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Dynamical states, possibilities and 
propagation of stress signal
Md. Zubbair Malik1,2, Shahnawaz Ali1,2, Soibam Shyamchand Singh1,2, Romana Ishrat2 &  
R. K. Brojen Singh1

The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states 
governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states 
which are contributed from long range correlation with varied fluctuations due to active molecular 
interaction. The topological properties of the networks corresponding to these dynamical states have 
hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by 
mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin 
and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, 
and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay 
in an active dynamical state whose counterpart complex network is closest to hierarchical topology 
with exhibited roles of few interacting hubs. During the propagation of stress signal, the system 
allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/
pathways with slight modifications, indicating efficient information processing and democratic sharing 
of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the 
system favors to establish self-organization.

Natural systems are generally self-organized. Such systems, which evolve with the emergence of global coherent 
patterns out of local interactions1, are non-linear in nature2 with diverge equilibrium states3. Their spatio-temporal 
cross-talk with the environment and systems surrounding them try to resist any significant change in them3,4, but 
adapted to the changes if they find better fit new combinations provided the possibilities of adaptation subjected 
to a large number of stable states5. The responsibilities in their organization are distributed democratically among 
the individual components in the system6, favouring the coherence of the functions of individual components in 
the systems via interaction. To characterize such complex systems, emergent properties of both the systems and 
individual components constituting the systems at fundamental level are needed to be studied7,8. If one studies 
the dynamics of such complex system, there could be possibilities of existence of a number of perturbation driven 
dynamical states exhibiting distinct dynamical behavior in each state, which may have short or long life span, 
on which the system looks for its comfortable and adaptable state to exist. Since the system is generally far from 
equilibrium3 and non-linear2, it will hang around these dynamical states for better survival. In such studies, the 
systems’ properties are inherited to their respective time series data. Systematic dealing with these time series data 
could provide inherent properties of the complex system. Starting from the classical Mandelbrot’s mutifractal 
definition9, for a heterogeneous time series of window size T(φt), with scale factor φ and time sequence ‘t’, the 
multifractal function M follow the following relationships,
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Self-similar process satisfy the simpler scaling law, M(φ) =​ φD, where, D is self-similarity dimension10. Hence, 
time series data of a system’s dynamics generally have statistically independent multiple of such scaling behav-
iors exhibiting multifractal nature due to scale dependent broad probability distributions of the time series, and 
different long and short range correlations amplified by small and large fluctuations in the time series11. Then we 
can address fundamental issues of the system, namely, interference of noise in system dynamics, patterns of order 
driven by fluctuations2, perturbation induced change of dynamical states12, system’s adaptation to a change, and 
their implications in real biological systems.
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Cellular processes are generally driven by intrinsic and extrinsic fluctuations due to random inter-molecular 
interaction in various cellular pathways and molecular cross-talks with the surrounding environments respec-
tively13,14. Stress in such processes, due to external influences, abnormalities in the genetic regulations and failures 
of some molecular mechanisms, are propagated spatio-temporally throughout the network perturbing the path-
ways encountered along its path. However, the nature of stress propagation and management in the complex cel-
lular processes is still an open question. We address these issues by modeling cross-talk of Notch-Wnt pathways in 
animal sometogenesis15–18 and p53 regulatory network19 via stress inducer nutilin molecule20–22. Somitogenesis, a 
process of periodic formation of somites in the presomitic mesoderm23, is regulated by the periodic expression of 
genes responsible in the interaction of Notch, Wnt and fibroblast growth factor pathways18,24, but control mainly 
by Notch and Wnt cross-talk via GSK325. This Notch-Wnt cross-talk regulates their transcriptional activities 
and their stabilities26; and is responsible for variety of biological functions, for example, wing development in 
Drosophila27, T-cell development and differentiation28, self-renewal capacity of stem cells29, in a variety of car-
cinogenesis, such as, positive regulation in colorectal cancer cells30, and enhancing their expression in ovarian 
cancer31. Then p53, which is negative regulator of cellular proliferation, differentiation, and apoptotic inducer32, 
acts antagonistically to the Notch; whereas Notch can either hold back or elevates p53 activity33. This cross-talk of 
p53 and Notch-Wnt pathways by means of stress imparted in the pathways can have different regulatory mecha-
nisms, namely, p53 activated apoptosis in T-cell Lymphocytes is suppressed by Notch signaling34, Notch activates 
p53 in neuronal progenitor cell35,36, alteration of p53 and Notch in cancer cell37 etc. However, these complicated 
cross-talks are still far from proper understanding at fundamental level. In the present work we study the interac-
tion of p53 and Notch-Wnt pathways via stress signal which compel the system at different dynamical states, and 
how the system selects comfortable state out of various possibilities and adapts on it.

Results
Regulatory biochemical network model (Fig. 1), which allows cross-talk between p53 and Wntch (Wnt and 
Notch) signaling pathways, are proposed based on some experimental reports (see Methods) to investigate com-
plex signaling processes among them and behaviors of possible dynamical states those could correspond to cer-
tain cellular states.

Dynamical states driven by stress signal.  The dynamical state of a system, we define here, is the dynam-
ics of the system governed by a time series, T(t) which follow Mandelbrot’s Multifractal behavior38 throughout 
the time series,
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where, the fractal function Fi(κi) follows simple power law Fi(κi) ~ κD with fractal dimension D. Variation in con-
centration of nutlin trigger DNA damage20–22 (larger the nutlin concentration in the system, stronger the DNA 
damage), as a consequence stress signal is imparted to the system via p53 which is very sensitive to the stress 
signal. p53 dynamic become stabilized for low concentration of nutlin (small value of k35 ≤​ 0.006), where, 
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, which may correspond to nearly normal dynamical state of the system (Fig. 2A upper panel). 
Increase in k35 (0.006 <​ k35 <​ 0.31) drives the p53 dynamics in the mixed dynamical state, damped for a certain 
range of time and then stabilized, which can be expressed as, κ∼ ×κ constant F ( )T t

T t s
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, where, Fs(κ) is for certain 

