) and in E-cadherin trafficking during trachea formation (16). Mam-
malian class II FIPs (FIP3 and FIP4) and their Drosophila orthologue Nuf are well-
established regulators of cytokinesis (17–20). While the repertoire of FIP functions is
expanding, much work is still required to understand the mechanisms regulating their
activity.

Cytokinesis is the final step of cell division and leads to the physical separation of the
daughter cells. After ingression of the cleavage furrow, future daughter cells remain
connected by an intercellular bridge that is cleaved by a process called abscission. This
process was shown to involve membrane trafficking, membrane fission (21), and lipid
and cytoskeleton remodeling (22, 23).

Here we present the results of a proteomics screen aimed at characterizing the
interactomes of 14-3-3 orthologues in multiple species. In total, we identified 141
proteins that interact with 14-3-3 in both human and Drosophila cells, suggesting that
they regulate core and evolutionarily conserved biological processes. Among these, we
identified all human class I FIPs (FIP1, -2, and 5) and their Drosophila orthologue Rip11
and found that 14-3-3 directly binds phosphorylated T391 and S405 in Rip11. We show
that this interaction is required for successful cytokinesis in Drosophila cells, while
binding to Rab11 is dispensable. 14-3-3 was previously shown to be involved in the
regulation of protein synthesis during mitosis (24) and in preventing the centralspindlin
complex, an essential protein complex involved in central spindle assembly (25–27),
from oligomerizing in vitro (28). Our results describe a new 14-3-3 function during
cytokinesis and suggest that it is part of an evolutionarily conserved pathway that
controls important vesicular trafficking events during late cytokinesis.

RESULTS
Proteomics-based strategy to identify evolutionarily conserved 14-3-3 client

proteins. To characterize the 14-3-3 interactome in cells from different organisms, we
devised an affinity-based approach using the � and � isoforms of 14-3-3, which are the
only two isoforms present in both humans and Drosophila. To specifically identify
phosphorylation-dependent binders, we mutated a conserved residue (Lys49 in human
14-3-3�) present in all 14-3-3 orthologues which is involved in creating a salt bridge
with the phosphorylated residue of client proteins (29). These 14-3-3 mutants (K49E)
were used in subtractive fractionation steps in which nonspecific (glutathione
S-transferase [GST] alone) and non-phospho-dependent (GST–14-3-3K49E) interactions
were removed (Fig. 1A). As a source of client proteins, we used lysates of Drosophila S2
and HEK293 cells growing in serum, which were subjected to 14-3-3 affinity purification
with both wild-type (wt) and K49E mutant 14-3-3 proteins. Following stringent washes
in high-salt buffers, associated proteins were eluted, precipitated, and resolved by
SDS-PAGE (Fig. 1A and B). To determine whether our method could specifically enrich
14-3-3 client proteins, we used a phospho-motif antibody that detects the phosphor-
ylated 14-3-3 binding sequence RXX(pS/T)XP. As expected, we found that proteins
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eluted from wt 14-3-3 were highly immunoreactive to the phospho-motif antibody,
whereas no signal could be detected in proteins eluted from the K49E mutant (Fig. 1B).

Having validated our approach, we performed large-scale experiments using both
human and Drosophila 14-3-3� and -�. Eluates for both wt and mutant 14-3-3
proteins were resolved by SDS-PAGE, proteins were in-gel digested with trypsin,
and peptides were analyzed by liquid chromatography-mass spectrometry (LC-MS).
Although some of the proteins found to interact with the 14-3-3 K49E mutant may
be phospho-independent binders, they were removed from our analyses to focus
on phosphorylation-dependent interactions. While we initially intended to identify
isoform-specific binders of 14-3-3, we found that both the � and � isoforms were
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FIG 1 Proteomics-based strategy to characterize the 14-3-3 phosphorylation-dependent interactome. (A) Scheme
depicting the subtractive fractionation strategy used to enrich phosphorylation-dependent 14-3-3 binding pro-
teins. (B) Following the protocol shown in panel A, eluates were resolved by SDS-PAGE and gels were stained with
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(E) Partial list of known (green arrows) and unknown conserved 14-3-3 client proteins identified in this study. The
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capable of forming homo- and heterodimers with endogenous 14-3-3 isoforms, which
prevented us from determining isoform-specific interactions. Nevertheless, our ap-
proach led to the identification of 1,842 and 308 proteins that bound to human and
Drosophila 14-3-3 proteins, respectively (Fig. 1C; see Tables S1 and S2 in the supple-
mental material). Notably, we found that nearly 50% of identified Drosophila proteins
were also identified in the human counterparts as one or multiple orthologues,
corresponding to 141 orthologous 14-3-3 binding partners (Table S3). To characterize
the global signature of the evolutionarily conserved 14-3-3 interactome, we used the
Ingenuity Pathway Analysis (IPA) platform. We found enrichments of several cellular
and molecular functions, including mRNA translation (P � 3.8E�10), nucleotide me-
tabolism (P � 8.4E�06), and mitosis (P � 2.8E�05) (Fig. 1D). Taken together, these data
revealed many conserved 14-3-3 interactions and shed new light on unexplored 14-3-3
functions related to fundamental biological processes.

