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Small-window parametric imaging 
based on information entropy for 
ultrasound tissue characterization
Po-Hsiang Tsui1,2,3, Chin-Kuo Chen4, Wen-Hung Kuo5, King-Jen Chang5,6, Jui Fang7,  
Hsiang-Yang Ma1 & Dean Chou8

Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted 
strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary 
artifacts, and the prerequisite data distribution limit the practicability of statistical parametric 
imaging. In this study, small-window entropy parametric imaging was proposed to overcome the 
above problems. Simulations and measurements of phantoms were executed to acquire backscattered 
radiofrequency (RF) signals, which were processed to explore the feasibility of small-window 
entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue 
characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to 
compare performances of conventional statistical parametric (based on Nakagami distribution) and 
entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and 
phantom results revealed that entropy images constructed using a small sliding window (side length = 1 
pulse length) adequately describe changes in scatterer properties. The area under the ROC for using 
small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using 
statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed 
imaging technique. Entropy enables using a small window for implementing ultrasound parametric 
imaging.

Ultrasound backscattering and its relationship with the properties of scatterers in biological tissues is a widely 
pursued and critical topic in fundamental imaging research. In ultrasound imaging, the speckle results from 
the accumulation of random scatterings from within the resolution cell of the transducer1,2. On the basis of the 
randomness of ultrasound backscattered signals, backscattered envelope statistics (i.e., the echo amplitude dis-
tribution) can be modeled using mathematical statistical distributions to evaluate scatterer properties. Several 
statistical models have been proposed to describe the backscattered statistics for ultrasound tissue characteri-
zation, such as Rayleigh2, Rician3, K4, homodyned K5, generalized K6, Nakagami7, Nakagami compounding8–10, 
and McKay distributions11. General models that fit closely with different statistical distributions of backscattered 
envelopes are highly necessary.

Among the aforementioned models, the Nakagami distribution is the most frequently adopted model for 
tissue characterization because of its generality, simplicity, and low computational complexity12. Researchers 
reported potential applications of ultrasound Nakagami parametric imaging in visualizing backscattered statis-
tics for quantifying the properties of tissues, such as in breast tumor classification13,14, liver fibrosis detection in 
rats15,16, radiotherapy evaluation17, cataract detection18, skin characterization19, vascular flow analysis20, thermal 
ablation monitoring21, and characterizing the structural anisotropy in the myocardium22. Various research groups 
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demonstrated that the Nakagami image visualizes scatterer arrangements and concentrations and complements 
the conventional B-scan for tissue characterization.

Low spatial resolution is a substantial drawback of using statistical parameters, including the Nakagami 
parameter, to image tissues. The sliding window technique is a typical method for constructing ultrasound sta-
tistical parametric images18–25. A window within the image is used to collect local data for estimating a param-
eter; this estimation is repeated as the window is moved across the image, yielding a statistical parametric map. 
The window size determines the resolution of the parametric image: a smaller window offers a higher resolu-
tion. However, to avoid overestimating the statistical parameter, a window with a size corresponding to several 
times the spatial resolution of the B-scan is used to capture sufficient data points for calculation26,27. Hence, 
the resolution of statistical parametric images is lower than that of the conventional B-scan. In addition to low 
image resolution, ultrasound statistical parametric images entail another practical challenge: the data acquired 
for parameter estimation must follow the employed distribution model28,29. Not every imaging system outputs 
raw radiofrequency (RF) data of images. Adjusting the settings of an ultrasound system or using signal processing 
techniques may also alter the statistical distribution of the image data obtained from the system. In particular, 
different demodulation methods may cause different envelope statistics30, and different estimators yield different 
estimates31. These aspects highlight the lack of flexibility in applying statistical distributions to ultrasound para-
metric imaging.

Information entropy has a high potential for application in analyzing ultrasound backscattering. Shannon 
established a mathematical theory of communication and defined entropy as a measure of uncertainty in a ran-
dom variable32. Hughes first proposed using information Shannon entropy for analyzing ultrasound signals and 
demonstrated that entropy can quantitatively describe microstructural changes in scattering media33–36. To vis-
ualize changes in the uncertainty of backscattered signals, ultrasound entropy imaging techniques were further 
developed37–40. Note that entropy is a function of probability density and thus is related to the distribution param-
eters28. However, the difference is that entropy is a relative measure of the signal uncertainty (a non-model-based 
statistical parameter) and therefore can be calculated using any type of data irrespective of the data distribu-
tion. In this case, using a large window to involve sufficient data points for a stable entropy calculation may 
be not a very critical consideration. We assume that using entropy affords the use of a small window for con-
structing high-resolution ultrasound parametric images. Using information entropy as a strategy for ultrasound 
small-window parametric imaging has not been explored previously.

In this study, we aim to (i) design an algorithmic scheme for ultrasound entropy imaging, (ii) investigate the 
feasibility of small-window entropy imaging in reflecting the scatterer properties, and (iii) validate the practical 
ability of small-window entropy imaging in tissue characterization by clinical measurements on breast tumors 
and comparisons with statistical parametric imaging based on the Nakagami distribution. The results showed that 
information entropy can be used to implement small-window parametric imaging (window side length (SL) =​1 
transducer pulse length) and to provide high-resolution images that visualize the uncertainty of backscattered RF 
signals for characterizing tissues. Compared with Nakagami parametric imaging, small-window entropy imaging 
improved the performance of breast tumor classification. This paper reports the potential contributions, impacts, 
and future work of entropy imaging in ultrasound tissue characterization.