Figure 1.  The schematic diagram of Notch − Wnt − p53 cross-talk model. 
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Figure 2.  Dynamical states of stress p53 driven by nutlin, and stress propagation: (A) dynamical states of p53 
for different k35 values, (B) complexity measurement characterized by calculated permutation entropy Sp53 
values of the corresponding dynamical states. (C) Multifractal calcualations of the dynamical states: plots of Fs 
vs s, Hq

p53 vs q and Dq vs q, (D) Ap53 as a function of k35 for various values of k39:…​., (E) phase diagram in the 
parameter space (k k, c

39 35), where k c
35 are the values of k35 cut by horizontal line, and Δ​k35 is the range of k35 

occupied by sustain oscillation, (F) schematic diagram of stress signal propagation, (G) topological properties of 
networks constructed from the time series of corresponding dynamical states: P(k), C(k), Cn(k), CB(k), CC(k) 
and CE(k) as a function of degree k, (H) the propagated signal received by Notch and corresponding dynamical 
states, (I) permutation entropy (HNotch) calculation of the dynamical states, (J) Multifractal measures of 
dynamical states of Notch: plots of Fs vs s, Hq

p53 vs q and Dq vs q, (K) topological properties of the corresponding 
dynamical states: P(k), C(k), Cn(k), CB(k), CC(k) and CE(k) as a function of degree k, (L) dynamical states of Axin 
due to propagated signal, and (M) corresponding permutation entropy (HAxin) values, (N) Multifractal 
calculations, (O) topological properties of the networks constructed from the Axin dynamical states.
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range of time (time period and wavelength are constant, but amplitude decays). This may indicate that the system 
is activated first due to induced stress, and upon expended the stress the system comes back to normal. As k35 
increases the range of Ts(κ) also increases. For significant strong stress (0.32 <​ k35 <​ 0.52), the p53 dynamics 
become sustain oscillation dynamical state (range of Ts becomes infinite), which can be represented by, 

κ= =κ D, 1T t
T t

D( )
( )

, κ is an integer, and T(t) becomes time period in this case. This dynamical state may corre-
spond to activated state of the system where active interaction of the molecular species is involved. Further 
increase in k35 (0.58 <​ k35 <​ 5.1) again brings back to the mixed dynamical state. Excess stress due to nutilin 
(k35 >​ 5.3) drives the dynamics to stabilized dynamical state, which may correspond to apoptosis. Thus we could 
able to find five such dynamical states as listed in Table 1. The system switch to these various dynamical states in 
response to the stress signal.

Another way to impart stress signal to the system could be by changing Axin concentration (changing k22) in 
the system which is reflected in the dynamics of p53 (Fig. 3A). Similar dynamical states, as obtained in the case of 
nutlin, can also be seen driven by Axin.

Complexity in the dynamical states.  The complexity of the dynamical states (Figs 2A,H,L and 3A,H) 
driven by stress inducer nutlin and Axin can be measured by calculating permutation entropy (Si, i →​ p53, Notch, 
Axin) of these states (see Methods). The calculated Si magnitudes are in the order: Si(first stabilized state) <​ Si(first 
mixed state) <​ Si(sustain oscillation state) <​ Si(second mixed state) <​ Si(second stabilized state) (Figs 2B,I,M and 
3B,I). The first stabilized dynamical state may correspond to normal, which is an ordered state, giving the mini-
mum value of Si. Whereas, the second stabilized dynamical state corresponds to apoptotic state, which is a disor-
der state, providing maximum value of Si.

Multifractal due to long range correlation.  The stress driven p53 time series are multifractal due to 
short and long correlations in the time series and they might follow some probability distributions. The fluctu-
ation variation function Fs (Fig. 2C upper panel) follows power law with fluctuation parameter s (log-log plots 
show approximately straight line) for all five dynamical states (Fig. 2C) with varied slopes which correspond to 
Hurst exponents Hq. The Hq magnitudes with respect q for different dynamical states are as follows: Hq(sustain 
oscillation) >​ Hq (second stabilized state) >​ Hq(first and second mixed state)Hq(first stabilized state). Since large 
Hq value corresponds to large fluctuations introduced in the system due to active molecular interaction driven by 
stress signal or internal molecular mechanisms constituted, active (sustain oscillation) dynamical state associates 
maximum fluctuations on an average, whereas stabilized dynamical states (both first and second) have compara-
tively much lower fluctuations. Since natural systems are far from equilibrium3, fluctuations driven systems might 
incorporate the fluctuations in positive way2 to establish their own adaptable state for better existence5. Further, 
Hq variation is prominent mainly in negative q regime as compared to the positive q regime, indicating multifrac-
tal nature in the time series is contributed mainly by long range correlation. This behavior is also reflected in the 
singularity function Fα as the function of α.

The multifractal properties of the p53 time series for various dynamical states induced by Axin show similar 
behavior as obtained in the case of nutlin driven p53 dynamical states (Fig. 3C). The only slight change in the 
nature of singularity function Fα which show similar behavior for all dynamical states.

Complex stress management.  The amplitude death scenario in p53 dynamics (Ap53) as a function of k35 
(Fig. 2D) could be signatures of normal (first stabilized dynamical state) and apoptotic (second stabilized dynami-
cal state) cellular states. Monotonic is increasing and decreasing of Ap53 as a function of k35 correspond to first and 
second mixed states, where removing the stress may come back to either normal or apoptotic state. Slow change 
in Ap53 corresponds to sustain oscillation dynamical state, where the system is strongly activated due to active 
molecular interaction induced by strong stress in the system.

GSK3, the main mediator of the Notch-Wnt-p53 cross-talk, could probably regulate the transition of the 
system at these dynamical states by managing the stress signal. Permitting the increase in GSK3 concentration 
through biochemical mechanism in the system allows the system to stay in active state (sustain oscillation dynam-
ical state) for larger range of k35 (Fig. 2D and E), trying to save the system from apoptotic phase. Therefore, GSK3 
favors the system to stay in normal state for small stress signal, whereas for significantly larger stress signal, it 

S.No. Dynamical state Description Reference

1. First steady state May correspond to normal cell. 72–75

2. First damped oscillation state Stress (weak) induced cell that could able to repair back the changes 
in the cell and may come back to the normal condition. 72–75

3. Sustain oscillation state Active state of the cell where active interaction of molecules are 
going on in the cell. 72–75

4. Second damped oscillation state
Damped oscillation state where the strong stress in p53 due to stress 

inducer nutlin and axin may become toxic to the system. In this 
state cell is associated with large stress, which cannot be repaired 

back and may probably go to apoptosis after some time.

see Supplementary 
information

5. Second steady state
Apoptotic state where repairment of pathways cannot force cell 

to become normal in excess stress condition, thus cell chooses to 
destroy itself.