Class I FIPs are conserved 14-3-3 binding proteins. The most abundant 14-3-3
binding protein identified for Drosophila cells was Rip11, a member of the class I
Rab11-FIPs (Fig. 1E). All three human orthologues of Rip11 (FIP1, FIP2, and FIP5) were
also identified in our proteomics screen (Fig. 2A), suggesting that class I FIPs are
important 14-3-3 binding proteins. Notably, none of the orthologous members of the
class II FIPs were identified in our study (Fig. 2A). Accordingly, only class I FIPs were
confirmed to be 14-3-3 binding proteins in human cells (Fig. 2B). To ascertain that this
interaction was indeed phosphorylation dependent, we tested the association of
human FIP5 (Fig. 2C), the class I FIP with the highest sequence coverage in the
proteomics screen, and Drosophila Rip11 (Fig. 2D) with wt and K49E mutant 14-3-3�

proteins. We found that the binding of these two orthologous class I FIPs was almost
completely abrogated by the K49E mutation, suggesting that the interaction requires
prior phosphorylation (Fig. 2C and D). These results were extended by showing that
recombinant 14-3-3� interacts directly with human FIP5 or Drosophila Rip11 by far-
Western analysis (Fig. 2E and F). Notably, we found that 	-phosphatase treatment of
human FIP5 and Drosophila Rip11 abrogated 14-3-3� binding, confirming the need for
class I FIP phosphorylation (Fig. 2E and F). We then assessed if the interaction between
FIP5 and 14-3-3 could be detected in cells by performing immunoprecipitation of
myc-tagged FIP5 and hemagglutinin (HA)-tagged 14-3-3 isoforms (Fig. 2G). We found
that FIP5 was able to bind to 14-3-3� and 14-3-3�, but we could not detect an
interaction with either 14-3-3� or 14-3-3�. Finally, we determined whether 14-3-3�

binding to class I FIPs could be outcompeted by the R18 peptide (PHCVPRDLSWLDLE
ANMCLP), which binds to the same amphipathic groove on the surface of 14-3-3 as that
for phosphorylated peptides (30, 31). Consistent with our previous observations, we
found that increasing concentrations of the R18 peptide inhibited human FIP5 and
Drosophila Rip11 binding to 14-3-3� (Fig. 2H and I). Together, these data demonstrate
that class I FIPs are specific binding partners of 14-3-3 and that these interactions
require their phosphorylation in cells.

14-3-3 interacts with the RBD of Rip11 via Thr391 and Ser405. To determine the
region within Rip11 involved in 14-3-3 binding, we generated various N-terminal and
C-terminal deletion mutants of Rip11 fused to green fluorescent protein (GFP) (Fig. 3A).
These mutants were expressed in Drosophila S2 cells to evaluate their interaction with
14-3-3� in pulldown assays. Notably, we found that only Rip11 fragments containing
the Rab11 binding domain (RBD; amino acids [aa] 352 to 409) associated with 14-3-3�

(Fig. 3B), indicating that this domain contains phosphorylated residues involved in
14-3-3 binding. Sequence analysis of the RBD by use of the prediction software
14-3-3-Pred (32) revealed two potential 14-3-3 binding sites, containing Thr391
[RVME(pT)HP] and Ser405 [RTT(pS)] (Fig. 3A). These residues were mutated to unphos-
phorylatable residues (T391A, S405A, and T391A/S405A [TS/AA] mutations), and the
resulting mutants were tested for the ability to interact with 14-3-3 in a pulldown assay.
While both single point mutants (T391A and S405A) retained the ability to interact with
14-3-3�, we found that mutation of both sites strongly reduced 14-3-3� binding
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(Fig. 3C), indicating that both T391 and S405 are required for this phospho-dependent
interaction.