Results
Simulations and phantom experiments were conducted to explore the feasibility of small-window entropy imag-
ing. Different types of phantoms were designed and the properties and materials of each type of phantom in 
the simulations and experiments are shown in Table 1. To confirm the practical performance of small-window 
entropy imaging in tissue characterization, clinical data of breast benign (fibroadenoma) and malignant (invasive 
carcinoma) tumors were further collected for validations.

Simulations.  Figure 1 shows B-mode and entropy images of Type-I phantoms obtained using SLs of 1 to 4. 
The entropy image varied from blue–red-interlaced to red, which represents an increase in entropy, as the number 
density of scatterers increased from 2 to 16 scatterers/mm2. Figure 2 shows the entropy values as a function of 
SL at different number densities of scatterers. At each scatterer concentration, the estimated entropy decreased 
with increasing SL. Figure 3 shows entropy as a function of the number density of the scatterers obtained at dif-
ferent SLs. The entropy estimated from the entropy image constructed using SL =​ 1 increased from 5.17 ±​ 0.01 
to 5.35 ±​ 0.005 as the number density of scatterers increased from 2 to 16 scatterers/mm2. This phenomenon was 
also observed for an SL of 2–4. Interestingly, entropy images constructed using a small window (SL =​ 1) can detect 
the variation in the number density of scatterers in a scattering medium.

Figure 4 presents B-mode and entropy images of Type-II phantoms containing strong scatterers with different 
relative scattering coefficients (RSCs) constructed using different SLs. For SL =​ 1–4, the entropy image varied 
from red to red–blue-interlaced, which represents a decrease in entropy, as the RSC of the embedded strong scat-
terers increased from 2 to 8. Figure 5 presents entropy as a function of the RSC of the embedded strong scatterers 
when different SLs were used. As the RSC of the strong scatterers increased from 2 to 8, entropy in the image 
constructed using SL =​ 1 decreased from 5.34 ±​ 0.004 to 5.20 ±​ 0.009. Entropies obtained using SLs of 2–4 also 
decreased with increasing RSCs. The results showed that small-window entropy imaging (SL =​ 1) allows quanti-
fication of the tissue inhomogeneity.

Figure 6(a–d) show B-mode and entropy images of a simulated mass (Type-III phantom) obtained using dif-
ferent window sizes. In the entropy image, the background and the mass had the same number density of scatter-
ers but different RSCs. A blue image feature appeared at the background–mass interface (boundary artifact). The 
boundary artifact was conspicuous when windows with a large SL were used, and it gradually diminished as the 
SL decreased from 4 to 1. According to the above findings, the following results from the phantoms and clinical 
measurements were obtained using SL =​ 1 to investigate small-window entropy imaging in practical applications.
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Phantom experiments.  Figure 7 shows the B-mode and small-window entropy images of the Type-A 
phantom (frequency =​ 6 MHz; scanned at a focus of 1 cm). The entropy increased from 4.41 ±​ 0.07 to 5.00 ±​ 0.03 
as the number density of scatterers increased from 2 to 16 scatterers/mm3. The results obtained from Type-A 
phantoms showed a similar trend with that of Type-I phantoms, indicating that entropy imaging can be used 
to visualize the variation in the number density of scatterers. Figure 8 displays the B-mode and small-window 
entropy images of the Type-B phantom (frequency =​ 6 MHz; scanned at a focus of 1 cm). The entropy decreased 
from 5.12 ±​ 0.02 to 4.91 ±​ 0.02 as the weights of the glass beads added in the background increased from 0 to 
0.3 g. The experimental results for the Type-B phantoms confirmed the findings of the simulations of the Type-II 
phantoms: entropy allows the quantification of the tissue inhomogeneity.

Figure  9(a–h) show the B-mode and small-window entropy images of the Type-C phantom (fre-
quency =​ 6 MHz; scanned at a focus of 1 cm). Figure 9(i–l) illustrate the envelope amplitude values as functions of 
depth obtained by averaging all the envelope signals in Fig. 9(a–d), respectively. At a lipid concentration of 20%, 
the average attenuation rate for envelope signals was 2.56/mm, which was determined by the slope of the linear 
fitting curve. Figure 9(m–p) indicate that the average attenuation rate for the entropy image at a lipid concentra-
tion of 20% was 0.0008/mm, which is much lower than that of the B-scan.

Figure 10(a–j) display the B-mode and small-window entropy images of the Type-D phantom obtained using 
frequencies ranging from 5 to 8 MHz (scanned at a focus of 2 cm). Figure 10(k–l) show the results determined 
using a frequency of 6 MHz and a focal length of 3 cm (the mass was not located in the focal zone). Refer to 
Fig. 10(m). According to the p value obtained from the independent t test, increasing the frequency from 5 to 
8 MHz did not result in a significant change in entropy, but the entropy estimated in the focal zone was lower than 
that obtained when the focal zone was moved away from the mass (p value <​ 0.05, denoted by the “*” symbol in 
the figure).