72–75

Table 1.   Different Dynamical state.
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Figure 3.  Dynamical states of stress p53 driven by Axin, and stress propagation: (A) dynamical states of p53 for 
different k22 values, (B) permutation entropy Sp53 values of the corresponding dynamical states. (C) Multifractal 
calulations: plots of Fs vs s, Hq

p53 vs q and Dq vs q, (D) Ap53 as a function of k22 for various values of k39:…​.,  
(E) phase diagram in the parameter space (k k, c

39 22), and Δ​k22 is the range of k22 occupied by sustain oscillation, 
(F) schematic diagram of stress signal propagation, (G) topological properties of networks of corresponding 
dynamical states: P(k), C(k), Cn(k), CB(k), CC(k) and CE(k) as a function of degree k, (H) the propagated signal 
receied by Notch and corresponding dynamical states, (I) permutation entropy (HNotch) calculations,  
(J) Multifractal measures, (K) topological properties of the corresponding dynamical states.
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forces the system or the system itself prefers to stay in the active state to prevent from apoptotic state (Fig. 2E). 
Therefore, nutlin induced stress signal along with GSK3 acts as anti-apoptotic signal in the system.

On the other hand, this stress management by GSK3 is quite different for this system when stress in it is intro-
duced by Axin via k22 (Fig. 3D and E). Even though the dynamical states, which we found in the case of nutlin 
driven stress p53 dynamics, also obtained in this case, the pattern is quite opposite. In this case, increase in the 
concentration of mediator GSK3 (k39) the range of k22 within which sustain oscillation dynamical state can be 
observed becomes decreased (Fig. 3D). This increase in k39 force the available, accessible area of active state to 
diminish (Fig. 3E), favoring the system to go to apoptotic state. Hence, the stress signal modulated by Axin along 
with GSK3 acts as favored-apoptotic signal.

Complicated self-organization.  The time series of the dynamical states of stress p53 induced by nutlin 
(Fig. 2A) can be transformed into their respective complex networks (Fig. 2G) using visibility graph algorithm 
(see Methods), where, properties of the system, reflected in p53 dynamical states, can be studied using topological 
properties of the constructed networks. The probability of degree distribution P(k), clustering co-efficient C(k) 
and neighborhood connectivity Cn(k) follow power law behaviour as a function of the degree k,
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The power law behaviour in these topological properties are verified and confirmed by using the fitting tech-
nique to test power law distribution proposed by Clauset et al.39, where all statistical p-values for all data, calcu-
lated against 2500 random samplings, are found to be larger than 0.1 which is the critical limit, and goodness of 
fits are found to be less than and equal to 0.3. The power law behaviours of these three topological parameters 
are the signatures of Hierarchical features40 in these networks exhibiting multifractal nature in their structures. 
The lowest value of γ =​ 2.3 in sustain oscillation dynamical state exhibits importance of, not only system level 
organization of modules, but also few hubs in the network regulation. Networks corresponding to other dynam-
ical states also follow these hierarchical properties, but the network constructed from second stabilized state 
(apoptotic state) lacks most of the network properties (γ =​ 4.3, α =​ 0.03, β =​ 1.5) due random distribution in the 
dynamics.

Centrality measurements, namely, betweenness CB, closeness CC, and eigen-vector CE centralities (see Method), 
which provide the nature of information processing and to identify most influencing nodes in the network, again 
follow power low behaviors as a function of k (Fig. 2G),
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We again verify the qualification of the respective power laws to the corresponding data with the statistical 
technique applied above39. The increase in these centrality values as a function of degree (k) indicate that hubs 
are most influencing nodes, and take significant roles in information processing in the network. Even though 
the absence of these hubs do not cause network breakdown, they and their interaction among them have better 
responsibilities in regulating the network in each dynamical state.

The constructed networks from the dynamical states of stress p53 triggered by Axin (Fig. 3G) also show simi-
lar hierarchical properties as obtained in nutlin induced stress p53 networks. The calculated values of exponents 
of power law topological parameters are,
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The first set of parameter values in (5) shows significant roles of hubs after sustain oscillation dynamical state. 
The second set of parameter shows weaker information processing as compared to nutlin induced p53 case.

Propagation of stress signal.  The stress signal exhibited in p53 dynamics induced either nutlin or Axin 
concentration variation is propagated to Notch and Wnt pathways through intermediate molecular interaction, 
and are showing up in the dynamical states of Notch and Axin (Fig. 2H and L), and Notch (Fig. 3H) respectively. 
The multifractal properties of dynamical states of Notch due to stress signal propagated from p53 either induced 
by nutlin (Fig. 2J and N), or Axin (Fig. 3J) show very similar nature as compared to that of p53 dynamical states 
(Fig. 2C). Further, topological parameters of the networks corresponding to dynamical states of stress receivers 
Notch and Wnt (due to stress inducer nutlin) (Fig. 2K and O); and Notch (due to stress inducer Axin) (Fig. 3K) 
exhibit similar properties as compared to the properties of the networks corresponding to dynamical states of 
stress propagator p53. This closely similar properties of the stress signal propagators and receivers reveals the 
inheritance of fundamental properties of the stress signal from propagators to receivers. Hence, the responsibili-
ties, beneficials and injuries due to stress signal are approximately equally distributed among the important can-
didate proteins and/or genes in the interacting pathways. However, depending on the nature of stress signal and 
magnitude, and stress receivers, the inherited properties are modified according to their needs and comfortability.

Since the response of the stress propagated among the cross-talking pathways are received excel-
lently via various mediators, the responsibilities of protecting the system as whole from any change due to 
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external perturbations or failures in internal mechanisms might be distributed approximately equally among 
these pathways.