To address if T391 and S405 are involved in 14-3-3 binding in cells, we expressed
myc-tagged 14-3-3� together with GFP-tagged Rip11 constructs in S2 cells and pro-
ceeded to perform coimmunoprecipitation assays. While Rip11WT was efficiently coim-
munoprecipitated with 14-3-3�, we found that mutation of both T391 and S405 (TS/AA)
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completely abolished this interaction (Fig. 3D). To verify if the loss of 14-3-3 binding was
due to improper folding of the mutant Rip11 proteins, we tested their ability to interact
with active Rab11 in a pulldown assay (33). As shown in Fig. 3E, we found that the
TS/AA mutant of Rip11 retained the ability to interact with Rab11, indicating that
mutation of T391 and S405 did not disrupt the overall structure of the RBD.

This observation prompted us to determine whether Rab11 binding to Rip11 is
necessary for the Rip11–14-3-3 interaction. For this purpose, we mutated the conserved
Y380 residue of Rip11 (Fig. 3A) to a serine residue (Y380S), which is predicted to disrupt
Rip11 binding to Rab11 (34, 35). Accordingly, we found that this mutant lost the ability
to interact with active Rab11 in pulldown assays (Fig. 3E). Next, we tested the ability of
the Y380S mutant to interact with 14-3-3, and we found that Rab11 binding was not
required for the interaction between Rip11 and 14-3-3 (Fig. 3D). Hence, these findings
indicate that 14-3-3 interacts with Rip11 independently of Rab11.

T391 and S405 are required for Rip11 distribution during cytokinesis. To gain
insights into the function of 14-3-3 binding to Rip11, we examined Rip11’s endogenous
localization in Drosophila S2 cells. While Rip11 appeared to be recruited to vesicles
distributed throughout the cytoplasm of interphase cells, we found that its distribution
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Rip11 variants was analyzed by immunoblotting. (E) Pulldown assays with lysates of S2 cells expressing the indicated GFP-tagged
Rip11 constructs and GST::Rab11CA were analyzed by immunoblotting.
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changed dramatically during mitosis. During metaphase, Rip11 vesicles were located in
the vicinity of the plasma membrane and were redistributed close to the site of furrow
ingression and on the central spindle during early telophase (Fig. 4A). In mid- to late
telophase, Rip11 vesicles were enriched on the central spindle, near the cleavage
furrow and at the intercellular bridge (Fig. 4A), and appeared to be mostly Rab11
positive (Fig. 4B).

We next investigated whether 14-3-3 binding is involved in the localization of Rip11
during mitosis. For this purpose, we performed time-lapse microscopy using S2 cells
stably expressing GFP-tagged Rip11 constructs. This system appeared to be suitable for
localization studies, as the distribution of GFP::Rip11WT was found to be similar to that
of endogenous Rip11 (Fig. 4A and C). Interestingly, we found that GFP::Rip11TS/AA was
also recruited to vesicles enriched near the cleavage furrow during mid- and late
telophase, but their distribution was more dispersed, with numerous GFP::Rip11TS/AA

vesicles found close to the poles of dividing cells (Fig. 4C). To quantify the difference
in localization at late telophase between the different Rip11 mutants, we determined
the enrichment of the protein near the cleavage furrow by measuring the ratio of the
mean GFP fluorescence of an area expanding 1 
m around the cleavage plane to the
mean GFP fluorescence of the entire cell (Fig. 4D; Movie S1). We found a 2.7-fold
enrichment of GFP::Rip11WT, which dropped to 1.5-fold for GFP::Rip11TS/AA (Fig. 4D=;
Movie S2). These results suggest that 14-3-3 binding promotes the accumulation of
Rip11 at the cleavage furrow during late telophase.

Rip11 is involved in late stages of cytokinesis. The distribution of Rip11 during

mitosis suggests a role during cytokinesis. To test this hypothesis, we depleted Rip11 by
use of RNA interference (RNAi) and quantified the percentage of multinucleated cells as
a marker of cytokinesis failure. Depletion of Rip11 by use of double-stranded RNA
(dsRNA) sequences targeting either the coding sequence or the 5= untranslated region
(UTR) induced a rate of multinucleated cells of 24.4% or 18.8%, respectively (Fig. 5A and
B). For succeeding experiments, we used the dsRNA targeting the 5= UTR, as it allowed
us to perform rescue experiments. Hence, we confirmed that this dsRNA efficiently
depleted both Rip11 isoforms (Rip11-PA and Rip11-PB) by Western blotting of S2 cell
protein lysates (Fig. 5C; Movies S3 and S4). Both isoforms comprise an N-terminal C2
domain and a C-terminal RBD, but Rip11-PA also contains a larger central region of
unknown function.