Clinical data of breast tumor.  Figure 11 provides the B-mode, Nakagami, and small-window entropy 
images of benign and malignant breast tumors. The shade of the Nakagami and entropy images of the malignant 
tumor was darker than that of the benign tumor. Figure 12(a) shows that the median Nakagami parameter for 
the benign and malignant tumors was 0.59 (the interquartile range, IQR: 0.46–0.67) and 0.38 (IQR: 0.25–0.53), 
respectively (p <​ 0.05). Figure 12(b) displays the receiver operating characteristic (ROC) curve for using the 
Nakagami image to classify the benign and malignant tumors. The area under the ROC curve (AUROC) was 
0.79 with a 95% confidence interval (CI) from 0.67 to 0.9. The accuracy was 69.84%, the sensitivity was 70%, and 
the specificity was 69.69%. Concurrently, the median entropy for the benign and malignant tumors, as shown in 
Fig. 12(c), was 4.86 (IQR: 4.57–4.96) and 4.29 (IQR: 3.87–4.51), respectively (p <​ 0.05). The AUROC for entropy 
imaging was 0.89 (95% CI: 0.80 to 0.97), and the accuracy was 79.36%, the sensitivity was 76.66%, and the spec-
ificity was 81.81%, as shown in Fig. 12(d). Table 2 compares performances of ultrasound small-window entropy 
and Nakagami imaging in classifying breast tumors. Compared with statistical parametric imaging constructed 
using a relatively large sliding window, small-window entropy imaging improved the performance of breast 
tumor classification.

Type no. Objectives
Properties of the scatterers in 
the background

Additional scatterers or additive 
in the background

Simulations

Type-I Simulating changes in the 
number density of scatterers

Point scatterers (RSC: 1) Number 
density of scatterers: 2, 4, 8, and 
16 scatterers/mm2

—

Type-II Simulating changes in the degree 
of variance in the echogenicity

Point scatterers (RSC: 1) 
Number density of scatterers: 16 
scatterers/mm2

Point scatterers (RSC: 2, 4, 6, and 
8) Number density of scatterers: 1 
scatterers/mm2

Type-III Simulating the tissue interface
Point scatterers (RSC: 1) 
Number density of scatterers: 16 
scatterers/mm2

An embedded cylindrical object 
with point scatterers (RSC: 0.1) 
Number density of scatterers: 16 
scatterers/mm2

Phantom experiments

Type-A Simulating changes in the 
number density of scatterers

Glass beads Number density 
of scatterers: 2, 4, 8, and 16 
scatterers/mm3

—

Type-B Simulating changes in the degree 
of variance in the echogenicity

Graphite powder Scatterer 
concentration: 2 g in 200 mL 
water (>​1000 scatterers/mm3)

Glass beads Scatterer 
concentration: 0.05, 0.1, and 0.3 g 
in 200 mL water

Type-C Simulating the attenuation effect
Graphite powder Scatterer 
concentration: 2 g in 200 mL 
water (>​1000 scatterers/mm3)

Soybean-oil lipid emulsions Lipid 
concentration: 0%, 5%, 10%, and 
20%

Type-D
Simulating the tissue interface 
and exploring effects of 
frequency and focus

A tissue-mimicking breast 
phantom —

Table 1.   Properties and materials of each type of phantom in the simulations and experiments. RSC: 
Relative scattering coefficients of scatterers in the simulations. The phantoms were constructed by boiling and 
cooling agar–water mixtures (dissolving 3 g of the agar powder into 200 mL of water) and adding different 
materials, including glass beads with diameters of 75 μ​m (Model 59200U, Supelco, Bellefonte, PA, USA), 
graphite powder with diameters <​ 20 μ​m (Model 282863, Sigma-Aldrich, St. Louis, MO, USA), and soybean-
oil lipid emulsions (Intrafat, Nihon Pharmaceutical Industry, Osaka, Japan). In the simulations and phantom 
experiments, scatterers were randomly distributed.
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Discussion
Significance of this study.  This paper presents solutions to the problems associated with ultrasound sta-
tistical parametric imaging for visualizing the information associated with tissue microstructures. According to 
the simulation, phantom, and clinical measurement results obtained in this study, ultrasound entropy imaging is 
superior to statistical parametric mapping in the following aspects: (i) Small-window entropy images constructed 
using SL =​ 1 effectively describe the changes in scatterer properties. Compared with statistical parametric images, 
entropy images characterize tissues without sacrificing the resolution. (ii) Boundary artifacts occur at the inter-
face when using sliding windows to construct parametric images. Because using entropy enables using a small 

Figure 1.  (a) B-mode and (b–e) entropy images of Type-I simulated phantoms with different number 
densities of scatterers. (b) SL =​ 1; (c) SL =​ 2; (d) SL =​ 3; (e) SL =​ 4. The dimensions for all images are the same. 
The grayscale and color bars represent the pixel values (the brightness) of the B-mode and entropy images, 
respectively. The shade of the entropy image depends on the window size.
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window for parametric imaging, the effects of boundary artifacts are largely suppressed to improve the perfor-
mance of tissue characterization. This is the first to demonstrate the usefulness of small-window entropy imaging 
in ultrasound tissue characterization.