Signature of assortivity.  Hierarchically organized networks generally qualify most of the features of 
self-organization, namely, fractal behaviours of topological parameters, system level organization of modules 
and absence of central control mechanism (removal of hubs do not cause network breakdown)41,42. However, 
neighborhood connectivity in these networks constructed from the dynamical states of stress p53 driven by either 
nutlin or Axin follows, Cn(k) ~ kβ, which is power law of positive exponent (Figs 2G and 3G). The fractal behav-
iour is the signature of importance of few hubs and their interaction exhibiting assortivity nature of the network 
topology43,44. Even though the few hubs do not have the capability of full control of the network, their significantly 
strong cross-talks can have the possibilities of regulating the network up to some extent. In these time series of 
dynamical states, there could be few hubs corresponding to few time states which are responsible for signal pro-
cessing and management.

The propagation of this stress signal from the propagator p53 pathway to the receivers Notch and Wnt path-
ways associates the assortivity characteristics. This indicates that in the time series corresponding to dynamical 
states of the system, interaction of few hubs (formation of the rich-club) is probably essential for efficient signal 
propagation and stress management.

Active state is preferred state.  The active dynamical state (sustain oscillation state) generally has maxi-
mum Hq values (Figs 2C,J,N and 3C,J middle pannels) due to large fluctuations than the other dynamical states. 
Since the system is perturbed with stress signal, the fluctuations coming from active molecular interaction due to 
stress signal becomes optimal, which could probably be utilized by the system in a constructive way2, to establish 
simple fractal law κ κ→ = ∈κ( )D I, 1,T t

T t
D( )

( )
, where the system can stay comfortably with this possibility. The 

network, corresponding to this dynamical state, exhibit topological properties closest to hierarchical network 
properties40,43,
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However, the noise associated with this dynamical state is far smaller than the noise at second mixed and 
stabilized (apoptotic) states, as evident from permutation entropy Sp53 calculations.

Cross-talks favor to establish self-organization.  Stress p53 dynamics driven by nutlin exhibits opti-
mized active dynamical state as number of cross-talks of pathways are increased (Fig. 4A–E). Si for p53 in the 
p53 pathway (direct stress is introduced via nutlin) is maximum, then the Si is pulled down drastically as it just 
cross-talks to Wnt pathway. When Notch-Wnt-p53 cross-talk is established Si is slightly increased, may be trying 
to optimize the fluctuations imparted by active molecular interaction due to stress in the system. Calculated Hq 
value is minimized as number of cross-talks of pathways is increased (Fig. 4C), but amplitude Ap53 is optimized 
(Fig. 4D).

The constructed networks from these p53 dynamics corresponding to different combinations of cross-talks 
of the pathways (Fig. 4E) show that the topological properties of the network corresponding to Notch-Wnt-p53 
interaction exhibits better organized and closer to hierarchical features,
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The assortivity property, indicating the importance of hubs in the network, is still one of the important prop-
erties of the network. The important responsibilities of these hubs in information processing in the network are 
reflected and become clear in the fractal nature of the centrality measurements.

Discussion and Conclusion
Natural systems always try to be self-organized, subjected to a number of possibilities to change and correspond-
ing states which are far from equilibrium, try to adapt to the preferred changes beneficial to their own organi-
zation for better and comfortable survival. During this struggle, the system tries to optimize any change (such 
as fluctuations due to stress in the system) in a constructive manner, utilize and distribute it, and look for better 
stability. If the system cannot able to face the change, it will break down.

Stress induced in Notch-Wnt-p53 cross-talk by stress inducing molecules (nutlin and Axin in our case), which 
are exhibited in stress p53 dynamics, drives the system at various dynamical states defined by different fractal 
laws, and the system switch to these dynamical states depending on the amount of stress induced. This stress sys-
tem prefers to stay in an active dynamical state which has simple fractal rule subjected to the optimal fluctuations 
available due to active molecular interaction driven by stress. However, the system still associates a group of few 
hubs (assortive topology), but not in dependent manner (absence of these hubs do not cause system’s breakdown), 
for better signal processing and system regulation. Then this stress signal is propagated throughout the pathways, 
and found to inherit all the properties of the propagator pathway to the receiver pathways may be with slight 
modifications in them. This excellent co-ordination in cross-talk helps the system to save it from one directional 
apoptosis (once the system falls in this phase, it can never come back to normal situation) by regulating availa-
ble active molecular interaction. This regulating mechanism could be different depending on the type of stress 
induced in the system (nutlin and Axin in our case).
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The dynamical states obtained in our simple model are simple governed by simple fractal rules with limited 
possibilities. Multifractal studies show that these states are triggered by long range correlations with varied fluc-
tuations. However, natural complex systems can have complex dynamical states defined by complex fractal rules 
allowing large number of possibilities in it.

The increase in the number of cross-talk pathways allows the system to optimize the imparted fluctuations, 
and therefore favours to establish self-organization in the whole system. This cross-talk regulates various bio-
logical functions out of which is regulating apoptosis. In the case of nutlin induced stress system, nutlin along 
with cross-talk mediator GSK3 acts as anti-apoptotic signal. Whereas, Axin induced stress along with GSK3 acts 
in two fold, first as an anti-apoptotic within a certain range of their interaction range, second favour-apoptotic 
signal beyond that regime. Since this Notch-Wnt-p53 cross-talk is involved in many important cellular processes 
in normal and cancerous cells, one needs to investigate these cellular activities with a number of open questions 
to understand how they work at a fundamental level.

Methods
Coupled Wntch (i.e. Wnt/Notch) Signaling in development.  The notion Wntch signaling was intro-
duced by Martinez Arias in 2008, for the elements of integrated system controlling cell fate i.e. Wnt and Notch45. 
The most important part of multicellular organisms is development which requires the proliferation of cell that 
decides its fate46. This decision for fate determination converge on the enhancement of specific genes that create 
a combination of transcription factors that determine the state and behaviour of the cell47. According to this 
analysis obtained from the study of Dorsophila genetics it can be proposed that Wnt is involved in regulating 
the probability of cell fate adoption48. The current understanding of Wnt signalling gives two striking features 
as reviewed by Martinez Arias and Hayward 2006, first is that many elements of this pathway take part in many 
other signaling processes, and second, is the ability of Wnt signaling to co-operate with other transcription factors 
and modulate their effect in other signaling pathways48. Thus, it acts as a noise filter, i.e making fluctuation in gene 
expression less strong49. However, there is one pathway that is consistent with Wnt, which is generally known as 
Notch signaling pathway48. Since Notch is involved in lateral inhibition, it together with Wnt plays crucial role 