To determine which cytokinesis step(s) is impaired by the depletion of Rip11, we
performed time-lapse microscopy of S2 cells expressing both mCherry-tagged anillin
and a GFP fusion to the regulatory light chain of myosin II (Sqh-GFP) as markers of the
cytokinesis machinery (Fig. 5D) (36). We observed that cytokinesis failed in 20.4% of the
cells depleted of Rip11 (n � 416). In these cells, the cytokinesis furrow regressed 61 �

23 min after formation of the midbody, indicating that Rip11 is involved in late stages
of cytokinesis. Interestingly, we also observed that anillin and Sqh were aberrantly
recruited to internal vesicles in 31.7% of the dividing cells depleted of Rip11. A majority
(54.5%) of these cells failed to complete cytokinesis. This suggests that Rip11 is required
for the progression of cytokinesis by regulating the localization of anillin and Sqh at the
cleavage furrow.

Rip11 function during cytokinesis depends on 14-3-3 binding. To examine

whether Rip11 function during cytokinesis requires 14-3-3 binding, we performed
rescue experiments with Drosophila S2 cells subjected to Rip11 RNAi. Cells were stably
transfected with various dsRNA-insensitive GFP-tagged constructs of Rip11 (Fig. 6A),
and the multinucleated phenotype was quantified. We found that expression of a GFP
fusion to the shorter isoform of Rip11 (Rip11-PB; labeled GFP::Rip11WT here) rescued the
phenotype, suggesting that it was fully functional during cytokinesis. Similarly, the
single point mutant GFP::Rip11S405A efficiently rescued cytokinesis, while the single
point mutant GFP::Rip11T391A only partially prevented this phenotype. Conversely, our
results showed that expression of GFP::Rip11TS/AA completely failed to restore cytoki-
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nesis completion (Fig. 6A), suggesting that Rip11 function during cytokinesis requires
its phosphorylation-dependent association with 14-3-3.

To determine whether constitutive 14-3-3 binding is sufficient to restore the func-
tion of Rip11 during cytokinesis, we fused GFP::Rip11TS/AA with the R18 sequence
(GFP::Rip11TS/AA::R18), which promotes 14-3-3� association independently of phosphor-
ylation (Fig. 6B). Interestingly, although the R18 fusion abrogated Rab11 binding (Fig.
6C), it was able to significantly rescue cytokinesis upon Rip11 knockdown (Fig. 6A).
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FIG 4 Legend (Continued)
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Dashed lines delineate the cell perimeter. Bars � 8 
m. (C) Selected frames of dividing S2 cells expressing
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These results support the notion that binding to 14-3-3 is necessary for Rip11 function
during cytokinesis.

To confirm that the binding to Rab11 is dispensable for Rip11 function during
cytokinesis, we expressed the Rab11 binding-deficient Rip11 mutant (Rip11Y380S) and
tested it for the ability to rescue cytokinesis in S2 cells depleted of Rip11. Importantly,
we observed a complete cytokinesis rescue (Fig. 6A) with Rip11Y380S, confirming that
Rip11 acts independently of Rab11 binding for its function in cytokinesis.

To determine if the binding to 14-3-3 is required for Rip11 function in the absence
of Rab11 binding, we expressed a Rip11 mutant deficient in both Rab11 and 14-3-3
binding through compounded point mutations (GFP::Rip11YTS/SAA) (Fig. 6B and C).
Similar to the results we obtained with GFP::Rip11TS/AA and GFP::Rip11ΔRBD, we found
that these mutants failed to rescue cytokinesis in S2 cells depleted of Rip11 (Fig. 6A).
Hence, while all the previously described functions of Rip11 are dependent on Rab11
binding, its function during cytokinesis appears to be Rab11 independent and requires
its interaction with 14-3-3.
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Finally, as we previously found that the loss of binding to 14-3-3 changes the
distribution of Rip11 vesicles (Fig. 4C and D), we imaged the different mutants of
Rip11 in rescue experiments (Fig. 7). We found that GFP::Rip11WT, GFP::Rip11S405A,
and GFP::Rip11T391A were present in vesicles close to the cytokinesis cleavage plane,
while GFP::Rip11TS/AA vesicles were more dispersed. Both GFP::Rip11Y380S and GFP::
Rip11YTS/SAA were found to be located mainly at the plasma membrane, including
at the cleavage furrow, and occasionally on vesicles. Finally, GFP::Rip11TS/AA::R18
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was found both at the plasma membrane and on vesicles accumulating near the
cleavage furrow.