Effects of scatterer arrangements on entropy.  Establishing a physical link between information 
entropy and the tissue microstructure is highly necessary for clinical applications. Clinically, normal soft tissue 
parenchyma, such those of the liver41 and breast42, may be treated as homogeneous media with a considerable 
number of randomly distributed scatterers. A change in the scatterer arrangement, from homogeneous to inho-
mogeneous, of a scattering medium may be used to explain the pathological change of a soft tissue from the nor-
mal to the abnormal stage. Our simulation and phantom results clarified the dependency of information entropy 
on scatterer properties (Figs 1, 2, 3, 4, 5, 7 and 8). In homogeneous media, entropy is determined by the number 
of scatterers. Increasing the number density of scatterers represents that more scatterers interact with the incident 
wave, thus complicating wave interference and generating backscattered signals with different amplitudes corre-
sponding to high entropies (the signal uncertainty). In inhomogeneous media, a relatively high degree of variance 
in the scattering cross sections of the scatterers causes local variance in the amplitude of the RF signal waveform, 
thus narrowing the width of the signal probability distribution w(y); this condition reduces the estimated value 
of entropy.

Effects of attenuation, frequency, and focus on entropy.  It has been shown that entropy estimated 
using the probability distribution of ultrasound signals is proportional to ultrasound statistical parameters, and 
therefore it is expected to inherit the properties of statistical parameters, such as the dependencies of number 
density of scatterers, attenuation, noise, frequency, transducer focusing, and other factors that affect the size of the 
resolution cell43. The effects of number density of scatterers on entropy were discussed in the previous paragraph. 
The results showed that entropy value decreases with depth due to attenuation (Fig. 9), as supported by a recent 
report revealing that decreasing the signal amplitude with depth decrease statistical parameters44. The attenuation 
effect reduces the signal-to-noise ratio (SNR). Under a low SNR, noise typically behaves as a random variable 
with Gaussian distribution of zero mean, and the coupling of noise with backscattered echoes tends to change the 
signal amplitude distribution and the corresponding statistical parameters. Although the minimum requirement 
of a threshold SNR for entropy estimation is unknown currently, a previous study reported that estimations of sta-
tistical parameters can be stable and reach a steady state for SNRs above 20 dB, whereas the parameter estimation 

Figure 2.  Simulated entropy values as a function of SL at different number densities of scatterers. 
(a) 2 scatterers/mm2; (b) 4 scatterers/mm2; (c) 8 scatterers/mm2; (d) 16 scatterers/mm2. At each scatterer 
concentration, the estimated entropy decreased with increasing SL. Data were expressed by mean ±​ standard 
deviation.
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is SNR-dependent below 20 dB45. On the other hand, a significant dependence of entropy on frequency was not 
observed in the range of 5 to 8 MHz, but the transducer focus affects the entropy estimation (Fig. 10). This is 
largely due to that the degree of transducer focusing determines the size of the resolution cell, affecting the num-
ber of scatterers in the resolution cell that dominate the formation of backscattered signals and the correspond-
ing estimations of statistical parameters27,30. Note that the transducer focusing simultaneously accompanies the 
diffraction effect in the far-field, which makes the resolution cell contain a large number of scatterers to result in 
overestimations of parameters for tissues with a low number density of scatterers46.

Clinical exploration.  The patterns of a breast parenchyma, which is composed of fatty and fibroglandular 
tissues, have been shown to be associated with the risk of developing breast cancer47. For healthy women, dense 
fibroglandular tissues are more common, and the corresponding density in a breast parenchyma decreases with 
age48. Ideally, a normal breast parenchyma based on fibroglandular tissues causes a fully developed speckle pat-
tern in the B-mode image, which corresponds to the envelope statistics of the Rayleigh distribution43. Compared 
with normal breast tissue, benign fibroadenoma is composed of glandular tissues and local fibrous tissues or 
calcification49. Local fibrosis or calcification may cause local changes in the sound speed, density, and hardness, 
causing scatterers in a tumor to exhibit higher variability in the scattering cross sections13. Invasive carcinoma 
is the most prevalent malignant tumor. The cancer cells may spread to other parts of the body through the lym-
phatic system and bloodstream. In particular, malignant tumors may have diversified structures and calcification 
patterns50–52, such as (i) asymmetry and isolated dilated ducts53, (ii) calcifications with a greater hardness and 
density51, (iii) calcifications with irregular sizes, shapes, and nonuniform spatial distributions (e.g., branching or 
clustered)54, and (iv) stronger vascular flow and angiogenesis effects55,56. The aforementioned characteristics are 
expected to further strengthen the degree of variance in the echogenicity of scatterers, causing the entropic values 
of malignant tumors to be lower than those of benign tumors.