Figure 4.  Cross-talk of pathways and properties. (A) Dynamics of stress p53 triggered by nutlin (red), nutlin 
plus Wnt (blue), and nutlin plus Wnt plus Notch (maroon), (B) permutation entropy measures of these cross-
talks, (C) corresponding multifractal measures: Fs vs s, Hq vs q, and Dq vs q plots, (D) Ap53 corresponding to the 
cross-talks, (E) topological properties of the corresponding networks: P(k), C(k), Cn(k), CB(k), CC(k) and CE(k) 
as a function of degree k.
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in patterning the Notch inhibitory process47. Since, the development of wings in Dorsophila was first established 
by Couso and Martinez Arias in 1994, it also gave us a strong proof of interaction of notch and Wnt with strong 
sensitivity50. These evidences indicate that the elements of Notch and Wnt form a closed pathway for informa-
tion processing, where Notch is available for NICD and Wnt regulate the Notch traffic using the β-catenin and 
activity of GSK3 in specific cells. Thus, Wntch signaling gives a clear picture of transition of states in cell during 
development51.

Notch-Wnt-p53 cross-talk biochemical network.  Notch-Wnt cross-talk is a well-studied model16–18,25,52,53  
which regulates variety of biological functions in normal and cancer cells, from lower to higher level organisms. 
On the other hand, p53 is very sensitive in responding stress in the system, may be via DNA damage or due to 
other molecular mechanisms, and drives the cell at various cellular states and lets the cells to decide their fate of 
survival19,54. The cross-talk between Notch-Wnt and p53 pathways are particularly important to understand, (i) 
how does p53 interfere Notch-Wnt interaction, and vice versa, (ii) nature of stress signal propagation in interact-
ing pathways, and (iii) regulation of apoptosis. We present here Notch-Wnt-p53 regulatory biochemical network 
(Fig. 1) by incorporating simplified versions of the above models and other experimental findings.

Model Description.  Wnt signaling pathway allows Wnt to interact with Dsh (Desheilved protein) to inhibit 
the formation of ubicutinaceous complex between Gsk3β and Axin2, which de-phosphorylate β-catenin (k6) to 
enter the nucleus (with a rate k4) and initiates the expression of Axin2-mRNA (k16). Then Axin2-mRNA is trans-
ported into the cytoplasm as part of the negative feedback loop between Wnt and Axin2. Free Gsk3β available in 
the system will allow to communicate Wnt with p53 by competing with the binding of p53 and Mdm2, with the 
formation of complex Gsk3β with p53 (k39). The process then activates the transcription of Mdm2-mRNA (k41), 
and it is translated (k27) and translocated to the cytoplasm where it binds to unbound p53 to degrade (k33). On 
the other hand, β-catenin present in the nucleus binds to Lef1 (k49) to increase the expression of mRNA of Delta 
gene (k54), followed by translation of Delta (k51) and translocated to the cytoplasm (k58). Now, this Delta protein 
interacts with Notch–NICD binary complex present on the cell membrane55 to initiate the release of NICD to 
form ternary complex (k67) and facilitating its transport to the nucleus (k73). The release of NICD in the cyto-
plasm is due to the ligand Delta that performs two activities cis-inhibition (intracellular i.e degradation of Notch) 
and trans-activation (intercellular) of Notch53,55. In our case cis-inhibition and trans-activation goes simultane-
ously within the cell, where cis-inhibition degrades Notch with rate constant k65 and trans-activation of Notch 
releases NICD in Cytoplasm (see Supplementary Fig. 1) followed by the nuclear transportation55. Further, NICD 
in the nucleus triggers the expression of Lfringe (mRNA) (k76)56 followed by its translation (k79). After translation, 
Lfringe goes to bind to its site on Notch followed by the inhibition of formation Notch delta complex to inhibit 
its own (Lfringe) transcription (k76) exhibiting negative feedback loop between Notch and Lfringe57. Lfringe 
does not prevent the binding of DSL ligands to Notch, while it potentiates both via Notch58. On the other hand, 
Lfringe decreases the binding of Notch and Delta by modifying (O-linked fucose glycosylation) the extracellular 
region of Notch259. However, Wnt directly inhibits the formation of Lfringe by direct transfer of information 
via interaction of Dsh and NICD present in cytoplasm (k86). The periodic expression of Lfringe is essential for 
somite formation56. Notch pathway interacts with Wnt via a mediator molecule Dsh, that bind to the cytoplasmic 
form of NICD (NICDc) (k85). This Dsh inhibits the formation of the destruction complex (formed by the associ-
ation of GSK3β, Axin and β-catenin). GSK3β from this complex binds to p53 in the presence of Mdm2 forming 
binary complex p53-GSK3β (k39). This binary complex activates the transcription of Mdm2 with a rate constant 
of 0.042 min−1 (k41), increasing the concentration of Mdm2 inside the cell. This hike in the Mdm2 decreases 
the p53 concentration (k33). The bound p53 is restored by Nutilin (k36), a small molecule that compete to the 
binding site of p53 on Mdm2. On the other hand activated β-catenin is translocated into the nucleus (k4) and 
bind with the Lef1 (k49) to activate the transcription of Delta in the nucleus (Delta mRNA). This Delta mRNA is 
translated in cytoplasm to the protein that go to Notch to promote the cleavage of NICD (k51). The interaction of 
Notch-Wnt-p53 pathways allows to regulate apoptosis as well as stress propagation.