DISCUSSION

Several proteomics studies have characterized the 14-3-3 interactome in human
cells, but at the moment, little is known about the identities of 14-3-3 client proteins in
other organisms and their levels of conservation across species. Here we simultaneously
characterized the 14-3-3 interactomes in human and fly cells, with the rationale that
conserved 14-3-3 interactions will reveal regulatory mechanisms that control funda-
mental biological processes. Our screening strategy also enriched phosphorylation-
dependent 14-3-3 client proteins, suggesting the involvement of a conserved set of
kinases/phosphatases that regulates these interactions. Among identified proteins, we
demonstrated that class I Rab11-FIPs are conserved 14-3-3 binding proteins and that
this interaction is required for completion of cytokinesis. We found that 14-3-3 interacts
with Rip11 via two phosphorylation sites located within its Rab11 binding domain but
that Rab11 is dispensable for this newly characterized Rip11 function.

Rip11 was shown to interact with other Rab GTPases (37). Hence, it is possible that
14-3-3 regulates a function of Rip11 related to another Rab. A candidate screen
performed in S2 cells revealed that Rab35 is an important regulator of cytokinesis (38),
while in mammalian cells Rab35 was shown to ensure postfurrowing steps of cytoki-
nesis by trafficking its effector OCRL to the intercellular bridge (38, 39). Previous work
performed in HeLa cells linked 14-3-3 to the disassembly of the cytokinesis machinery
(28, 40). In line with these findings, a role of Rip11/14-3-3 may be to regulate the
trafficking of Rab35/Ocrl to allow the progression to abscission.

Some class I Rab11-FIPs were also shown to interact with myosin motors, such as
kinesin-2 and myosin V, to promote protein trafficking (41, 42). Interestingly, kinesin-2
was shown to be involved in the delivery of Rab11-FIP5 to the cleavage furrow of
epithelial cells (43), but whether Rip11 associates with kinesin-2 or another motor
protein is currently unknown. Alternatively, 14-3-3 might regulate the C2 domain of
Rip11 and its capacity to bind phospholipids, but more work will be required to assess
these possibilities.

The function of 14-3-3 binding to Rip11 seems to be required at a precise time
during cytokinesis, suggesting that its phosphorylation is tightly controlled. Identifying
the kinase and/or phosphatase involved in Rip11 phosphorylation will be required to
fully understand how its function is regulated. The basic residues located prior to T391
and S405 suggest the involvement of a basophilic kinase, such as protein kinase C
(PKC). PKC was shown to have pleiotropic functions during mitosis (44), and although
it is not impossible, determining its implication in the regulation of Rip11 function will
likely be challenging.

In conclusion, our work led to the identification of a large number of 14-3-3 client
proteins that are conserved across species. These results will be an important resource
for future work on 14-3-3 proteins and the roles they play in fundamental processes,
such as cell growth and division.

MATERIALS AND METHODS
Plasmid constructs. Cloning of the different Drosophila constructs was done using Gateway tech-

nology (Invitrogen). We generated the different mutant forms of Rip11 by mutagenesis (QuikChange;
Agilent) directly on Rip11WT (all the Rip11 constructs used in this study were generated from the
Rip11WT-PB isoform) in pDonor (33). We made the following Rip11 mutations: threonine 391 to alanine
(T391A), serine 405 to alanine (S405A), and tyrosine 380 to serine (Y380S). The R18 peptide was fused
directly after the last amino acid of Rip11TS/AA. All Rip11 constructs were recombined in a copper-
inducible pMET vector with a GFP tag at the N terminus to allow expression in Drosophila S2 cells
(pMet-picoblast-GFP vector; a gift from V. Archambault [Université de Montréal, Montréal, Canada]).
14-3-3� was subcloned into pDonor and further recombined in the pAMW vector (actin promoter; myc
tag at the N terminus). GST::Rab11CA and Rab11 were generated by use of the pDonor vector as
previously described (33). Rab11 was recombined in pDest28 (UAS promoter; mCherry tag at the N
terminus). GFP::tubulin was a gift from G. Hickson (Hôpital Sainte-Justine, Montréal, Canada).