Refer to the results in Figs 11 and 12. Small-window entropy imaging is superior to statistical parametric 
imaging in classifying benign and malignant breast tumors. Prior to proposal of small-window entropy imaging, 
statistical parametric imaging has been widely used in breast tissue characterization13,14,42,57,58. However, some 
considerations and limitations exist when statistical parameters are used in practice. First, not every statisti-
cal distributions are applicable to characterizing breast tumors. For example, the estimation of the Nakagami 
parameter may be disturbed by the presence of structures in the breast57. This is why researchers attempted to 
use the mixture of distributions as a more general approach to describe the backscattered statistics11,57,59. Second, 

Figure 3.  Simulated entropy as a function of the number density of the scatterers obtained at different SLs. 
(a) SL =​ 1; (b) SL =​ 2; (c) SL =​ 3; (d) SL =​ 4. Entropy images constructed using windows of different sizes can 
detect the variation in the number density of scatterers in a homogeneous medium. Data were expressed by 
mean ±​ standard deviation.
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the estimation of the statistical parameter is affected by the used estimator. Moment-based estimators are fre-
quently used for estimating statistical parameters. Nevertheless, using a maximum likelihood estimator can yield 
a smaller variance in estimations60. Although recent studies started to use different estimators for applications 
in tissue characterization31,58, the optimal estimator for parametric imaging of breast tumors has not been con-
cluded. Third, as mentioned in Introduction, statistical parametric imaging needs the use of a large window to 

Figure 4.  (a) B-mode and (b–e) entropy images of Type-II simulated phantoms containing strong scatterers 
with different RSCs constructed using different SLs. (b) SL =​ 1; (c) SL =​ 2; (d) SL =​ 3; (e) SL =​ 4. The dimensions 
for all images are the same. The grayscale and color bars represent the pixel values (the brightness) of the 
B-mode and entropy images, respectively. The change in the shade of the entropy images showed a decrease in 
the entropy because of the increasing phantom inhomogeneity.
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capture sufficient data points for stable parameter estimations. A significant boundary artifact will occur in the 
parametric image to degrade the performance in classifying breast tumors13.

Compared with statistical parameters, entropy enables using a small window for implementing ultrasound 
parametric imaging. In this condition, boundary artifacts can be largely suppressed to improve the classification 
of breast tumors (Fig. 12), as discussed below.

Suppression of boundary artifacts.  Boundary artifacts frequently appear at the interfaces of tissues in 
ultrasound parametric imaging13 because the existence of edges and boundaries affects the backscattered statis-
tics57,59. When a sliding window moves across the interface during parametric imaging, the window covers not 
only the backscattered data from the interface but also those from the background tissues. The difference in the 
echo amplitude of the interface and background tends to narrow the probability distribution of the data, causing 
the parameter to be underestimated and generating a boundary artifact. Among all possibilities, using a small 
window for parametric imaging is the simplest approach to suppress the boundary artifacts. Information entropy 
is a relative measure of the signal uncertainty, not a model-based parameter or an absolute physical estimate. 
Therefore, unlike the distribution parameters, entropy allows calculation using less data points acquired from a 
small window as long as its detectability in the properties of scatterers can be obtained. This study demonstrated 
that entropy combined with the small-window technique can implement parametric imaging to characterize 
tissues without significant boundary artifacts (Figs 6 and 11).

Conclusions
Computer simulations and phantom experiments were conducted to investigate ultrasound small-window 
entropy imaging and its performance in detecting changes in the properties of scatterers. Small-window entropy 
imaging constructed using SL =​ 1 effectively visualizes changes in the number density of scatterers and inhomo-
geneity without significant boundary artifacts. Clinical measurements on breast tumors also showed the useful-
ness of small-window entropy imaging in practical tissue characterization. Information entropy enables using a 
small window for implementing high-resolution ultrasound parametric imaging.

Materials and Methods
Simulations.  Two-dimensional (2D) computer simulations were executed at a sampling rate of 50 MHz 
and a sound speed of 1540 m/s to generate image RF data; previous studies have detailed the simulation 
method31,43,61. A 5-MHz Gaussian pulse (a pulse length of 0.89 mm, a bandwidth of 80%, and a beam width of 

Figure 5.  Simulated entropy as a function of the RSC of the embedded strong scatterers when different SLs 
were used. (a) SL =​ 1; (b) SL =​ 2; (c) SL =​ 3; (d) SL =​ 4. As the RSC of the strong scatterers increased, entropy in 
the image decreased. Data were expressed by mean ±​ standard deviation.
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1.66 mm) was generated as the incident wave with a 2D resolution cell with an area of approximately 1.48 mm2 
(0.89 mm ×​ 1.66 mm). The computer phantom Z is a 2D matrix with randomly positioned delta functions that 
describe the spatial arrangement of K scatterers; it is given by

∑= δ − − .
=

Z x y x x y y( , ) ( , )
(1)n

K

n n
1

Simulated image RF data were obtained by convoluting the incident wave with the computer phantoms.
A total of five phantoms with sizes 3 cm ×​ 3 cm were constructed for each number density of scatterers (2, 4, 8, 

and 16 scatterers/mm2). A computer phantom with 16 scatterers/mm2 has approximately 24 scatterers per reso-
lution cell (>​10 scatterers per resolution cell), which is sufficient to produce the fully-developed speckle B-mode 
image (the backscattered statistics follow Rayleigh distribution)30. In this study, we term these phantoms Type-I 
phantoms to simulate changes in the backscattered statistics from pre-Rayleigh to Rayleigh distributions. The 
magnitude of the delta function is 1 and is considered the relative RSC for each scatterer in the phantom.