Mathematical framework of the network.  The Notch-Wnt-p53 regulatory network model (Fig. 1) is 
defined by N =​ 28 molecular species (Table 2) corresponding to the reaction network description provided in 
Table 3. The state of the system at any instant of time ‘t’ is given by the state vector, x (t) =​ (x1, x2, …​, xN)T, where, 
N =​ 28 and ‘T’ is the transpose of the vector. By considering feedback mechanism of in p53, Wnt and Notch oscil-
lators and coupling reaction channels of the two oscillators, we could able to reach the following coupled ordinary 
differential equations (ODE),
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S.No. Species Name Description Notation

Initial 
Concentration 

(nM)

1. Axin2 Initial Concentration Axin2 protein x1 10.1

2. Axin2 mRNA Initial Concentration Axin2 mRNA x2 0.02

3. β-catenin UnPhosphorylated β-catenin x3 0.1

4. β-cateninP Phosphorylated β-catenin x4 0.1

5. β-cateninN Nuclear β-catenin x5 0.01

6. Gsk3 Gsk3 protein x6 5.0

7. p53 unbound p53 protein x7 10.0

8. Mdm2 Unbound Mdm2 protein x8 10.0

9. Mdm2 mRNA Mdm2 Messsenger mRNA x9 0.0

10. p53-Mdm2 Mdm2 and p53 complex x10 95.0

11. Nutlin Unbound Nutlin x11 5.0

12. Nutlin-Mdm2 Nutlin Mdm2 complex x12 0.0

13. p53-Gsk3 p53 and Gsk3 complex x13 0.0

14. Dsh-activated Activated Dsh protein x14 0.5

15. Dsh-Axin The complex of Dsh and Axin2 x15 2.0

16. Gsk3-Axin2 The complex of Gsk3 and Axin2 x16 2.0

17. Lef1 The Lef1 protein in nucleus x17 0.1

18. β-catN-Lef1 The complex of β-catenin and Lef1 
protein x18 0.01

19. Delta The Delta protein x19 1.68

20. Delta mRNAC The mRNA of Delta in the cytoplasm x20 0.1

21. Delta mRNAN The mRNA of Delta in the nucleus x21 0.1

22. Axin2 mRNAC The mRNA of Axin2 in the cytoplasm x22 0.1

23. Notch The Notch protein x23 0.5

24. NICDC Active Notch protein in the cytoplasm x24 0.2

25. NICDN Active Notch protein in the nucleus x25 0.0

26. Lfring mRNA The mRNA of Lunatic fringe protein x26 0.01

27. Lfring The Lunatic fringe protein x27 0.1

28. Dsh-NICDC
The complex of Dsh and active Notch 

protein in cytoplasm x28 0.1

Table 2.   List of molecular species and their initial concentration.
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S.No. Notation Description Values Reference

1. K1 Rate constant for binding of Gsk3 to Axin2 0.23 nMmin−1 16

2. K2 Rate constant for dissociation of Gsk3-Axin2 0.1 min−1 16

3. K3 Rate constant of β-catenin synthesis 0.087 nMmin−1 16

4. K4 Rate constant of β-catenin entry into the nucleus 0.7 min−1 16

5. K5 Rate constant of β-catenin exit from the nucleus 1.5 min−1 16

6. K6 Rate constant of phosphorylation of β-catenin by the Gsk3 5.08 nMmin−1 16

7. K7 Concentration of Dishevelled(Dsh)protein 2.0 nM 16

8. K8 Total Gsk3 Concentration 3.0 nM 16

9. K9 Rate constant of inhibition by Dsh forβ-cateninP by the Axin2-Gsk3 complex 0.5 nM 16

10. K10 Michaelis rate constant for β-cateninp by the Axin2-Gsk3 complex 0.28 nM 16

11. K11 Maximum rate constant of dephosphorylation of β-catenin 1.0 nMmin−1 16

12. K12 Maximum rate constant for β-catenin phosphoration 0.003 nM 16

13. K13 Rate constant for degradation of unphosphorylated β-catenin 0 16

14. K14 Rate constant for degradation of phosphorylated β-catenin 7.062 min−1 16

15. K15 Rate constant of transcription of the Axin2 gene 0.06 nMmin−1 16

16. K16 Rate constant of transcription of the Axin2 gene induced by nuclear β-catenin 1.64 nMmin−1 16

17. K17 Rate constant for induction by nuclear β-catenin of Axin2 gene trascription 0.7 nM 16

18. K18 Maximum rate constant of degradation of Axin2 mRNA 0.8 nMmin−1 16

19. K19 Rate constant for degradation of Axin2 mRNA 0.48 nM 16

20. K20 Rate constant of transcription of Axin2 gene induced by transcription factor 0.5 nMmin−1 16

21. K21 Rate constant for induction by transcription factor of Axin2 gene transcription 0.05 nM 16

22. K22 Rate constant of synthesis of Axin2 protein 0.02 min−1 16

23. K23 Maximum rate constant of degradation of Axin2 protein 0.6 nMmin−1 16

24. K24 Michaelis rate constant for degradation of Axin2 protein 0.63 nM 16

25. K25 Hill coefficient 2.0 16

26. k26 Scaling factor for Wnt oscillator 1.5 16

27. k27 Rate constant of Mdm2 synthesis 0.297 min−1 19

28. k28 Rate constant of Mdm2 transcripton 0.006 min−1 19

29. k29 Rate constant of Mdm2 mRNA degradation 0.006 min−1 19

30. k30 Rate constant Mdm2 degradation 0.2598 min−1 19

31. k31 Rate constant of p53 synthesis 4.68 min−1 19

32. k32 Rate constant of p53 degradation 0.0495 min−1 19

33. k33 Rate constant of p53-Mdm2 binding 0.693 min−1 19

34. k34 Rate constant of p53-Mdm2 dissociation 0.00693 min−1 19

35. k35 Rate constant of Nutilin formation 0.001 min−1 Estimated

36. k36 Rate constant of Nutilin-Mdm2 formation 0.012 min−1 Estimated

37. k37 Rate constant of Nutilin-Mdm2 dissociation 0.03 min−1 Estimated

38. k38 Rate constant of Nutilin degradation 0.06 min−1 Estimated

39. k39 Rate constant of p53-Gsk3 complex formation 0.04 min−1 76

40. k40 Rate constant of p53-Gsk3 complex dissociation 0.12 min−1 76

41. k41 Rate constant of Mdm2 mRNA synthesis 0.042 min−1 76

42. k42 Rate constant of activation of Dsh by Wnt 5.0 min−1 25

43. k43 Wnt protein concentration 5.0 min−1 25

44. k44 Michaelis rate constant for activation of Dsh by Wnt 1.5 min−1 25

45. k45 Michaelis rate constant for activation of Dsh 0.95 min−1 25

46. k46 Rate constant of activation of inactivation of Dsh 1.0 min−1 25

47. k47 Michaelis rate constant for inactivation of Dsh 0.647 min−1 25

48. k48 Bimolecular rate constant for complex formation of Asin2 and Dsh 0.9 min−1 25