Human FIP1, FIP2, FIP3, and FIP4 cloned into the p-EGFP-C1 plasmid for an N-terminal GFP tag were
kind gifts from J. Goldenring (Vanderbilt University Medical Center, Nashville, TN), and human FIP5

Laflamme et al. Molecular and Cellular Biology

February 2017 Volume 37 Issue 3 e00278-16 mcb.asm.org 12

http://mcb.asm.org


cloned into the p-EGFP-C1 plasmid was a gift from M. W. McCaffrey (University College Cork, Cork,
Ireland). FIP5 was cloned into pcDNA3 to introduce an N-terminal myc tag.

Drosophila S2 cell culture and dsRNA treatment. Drosophila S2 cells were grown in Schneider’s
medium supplemented with 10% fetal bovine serum (FBS) supplemented with antibiotics. Stable cell
lines were generated by transfecting the indicated constructs by use of Transit-LT1 transfection agent
(Mirus). Blasticidin was used as a selection agent. mCherry::anillin- and Sqh::GFP-expressing S2 cells were
obtained from the G. Hickson laboratory (45). For fixed samples, cells were cultured in a 96-well
glass-bottomed plate (Greiner) for 6 days and treated with 3.5 
g of dsRNA at day 0 and day 3. For
time-lapse microscopy, cells were cultured in a 96-well plate and treated with 3.5 
g of dsRNA at day 0
and 1 
g of dsRNA at day 3, and they were imaged at day 5.

dsRNAs were produced and used as previously described (46), using the following primers: for Gal4
control dsRNA, Gal4 forward (AGAAGTAAGGCGGTCGGGATAGT) and reverse (AGACACCAGCGAAATGGA
TTTTT) primers; and for Rip11, CDS forward (CCGGCAAGGAGAAGAAGAAC) and reverse (GTTGCCGATGG
ACAACAGAC) primers and 5= UTR forward (CTACACTACGTTCTCCTGGCG) and reverse (CCTTTCGTTTCTT
CTTCTTTGC) primers.

Imaging of fixed samples, time-lapse recording, and quantifications. For immunofluorescence
assays and staining, we used mouse (1/200; Sigma) or rat (1/50; AbD Serotec) anti-�-tubulin, rabbit
anti-Rip11 (1/2,000; a gift from J. Casanova, Institut de Biologia Molecular de Barcelona-CSIC, Barcelona,
Spain), and Alexa Fluor 488-phalloidin (1/100; Cell Signaling) for F-actin staining. DAPI (4=,6-diamidino-
2-phenylindole; Sigma) was used to stain nuclei. Images were acquired using either a 63� (numerical
aperture [NA] � 1.4) or 100� (NA � 1.42) planApo objective on a Deltavision microscope (Applied
Precision) equipped with a CoolSnap HQ2 camera (Photometrics). Deconvolution was carried out using
SoftWoRx software, version 5.5. Cells were fixed in 4% paraformaldehyde and then proceeded for
immunostaining (46), while time-lapse imaging was performed in an environmental chamber at 25°C. All
cell images represent a single focal plane. They were prepared for publication using Adobe Photoshop
to adjust contrast, Gaussian blur, and levels and then assembled with Adobe Illustrator.

Quantifications of GFP::Rip11 were performed as follows. Using Adobe Photoshop, a rectangular
selection box with a 2-
m width was created and aligned with the middle of the cleavage furrow of
late-telophase cells. The extremities of the box were modified to overlap the boundaries of the cleavage
furrow. The mean fluorescence of GFP::Rip11 was measured in this region of interest [F(ROI)] and in the
whole dividing cells [F(cell)]. The fluorescence intensities of both F(ROI) and F(cell) were corrected by
background subtraction [and then called F(ROI)out and F(cell)out], and the ratio of F(ROI)out to F(cell)out

was calculated to determine the enrichment of GFP::Rip11 at the cleavage furrow.
Rescue experiments. Stable S2 cell lines expressing the different GFP::Rip11 constructs under the

control of the pMET promoter were treated with Rip11 5= UTR dsRNA at day 0 and day 3 and incubated
with 0.5 mM CuSO4 at day 4 of treatment. At day 6, cells were fixed and �-tubulin was stained. The
number of normal bi- or multinucleated cells was quantified and represented in a histogram.