To simulate an inhomogeneous medium with different degrees of scatterer echogenicity variance, we added 
randomly distributed strong scatterers at a number density of 1 scatterer/mm2 in each Type-I phantom; these 
Type-I phantoms containing strong scatterers are defined as Type-II phantoms. The RSCs of the strong scatterers 
were adjusted by multiplying weight factors and the delta functions. Thus, Type-II phantoms Zs are expressed as

∑ ∑= δ − − + ⋅ δ − −
= =

Z x y x x y y x x y y( , ) ( , ) c ( , ),
(2)S

n

K

n n
n

n n
1 1

M

where c (=​2, 4, 6, and 8) is the weight factor used to simulate the RSCs of strong scatterers, and M represents the 
number of strong scatterers. For each weight factor, five Type-II phantoms were produced for signal formation 
and analysis. Adjusting the RSC was not used for simulating the properties of real tissues. This is a method used 
to generate ultrasound signals with changes in the backscattered statistics from Rayleigh to pre-Rayleigh distribu-
tions, as proposed in our previous study31. Based on the suggestion given in a previous study30, strong scatterers 

Figure 6.  (a) B-mode and (b–e) entropy images of a simulated mass obtained using windows of different sizes. 
(b) SL =​ 1; (c) SL =​ 2; (d) SL =​ 3; (e) SL =​ 4. The dimensions for all images are the same. The grayscale and color 
bars represent the pixel values (the brightness) of the B-mode and entropy images, respectively. The boundary 
artifact was conspicuous when windows with a large SL were used, and it gradually diminished as the SL 
decreased from 4 to 1.
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contribute amplitude values 4 times the mean amplitude of random scatterers. Therefore, the range of the weight 
factor c from 2 to 8 was chosen to simulate variations in the RSCs of strong scatterers.

The existence of edges and boundaries in B-scan images alters the statistics of the backscattered echo59. 
Therefore, we created Type-III phantoms, each containing a background material and an embedded cylindrical 
object with a diameter of 1 cm. Both the background and the cylindrical object have the same number density of 
scatterers (16 scatterers/mm2). The RSCs of the scatterers in the background and the cylindrical object were set 
to 1 and 0.1, respectively. The Type-III phantoms were generated to simulate the mass to explore the boundary 
artifact of the entropy image corresponding to the interface between the tissue background and the target.

Note that the effects of frequency, diffraction due to transducer focusing, and attenuation were not considered 
in the simulation model. To explore performances of ultrasound entropy imaging in scatterer characterization 
under frequency, diffraction, and attenuation effects, phantom experiments were further conducted.

Phantom experiments.  The phantoms were constructed by boiling and cooling agar–water mixtures (dis-
solving 3 g of the agar powder into 200 mL of water) and adding different materials, including glass beads with 
diameters of 75 μ​m (Model 59200U, Supelco, Bellefonte, PA, USA), graphite powder with diameters <​ 20 μ​m  
(Model 282863, Sigma-Aldrich, St. Louis, MO, USA), and soybean-oil lipid emulsions (Intrafat, Nihon 
Pharmaceutical Industry, Osaka, Japan). Both the glass beads and graphite powder were used as acoustic scatter-
ers in the scattering medium, and the materials of the lipid emulsions were used to produce an acoustic attenua-
tion effect in the phantoms62. Three types of phantoms were constructed, namely Type-A, Type-B, and Type-C. 
A tissue-mimicking breast phantom (Model BPB170, Blue Phantom, Redmond, WA, USA) was used as a Type-D 
phantom to provide a simulated mass.

The properties and materials of each type of phantom are shown in Table 1. For Type-A phantoms, the number 
densities of scatterers (NDS) were determined by

π ρ
=

⋅ ⋅

M
r V

NDS ,
(3)g

4
3

3

where M, rg, and ρ correspond to the mass, radius, and density of the glass beads, respectively, and V denotes the 
volume of the agar phantom. The number densities of scatterers for Type-A phantoms were set the same as those 
in the simulations (2 to 16 scatterers/mm3). For Type-B and C phantoms, a large amount of graphite powder is 
required to be added for the formation of significant backscattered signals because graphite powders with small 
diameters (<​20 μ​m) are relatively weak scatterers. Thus, the same number densities of scatterers are not applicable 

Figure 7.  (a–d) B-mode images of Type-A agar phantoms with number densities of scatterers of 2, 4, 8, and 
16 scatterers/mm3 (SL =​ 1; frequency =​ 6 MHz; scanned at a focus of 1 cm). The dimensions for all images are 
the same. The grayscale and color bars represent the pixel values (the brightness) of the B-mode and entropy 
images, respectively. (e–h) Entropy images corresponding to (a–d). (i) Entropy as a function of the number 
density of scatterers. Data were expressed by mean ±​ standard deviation.
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Figure 8.  (a–d) B-mode images of Type-B agar phantoms to which 0, 0.05, 0.1, and 0.3 g of glass beads were 
added (SL =​ 1; frequency =​ 6 MHz; scanned at a focus of 1 cm). The dimensions for all images are the same. 
The grayscale and color bars represent the pixel values (the brightness) of the B-mode and entropy images, 
respectively. (e–h) Entropy images corresponding to (a–d). (i) Entropy as a function of the weight of glass 
beads. Data were expressed by mean ±​ standard deviation.