49. k49 Bimolecular rate constant for complex formation of β-catenin to Lef1 protein 0.9 min−1 25

50. k50 Bimolecular rate constant for degradation of complex of β-catenin to Lef1 protein 0.9 min−1 25

51. k51 Apparent first-order rate constant for the formation of Delta protein 0.1 min−1 25

52. k52 Maximum rate constant of degradation of Delta protein 0.9 min−1 25

53. k53 Michaelis rate constant for degradation of Delta protein 5.0 min−1 25

54. k54
Maximum rate constant of transcription of Delta gene induced by the complex of 

β-catenin and Lef1 in nucleus 1.12 min−1 25

55. k55 Maximum rate constant of degradation of mRNA of Delta protein in cytoplasm 2.0 min−1 25

Continued
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S.No. Notation Description Values Reference

56. k56 Michaelis rate constant for degradation of mRNA of Delta protein in cytoplasm 1.0 min−1 25

57. k57 Basal rat constant of transcription of the delta gene 1.0 min−1 25

58. k58 Apparent first-order rate constant for mRNA of Delta protein exit from the nucleus 1.725 min−1 25

59. k59 Apparent first-order rate constant for mRNA of Axin2 exit from the nucleus 2.0 min−1 25

60. k60 Maximum rate constant of degradation of mRNA of Axin2 in cytoplasm 1.2 min−1 25

61. k61 Michaelis rate constant for degradation of mRNA of Axin2 in cytoplasm 0.48 min−1 25

62. k62
Threshold rate constant for transcription of Delta induced by the complex of 

β-catenin and Lef1 protein in nucleus 2.46 min−1 25

63. k63
Threshold rate constant for transcription of Axin2 induced by the complex of 

β-catenin and Lef1 protein in nucleus 2.46 min−1 25

64. k64 Maximum rate constant of formation of Notch 0.23 min−1 16

65. k65 Maximum rate constant of degradation of Notch 2.82 min−1 16

66. k66 Michaelis rate constant for degradation of Notch 1.4 min−1 16

67. k67 Apparent first-order rate constant for Notch cleavage into NICD 3.45 min−1 16

68. k68 Maximum rate constant of degradation of NICD 0.01 min−1 16

69. k69 Michaelis rate constant for degradation of NICD 0.001 min−1 16

70. k70 Maximum rate constant of degradation of nuclear NICD 0.01 min−1 16

71. k71 Michaelis rate constant for degradation of nuclear NICD 0.001 min−1 16

72. k72
Threshold rate constant for inhibition of Notch cleavage into NICD by Lunatic 

fringe 0.5 min−1 25

73. k73 Apparent first-order rate constant for NICD entry into nucleus 0.1 min−1 16

74. k74 Apparent first-order rate constant for NICD exit from the nucleus 0.1 min−1 16

75. k75 Maximum rate constant of transcription of Lunaticfringe gene 3.0 min−1 16

76. k76
Threshold rate constant for activation of Lunaticfringe gene transcription by 

nuclear NICD 0.05 min−1 16

77. k77 Maximum rate constant of degradation of Lunaticfringe mRNA 1.92 min−1 16

78. k78 Michaelis rate constant of degradation of Lunaticfringe mRNA 0.768 min−1 16

79. k79 Apparent first-order rate constant for Lunatic fringe protein synthesis 0.3 min−1 16

80. k80 Maximum rate constant of Lunatic fringe protein degradation 0.39 min−1 16

81. k81 Michaelis rate constant of degradation of Lunatic fringe protein 0.37 min−1 16

82. k82
Inhibition constant for Gsk3 inhibition of Lunaticfringe transcription induced by 

NICD 2.5 min−1 25

83. k83 Hill coefficients for Notch oscillator 2.0 16

84. k84 Scaling factor for Notch oscillator 0.3 16

85. k85 Bimolecular rate constant for complex formation of NICD and Dsh 0.5 min−1 25

86. k86 Bimolecular rate constant for degradation of complex of NICD and Dsh 9.0 min−1 25

Table 3.   List of parameters.
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We used standard Runge-Kutta method (order 4) of numerical integration to simulate equation (8) to find 
the solution of the variables listed in Table 2 for the parameter values given in Table 3. We then analyzed the 
constructed mathematical model to get possible approximate analytical solutions of the variables (slow variables) 
using quasi-steady state approximation.

Multifractal DFA approach.  Fractal properties in non-stationary time series, and associated important 
correlations can studied using Multifractal detrended fluctuation analysis (MF-DFA)60. Important fractal param-
eters which characterize the time series, namely, Hurst exponent (H), generalized dimension (D) etc can be cal-
culated numerically using a method adopted by Kantelhardt et al.11 as summarized below. First, the time series 
signal {xj} of length N is taken as random walk, and can be represented by the profile, = ∑ −=Y i x x( ) ( )j

i
j1 , 

where, 〈​x〉​ is the mean value of the signal, and i =​ 1, 2, …​, N. Second, the profile Y(i) is now divided into 
= ( )N ints

N
s

 equal non-overlapping equal segments of size s. To take into account all data points, 2Ns segments 
are considered by counting starting from both ends of the data. Third, the following variance is determined,

∑ν ν= − + − ν
=

F s
s

Y s i y i( , ) 1 { [( 1) ] ( )}
(37)i

s
2

1

2

where, ν =​ Ns +​ 1, …​, 2Ns, and yν(i) is the fitting polynomial in segment ν. Fourth, the qth order fluctuation func-
tion is estimated by averaging over all segments,
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∑ ν=










ν=
F s

N
Y s( ) 1

2
[( , )]

(38)
q

s

N
q

q

1

2
/2

1/
s

Fifth, the scaling behavior of the function Fq(s) is represented by,

∼F s s( ) (39)q
Hq

where, Hq is the generalized Hurst exponent, which represents the measure of self-similarity and correlation 
properties of the signal. Then Hq is related to the classical scaling exponent τ(q),

τ = −q qH( ) 1 (40)q

and from the definition of Holder exponent, α = τd
dq

, the singularity function f(α)60 is given by,

α α τ= −f q q( ) ( ) (41)

Then, generalized fractal dimension of the signal is measured by,

τ
=

−
D q

q
( )

1 (42)q

Now, D0, for q =​ 0, is the fractal or Hausdorff dimension, D1 is information dimension and D2 represents cor-
relation dimension60. Multifractal signature in the time series can be observed in the system if there exists signif-
icant dependence of Hq on q in the time series due to the different scaling nature of small and large fluctuations11. 
Positive dependence of Hq on q indicates short range correlations in the time series, whereas negative dependence 
of Hq on q exhibits long range correlations in the time series. Further, in multifractal time series, small and large 
fluctuations are characterized by large and small values of Hq.