Mammalian cell culture, treatments, and immunoprecipitation. HEK293 cells were maintained at
37°C in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/liter glucose supplemented with 10%
FBS and antibiotics. HEK293 cells were transfected using calcium phosphate precipitation as described
previously (47). Cells were grown for 24 h after transfection and serum starved where indicated by using
serum-free DMEM for an additional 16 to 18 h. Cell lysates were prepared as previously described (47).
Briefly, cells were washed three times with ice-cold phosphate-buffered saline (PBS) and lysed in BLB (10
mM K3PO4, 1 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 50 nM �-glycerophosphate, 0.5% Nonidet P-40, 0.1%
Brij 35, 0.1% deoxycholic acid, 1 mM sodium orthovanadate [Na3VO4], 1 mM phenylmethylsulfonyl
fluoride [PMSF], and a Complete protease inhibitor cocktail tablet [Roche]). For immunoprecipitations,
cell lysates were incubated with the indicated antibodies for 2 h, followed by a 1-h incubation with
protein A–Sepharose CL-4B beads (GE Healthcare). Immunoprecipitates were washed three times in lysis
buffer, and beads were eluted and boiled in 2� reducing sample buffer (5� reducing sample buffer
contains 60 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 14.4 mM 2-mercaptoethanol, and 0.1%
bromophenol blue).

14-3-3 immunoprecipitation and GST-Rab11 pulldown assays with S2 cells. S2 cells were
cotransfected by use of Transit-LT1 transfection agent (Mirus) with both GFP::Rip11 and myc::14-3-3� or
GFP::Rip11 and GST::Rab11 constructs. GFP::Rip11 expression was induced by adding 0.5 mM CuSO4 for
16 h, and cells were lysed in Nonidet P-40 lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 1% Nonidet P-40,
10% glycerol, and 1 mM EDTA) with protease and phosphatase inhibitors (48). For GST::Rab11CA

pulldown assay, 50 
l of a 50% slurry of glutathione-Sepharose beads equilibrated in lysis buffer was
added to protein lysates and rocked for 2 h at 4°C. For myc::14-3-3 immunoprecipitation, 1 
l of myc
antibody (9E10) was added to the protein lysate and rocked for 2 h at 4°C. After incubation of cell lysates
with antibodies, 50 
l of A/G beads (Santa Cruz Biotechnology) was added to the protein lysate for 1 h,
and the mix was rocked at 4°C. Beads were washed four times with lysis buffer. Total protein lysates and
eluted proteins were resolved by 10% SDS-PAGE and transferred to nitrocellulose membranes, and
immunoblots were performed using the following antibodies: anti-GFP (1/1,000; Invitrogen), anti-GST
(1/1,000; Cell Signaling), and anti-myc (9E10) (1/50,000). Stable S2 cell lines expressing different Rip11
variants were plated on day 1. GFP constructs were induced by adding 0.5 mM CuSO4 for 8 h. Cells were
lysed as described above and incubated with GST::14-3-3 beads. Beads were processed as described
above.

Purification of GST::14-3-3 fusion proteins, subtractive fractionation, and pulldown assays.
Fifty-milliliter overnight cultures of Escherichia coli BL21 transformed with pGEX-4T-14-3-3� wild type or
K49E mutant (kindly provided by Bryan Ballif) (49) were diluted to 500 ml and induced with 1 mM IPTG
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(isopropyl-�-D-thiogalactopyranoside) overnight at 25°C. Cells were pelleted and resuspended in 40 ml
of bacterial lysis buffer (1� PBS, 10 mM EDTA, 0.1% Triton X, 1 mM PMSF, 1� protease inhibitor cocktail).
Extracts were placed in 50-ml conical tubes on ice and sonicated using a probe sonicator six times for
30 s each, with 30-s delays between blasts. After sonication, the extracts were centrifuged at 13,000 �
g for 30 min and aliquoted into 1-ml tubes to be stored at �80°C until further use. For subtractive
fractionation, we used a previously described method (49). Briefly, serum-starved cells were lysed as
described above. Cellular debris was removed by centrifugation for 10 min at 13,000 � g. The
supernatant, corresponding to 20 mg of protein, was precleared by pouring it sequentially over
glutathione-Sepharose (GE/Amersham/Pharmacia, Piscataway, NJ), glutathione-Sepharose bound to 500