Figure 9.  (a–d) B-mode images of Type-C agar phantoms to which lipid emulsions of 0%, 5%, 10%, and 20% 
were added (SL =​ 1; frequency =​ 6 MHz; scanned at a focus of 1 cm). The dimensions for all images are the same. 
The grayscale and color bars represent the pixel values (the brightness) of the B-mode and entropy images, 
respectively. (e–h) Entropy images corresponding to (a–d). (i) Entropy as a function of lipid concentration.
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in Type-B and C phantoms. Alternatively, the scatterer concentration (the ratio of powder weight to the volume 
of the phantom) was used. Using equation (3) and assuming that the diameter of graphite powder is 20 μ​m, the 
number density of scatterers in the background of the phantom (made using 2 g graphite powder and 200 mL 
water) is estimated to be at least 1000 scatterers/mm3. This estimated number density ensures that a large number 
of randomly distributed scatterers exist in the resolution cell, making backscattered envelopes obey the Rayleigh 
distribution.

Five independent scans of each phantom were performed using a commercial ultrasound imaging system 
(Model 3000, Terason, Burlington, MA, USA) with a linear array transducer (Model 10L5, Terason). The Terason 
scanner enables RF data access and frequency selection. The transmitting central frequency can be set at approx-
imately 5, 5.5, 6, 7.5, and 8 MHz (denoted by VL, L, M, H, and VH, respectively) by using the software, and the 
pulse-echo tests of the transducer in the laboratory showed that the pulse length of the transducer was approxi-
mately three times the wavelength. In the experiments on the Type-A, -B, and -C phantoms, the image RF data 
consisted of 128 A-lines of backscattered signals, which were acquired using the same transmitting frequency 
(6 MHz) and a focus of 1 cm to investigate the dependency of entropy on the number density of scatterers, the 
degree of variance in the echogenicity, and the attenuation effect. In the experiments on the Type-D phantom, 
different transmitting frequencies and focus settings were used to explore the effects of frequency and focus on 
ultrasound entropy imaging.

Clinical measurements.  Clinical data were collected for preliminarily validating ultrasound entropy imag-
ing for characterizing tissues. This study was approved by the Institutional Review Board of National Taiwan 
University Hospital, and signed informed consent forms were obtained from the patients. All the experimental 
methods were carried out in accordance with the approved guidelines. At the Department of Surgery, female 

Figure 10.  (a–e) B-mode images of the Type-D breast phantom with a mass at frequencies of 5, 5.5, 6, 7.5, and 
8 MHz (SL =​ 1; scanned at a focus of 2 cm). (f–j) Entropy images corresponding to (a–e). (k–l) B-mode and 
entropy images scanned using 6 MHz and a focal length of 3 cm. The dimensions for all images are the same. 
The grayscale and color bars represent the pixel values (the brightness) of the B-mode and entropy images, 
respectively. (m) Entropy of the mass as a function of different settings (the “*” symbol indicates a  
p value <​ 0.05). Data were expressed by mean ±​ standard deviation.
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patients that required clinical biopsy examinations of masses were recruited. Breast tumors were classified as 
benign or malignant by a pathologist according to the biopsy reports. Prior to the biopsy examination, ultra-
sound scanning of the patients was performed by the same sonographer to reduce the inter-rater variability of 
ultrasound scan. For each patient, five scans were performed to collect grayscale B-mode images and the corre-
sponding RF backscattered data using the same Terason system and linear array transducer for manual tumor 
contour segmentation and entropy imaging, respectively. Images of tumors with incomplete contours caused by 
posterior shadow effect were excluded in the analysis. Under the above criterion, a total of 63 patients (n =​ 63) 
were recruited, including 33 benign (fibroadenoma) and 30 malignant (invasive carcinoma) masses.

Entropy estimation.  Shannon proposed the information entropy to quantify information32,63. In ultrasound 
imaging, the Shannon entropy of backscattered RF signals f(t) is defined as the negative of the logarithm of the 
backscattered probability distribution w(y)34:

∫≡ −H w y w y dy( )log [ ( )] ,
(4)y

y
C 2

min

max

where ymin and ymax represent the minimal and maximal values of f(t), respectively. In this study, the statistical 
histogram of RF signals was used to represent w(y)28,40. Practically, Shannon entropy is obtained as a discrete form 
of equation (4) using the digitized versions of the underlying continuous waveform. Entropy is a measure of the 
uncertainty or unpredictability of ultrasound backscattered signals.

Algorithmic scheme of entropy imaging.  Figure 13 shows the algorithmic scheme designed for con-
structing the B-mode and information entropy images using the backscattered signals. The algorithm was pro-
grammed using MATLAB software (version R2012a, The MathWorks, Inc., MA, USA). The envelope image was 
constructed using the absolute value of the Hilbert transform to demodulate each scan line, and the B-mode 
image was formed using a logarithm-compressed envelope image at a dynamic range of 40 dB.

Concurrently, the beamformed RF data were used for entropy estimation and imaging using a standard slid-
ing window algorithm, and the entropic parametric map was constructed through the following two steps: (i) a 
square window within the image data was used to acquire local RF signals for establishing the probability density 
function w(y) and calculating the entropy value using equation (4), which was assigned as the new pixel located 
in the center of the window; and (ii) the window was moved across the entire range of image data in steps of the 
number of pixels corresponding to a window overlap ratio, and step 1 was repeated to yield the entropy paramet-
ric map. A low window overlap ratio results in a low line density of a parametric image. The decreased line density 
decreases the spatial resolution of an image64, making spatial information insufficient to describe the region of 
interest (ROI). A high window overlap ratio results in a high line density. However, the computational efficiency 
and speed may reduce because a large amount of data must be processed. A recent study showed that the window 
overlap ratio does not affect ultrasound parametric imaging and estimations of statistical parameters61. To have a 
trade-off between the image resolution and the computational time, a 50% window overlap ratio was used.