Visibility graph of time series.  This technique maps a time series to a network61, where each observation 
in time series is translated to a node and an edge between any two nodes is introduced when the following visibil-
ity condition is satisfied i.e. two nodes corresponding to observations x(ta) and x(tb) are connected if all interme-
diate states x(tc) with ta <​ tc <​ tb satisfy,

−
−

>
−
−

x x
t t

x x
t t (43)

b c

b c

b a

b a

These networks are undirected due to symmetry in visibility condition. Since the properties of the time series 
are inherited to the corresponding network, the studies of this network provide useful information which can’t be 
observed in traditional time series data.

Topological properties of networks.  The following topological properties of the networks are studied to 
study the important behavior of the networks.

Degree distribution.  The degree k of a node indicates the number of links the node connects with other nodes 
in the network. Consider a network defined by a graph G =​ (N, E), where N and E are number of nodes and edges 
respectively. The probability of degree distribution (P(k)) of the network is the probability that any chosen node 
will have a degree k, which is given by,

=P k n
N

( ) (44)
k

where, nk is the number of nodes having degree k. P(k) in random and small-world networks follow Poisson dis-
tribution, whereas, it obeys power law P(k) ~ k−γ in scale-free and hierarchical networks depending on the value 
of γ which indicates the importance of hubs or modules in the network62.

Clustering co-efficient.  Clustering co-efficient of a network characterize how strongly a node’s neighborhood 
nodes are interconnected. For an undirected network, clustering co-efficient (C(ki)) of ith node is the ratio of 
number of its nearest neighborhood edges to the total possible number of edges of degree ki, and can be calculated 
by,

=
−

C k e
k k

( ) 2
( 1) (45)i

i

i i

where, ei is the number of connected pairs of nearest-neighbor of ith node, and ki is its degree. C(k) in scale free 
networks is independent of k, whereas in hierarchical network it follows a power law, C(k) ~ k−α, with α ~ 1.

Neighborhood connectivity.  Neighborhood connectivity of a node of a network is a measure of the average con-
nectivities of the nearest neighbors of the node in the network63, and is given by,
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∑= |C k qP q k( ) ( )
(46)

N
q

where, P(q|k) is conditional probability that a link belonging to a node with connectivity k points to a node with 
connectivity q. The power law nature of CN(k), CN(k) ~ k−β is a signature of hierarchical topology in the network43. 
However, the positive power dependence of CN(k) could be an indicator of assortivity in the network topology44.

Betweenness centrality.  Betweenness centrality of a node characterize the ability to (i) extract benefits from 
information flows in the network64, and (ii) extent to which the node has control over the other nodes in the net-
work through communication65,66. If dij(v) indicates the number of geodesic paths from node i to node j passing 
through node v, and dij represents number of geodesic paths from node i to j, then betweenness centrality (CB(v)) 
of a node v can be measured by,

∑=
≠ ≠

C v
d v

d
( )

( )

(47)
B

i j i j k

ij

ij, ;

If M denotes the number of node pairs excluding v, then normalized betweenness centrality is given by, 
=C v C v( ) ( )NB M B

1 .

Closeness centrality.  Closeness centrality (CC) estimates how fast information is spread from a node to other 
nodes reachable from it in the network67. CC of a node i is the harmonic mean of geodesic distance between the 
node and all other nodes connected to it in the network,

=
∑

C k n
d

( )
(48)

N
j ij

where, dij is geodesic path length between nodes i and j, and n is the total number of nodes in the network con-
nected to node i.

Eigenvector centrality.  Eigenvector centrality of a node i (CE(i)) in a network is proportional to the sum of i′​s 
neighbor centralities68, and it is measured by,

∑λ= =
C i v( ) 1

(49)
E

j nn i
j

( )

where, nn(i) indicates nearest neighbors of node i in the network. λ is the eigenvalue of the eigenvector vi given 
by, Avi =​ λvi, where, A is the adjacency matrix of the network. The principal eigenvector of A, which corresponds 
to maximum eigenvalue λmax, is taken to have positive eigenvector centrality score69. Since node’s eigenvector 
centrality function smoothly varies over the network and depends on its neighbors, node with high eigenvector 
centrality is embedded in the locality of nodes of high eigenvector centralities, and chance of having isolated 
nodes in and around the locality is very low68. Hence, eigenvector centrality can be used as an indicator of node’s 
spreading power in the network.

Algorithm for calculating permutation entropy.  Important information contained in a time series can 
be measured by calculating permutation entropy of the time series70,71. Permutation entropy H of a time series of 
a dynamical variable x(t) of a system can be calculated as follows. The time series x(t) can be mapped onto a sym-
bolic sequence of length N: x(t) =​ {x1, x2, …​, xN}. This sequence is then partitioned into M number of short 
sequences of equal length U i.e. x(t) =​ {w1, w2, …​, wM}, where ith window is given by wi =​ {xi+1, xi+2, …​, xi+U}. This 
window is allowed to slide along x(t) with maximum overlap. Permutation entropy of a window wi can be calcu-
lated by defining a short sequence of embedded dimension r, Si =​ {xi+1, xi+2, …​, xi+r} in r-dimensional space, 
finding all possible inequalities of dimension r and mapping the inequalities along the ascendingly arranged ele-
ments of wi to find the probabilities of occurrence of each inequality in wi. Since q out of r! permutations are dis-
tinct, one can define a normalized permutation entropy as = − ∑ =H p ln p( )i ln r j

q
j j

1
( !) 1 , where 0 ≤​ Hi(r) ≤​ 1. The 

mapped permutation entropy spectrum of time series x(t) is represented by H =​ {H1, H2, …​, HM}. In self-organized 
state one has H →​ 0.
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