g of GST, and glutathione-Sepharose bound to 250 
g of GST::14-3-3� K49E. The flowthrough was
divided equally and poured over GST::14-3-3� K49E (250 
g) or GST::14-3-3� wild type (250 
g) (as shown
in the schematic in Fig. 1A). The beads were then washed 2 times with 2 ml of lysis buffer, followed by
a final wash of 2 ml of lysis buffer lacking Nonidet P-40 and Brij 35. Cellular proteins bound to each
column were eluted stepwise with 400 
l of 400 mM MgCl2 in 50 mM HEPES and 400 
l of 800 mM MgCl2
in 50 mM HEPES and finally chased with 200 
l of 50 mM HEPES. Eluates were combined and precipitated
with 15% trichloroacetic acid. Precipitated proteins were pelleted, washed with acetone, resuspended in
reducing sample buffer, pH adjusted with a 1/6 volume of 1 M Tris base, boiled, and subjected to
SDS-PAGE for Coomassie staining or immunoblotting. For smaller-scale GST pulldowns, cell lysates were
incubated with 10 
g of GST::14-3-3� wild type or K49E mutant for 2 h and washed four times with lysis
buffer prior to elution with reducing sample buffer, SDS-PAGE, and immunoblotting.

Sample preparation for mass spectrometry. Coomassie-stained SDS-PAGE gels were cut at regions
corresponding to specific molecular weights. Gel slices were treated with 10 mM dithiothreitol (DTT) and
incubated for 1 h at 56°C, followed by alkylation with 15 mM iodoacetamide for 1 h at 25°C in the dark.
Proteins were digested overnight with sequencing-grade modified trypsin (enzyme/protein ratio of 1:50)
at 37°C. Digested peptides from gels were extracted, and the volume was reduced by use of a speed
vacuum. All peptide samples were resuspended in 0.2% formic acid.

Fractionation was analyzed by online reverse-phase chromatography coupled with an electrospray
ionization interface to acquire MS (measuring the intensity and m/z ratio for peptides) and MS/MS (giving
fragmentation spectra of peptides) scans. A nanoflow high-pressure liquid chromatography (HPLC)
system (Eksigent; Thermo Fisher Scientific) was used for online reverse-phase chromatographic separa-
tion; peptides were loaded into a 5-mm-long trap column (inner diameter, 300 
m) in buffer A (0.2%
formic acid [FA]) and separated in an 18-cm-long fused silica capillary analytical column (inner diameter,
150 
m), both packed with 3 
m 200A Magic AQ C18 reverse-phase material (Michrom). Peptides were
eluted by increasing the concentration of buffer B (0.2% FA in acetonitrile [ACN]) from 5 to 40% in 100
min. Following the gradient elution, the column was washed with 80% buffer B and reequilibrated with
5% buffer B. Peptides were eluted into the mass spectrometer at a flow rate of 600 nl/min. The total run
time was approximately 125 min, including sample loading and column conditioning. Peptides were
analyzed using automated data-dependent acquisition on a LTQ-Orbitrap Elite mass spectrometer. Each
MS scan was acquired at a resolution of 240,000 full width at half maximum (fwhm) (at 400 m/z) for the
mass range of 300 to 2,000 Th, with the lock mass option enabled (m/z 445.120025), and was followed
by up to 12 MS/MS data-dependent scans on the most intense ions by use of collision-induced activation
(CID). AGC target values for MS and MS/MS scans were set to 1e6 (maximum fill time of 500 ms) and 1e5
(maximum fill time of 50 ms), respectively. The precursor isolation window was set to 2 Th, with a CID
normalized collision energy of 35; the dynamic exclusion window was set to 60 s.

Mass spectrometry data acquisition, quantitation analysis, and bioinformatics. MS data were
analyzed using MASCOT software and searched against the Uniprot/SwissProt subset for Drosophila
(Drome) and human release 2014 (http://www.uniprot.org/). Search criteria included a static modification
of cysteine residues of �57.0214 Da, with a variable modification of �15.9949 Da to include potential
oxidation of methionines. Searches were performed with semitryptic digestion and allowed a maximum
of two missed cleavages on the peptides analyzed from the sequence database. The false discovery rate
(FDR) for peptide, protein, and site identification was set to 1%. Bioinformatics analysis was done with
DAVID software.

Statistical analysis. Statistical significances were determined by two-tailed Student’s t tests. Results
are expressed as means � standard errors of the means (SEM) or means � standard deviations (SD), as
indicated in the figure legends. Statistical significance was assumed for P values of �0.05.
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