Data analyses for simulation.  To explore the effect of the window size on the entropy image, the entropic 
parametric map corresponding to each image data was constructed using square sliding windows with SLs 

Figure 11.  B-mode, Nakagami, and entropy (SL =​ 1) images of benign (a–c) and malignant (d–f) breast 
tumors. The shade of the Nakagami and entropy images of the malignant tumor was darker than that of the 
benign tumor.
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ranging from 1 to 4 times the transducer pulse length (denoted as SL =​ 1, 2, 3, and 4). For each simulated entropy 
image, the pixel data were acquired from an ROI with a size of 5 ×​ 5 mm2 to explore the entropy value as a func-
tion of the SL, number density of the scatterers, and RSC of the embedded strong scatterers. The trends of data 
were described by curve fitting, and data were expressed by mean ±​ standard deviation.

Data analyses for phantom experiments.  SL =​ 1 was used for entropy imaging of phantom data accord-
ing to the findings in the simulations (please see the section of Results). ROIs (5 ×​ 5 mm2) located in the focal 
zone were applied to the phantom results to investigate the effects of scatterer properties, attenuation, frequency, 
and focus on entropy values. Data were expressed by mean ±​ standard deviation. To evaluate statistical signifi-
cance, an independent t test was performed to calculate the probability value p.

Data analyses for clinical data.  The entropy images (SL =​ 1) of breast tumors were analyzed according to 
the ROIs that were manually determined by the surgeon, who was blind to the biopsy reports. To compare the 
performance of entropy imaging with that of statistical parametric imaging in clinical breast tumor character-
ization, Nakagami images of each patient were also constructed and the same ROIs determined by the surgeon 
were applied to the Nakagami images for analysis. The algorithm of Nakagami imaging was based on the sliding 
window processing, which was the same technique as that described in Fig. 13. The envelope image was obtained 
from the absolute value of the Hilbert Transform of the RF data. A Nakagami image was constructed using a 

Figure 12.  (a) The median Nakagami parameters for benign and malignant tumors were 0.59 (IQR: 0.46–0.67) 
and 0.46 (IQR: 0.28–0.55), respectively (p <​ 0.05). (b) ROC curve for using the Nakagami image to classify 
benign and malignant tumors. The AUROC was 0.75. (c) The median entropies for benign and malignant 
tumors were 4.86 (IQR: 4.57–4.96) and 4.37 (IQR: 4.01–4.61), respectively (the “*” symbol indicates a  
p value <​ 0.05). (d) ROC curve for using the entropy image to classify benign and malignant tumors. The 
AUROC was 0.82.
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square window (SL =​ 3; a 50% window overlap ratio) sliding on the envelope image for collecting local envelope 
data R and estimating local Nakagami parameters m by

=
−

m E R

E R E R

[ ( )]

[ ( )]
,

(5)

2 2

2 2 2

SL =​ 3 was used because the side length of the window corresponding to three times the pulse length of the 
transducer enables a stable estimation of the Nakagami parameter13,15,25,29. The Nakagami parameters and the 
entropy values of benign and malignant tumors were shown in the box plots (expressed by the median and inter-
quartile range, IQR) for comparisons. For evaluating statistical significance, an independent t test was performed 
to calculate the p value. The ROC curve was used to evaluate the clinical performances of the Nakagami and 
entropy images in classifying benign and malignant tumors. Statistical analysis was performed sing SigmaPlot 
(version 9.0, Systat Software, Inc., CA, USA).

Methodology
Small-window ultrasound 

entropy imaging
Nakagami statistical 
parametric imaging

Median (IQR) of the 
Nakagami parameter

Benign 4.86 (4.57–4.96) 0.59 (0.46–0.67)

Malignant 4.29 (3.87–4.51) 0.38 (0.25–0.53)

Dynamic range of the parameter 1.73–5.09 0.24–0.87

Cutoff value 4.52 0.47

Sensitivity% 76.66% 70.00%

Specificity% 81.81% 69.69%

Accuracy% 79.36% 69.84%

LR+​ 4.21 2.31

LR−​ 0.28 0.43

PPV% 79.31 67.74

NPV% 79.41 71.87

AUROC (95% CI) 0.89 (0.80–0.97) 0.79 (0.67–0.90)

Table 2.   Performance comparisons between ultrasound small-window entropy and Nakagami imaging 
in classifying benign and malignant breast tumors. LR+​: positive likelihood ratio, LR−​: negative likelihood 
ratio, PPV: positive predictive value, NPV: negative predictive value, AUROC: area under the receiver operating 
characteristics curve.

Figure 13.  The algorithmic scheme designed for constructing the B-mode and information entropy images 
using the backscattered signals. The B-mode image was formed using a logarithm-compressed envelope 
image. The image RF data were used for entropy estimation and imaging using a standard sliding window 
algorithm.
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