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The size-dependent variations of plant height L and mass M with
respect to basal stem diameter D are important to the analysis of
a broad range of ecological and evolutionary phenomena. Prior
examination of some of the world’s largest trees suggests that the
scaling relationships L � D2/3 and M � D8/3 hold true, ostensibly as
functional adaptations for mechanical stability. This concept re-
mains engrained in the literature in the form of null hypotheses (or
predictive models), despite numerous examples showing that the
2�3 and 8�3 rules are violated by small and intermediate-sized
plants. Here, we present a growth-hydraulic model that provides
more accurate and biologically realistic predictions of L and M. This
model also sheds light on why L, D, and M scale differently across
species and habitats as a result of differences in absolute size.

Mechanical constraints are widely thought to dictate tree
size-dependent relationships. This assumption comes

largely from McMahon’s seminal application of the Euler–
Greenhill formula (1, 2) to estimate the maximum theoretical
height that can be reached by exceptionally large tree specimens.
This formula predicts that plant height (L) [and mass (dry
weight) M] should scale as the 2�3 power (and as the 8�3 power)
of basal stem diameter (D), provided that bulk tissue properties
are comparatively uniform within and across stems differing in
size. McMahon showed convincingly (1, 2) that these scaling
rules confer elastic self similarity, which is functionally adaptive
because it permits uniform and consistent deflections when
branches bend under their own weight regardless of their size.

Because of these important conceptual contributions, the 2�3
and 8�3 scaling rules of McMahon have been used either to
model tree biomass relationships or as null hypotheses with
which to compare empirical trends (3–10). Additionally, because
the Euler–Greenhill formula gives values for L that exceed those
observed, the differences between observed and estimated L
have been ascribed to safety factors against mechanical insta-
bility. This feature, which is intuitively satisfying, is another
reason why this formula has gained popularity in the exploration
of tree allometries.

In this paper, we show that the same proportional relation-
ships predicted by the Euler–Greenhill formula (i.e., L � D2/3

and M � D8/3) emerge mathematically (and directly) from a
consideration of plant growth and hydraulics and require no
assumptions regarding mechanical stability. Perhaps more im-
portant, the model predicts size-dependent relationships for
small and intermediate-sized plants that differ substantially from
those observed for large tree-sized plants. Therefore, no single
scaling rule holds true across the entire size range occupied by
plants with self-supporting stems. The predictions emerging
from this model are shown to agree statistically with data
gathered from a broad taxonomic spectrum of vascular plants
with self-supporting stems differing in height. And, in contrast
to the Euler–Greenhill formula, the model yields values for L
that agree closely with the values observed for these species. This
agreement suggests to us that the safety factors calculated by
using the Euler–Greenhill formula are artificial, because this
approach assumes (rather than tests) that mechanical constraints
define plant heights.

The Growth-Hydraulic Model
The derivation of this model begins with two observations. First,
annual growth in dry mass per plant (GT) scales one to one
(isometrically) with respect to standing-leaf biomass [leaf dry
weight (ML)]. Second, GT remains proportional to the 3�4 power
of total body mass MT across ecologically and phyletically diverse
vascular plant species (11). Mathematically, these relationships
are expressed by the formula

GT � k0 ML � k1 MT
3�4 , [1]

where k denotes an allometric constant (different subscripts
indicate different numerical values). For vascular plant species,
MT equals the sum of leaf, stem, and root masses [ML, stem dry
weight (MS), and root dry weight (MR), respectively]. Therefore,
Eq. 1 becomes

k0 ML � k1 (ML � MS � MR)3/4 . [2]

It follows from first principles that the amount of water absorbed
by roots per unit time must be conserved as water is transported
from roots through stems to leaves, where it is eventually lost.
For this reason, ML must scale isometrically with respect to the
hydraulically functional cross-sectional area of stems and roots.
For most trees, this hydraulic area is proportional to that of
sapwood, which scales isometrically, on average, with respect to
trunk cross section (see ref. 12). For plants that lack secondary
xylem (wood), the functional hydraulic area is proportional to
the square of the stem diameter (13). Thus, across all vascular
plants, ML � k2 D2. Accordingly, Eq. 2 becomes

�k0k2�k1)4/3 D8/3�k2 D2 � MS � MR . [3]

Finally, prior work has shown that MR scales isometrically with
respect to MS (i.e., MR � k3 MS), and that MS is proportional to
the product of the stem cross-sectional area and length (i.e., MS
� k4 D2 L) (see ref. 14). Therefore, Eq. 3 can be recast as

�k0k2�k1)4/3 D8/3�k2 D2 � (1 � k3) k4 D2 L , [4]

from which it follows that

L � k5 D2/3�k6 , [5]

where k5 � (k0 k2�k1)4/3�[(1 � k3) k4] has units of length1/3 and
k6 � k2�[(1 � k3) k4] has units of length. Combining Eq. 5 with
the relationship MS � k4 D2 L gives the formula

MS � k4 k5 D8/3�k4 k6 D6/3 . [6]

These derivations show that the proportional relationships L
� D2/3 and MS � D8/3 will hold true across species differing in size
provided that k5 D2/3 � k6. However, across small values of D,
Eqs. 5 and 6 also predict log–log nonlinear (convex) relationships
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for L (or MS) vs. D in a manner that depends on the numerical
values of k5 and k6.

Our derivations do not predict the numerical values for these
allometric constants. These must be obtained empirically (see
Materials and Methods). However, numerical simulations show
how the numerical values of k5, k6, and D affect the predicted
values of L and MS. For example, when k5 � 35, the relationship
between L and D is log–log nonlinear across small values of D,
gradually changes to a log–log linear relationship, and converges
on a line with a slope of 2�3 as D becomes very large (Fig. 1a).
Because the values of D at which the log–log linear relationship
is achieved depend on the numerical value of k6, our model
predicts different scaling relationships depending on the range in
the absolute size of D (and the numerical values of k5 and k6,
which depend on the biomass partitioning patterns of different

species). These features of the model help to explain why the
scaling of plant height and stem biomass can and do vary across
and within species (as a consequence of morphological, anatom-
ical, or ecophysiological species-specific responses to different
habitats).

Our model can be tested in at least three ways. First, it predicts
a log–log nonlinear relationship across species with small body
sizes. Second, it predicts that tree species will ultimately con-
verge on the 2�3 and 8�3 scaling rules as body size increases.
Third, the model predicts biologically realistic values for L and
MS, which differ substantially from those predicted by the
Euler–Greenhill formula.

Materials and Methods
Data Set and Analyses. To determine the numerical values for the
allometric constants in our derivations, we used the Cannell
compendium for standing tree leaf, stem, and root dry weight
and for leaf, stem, and root annual growth rates (14, 15) and
supplemented these data with those collected for smaller or
intermediate sized plants (see below).

The Cannell compendium reports average tree height (L in
our notation); total community basal stem cross-sectional area;
total community leaf, stem, and root dry weight; total commu-
nity annual growth in leaf, stem, and root dry weight; and the
number of plants per community on a hectare basis (plant
density). Basal stem diameter for an average plant for each
community was computed based on the quotient of total com-
munity stem cross-sectional area and plant density. Standing
organ weights and growth rates were similarly computed by using
plant density as the denominator for the relevant quotient.

Because the data from the Cannell compendium (15) come
from large tree-sized plants, and because our model requires
data for the allometric trends across a much broader spectrum
of plant size to be tested, we supplemented the Cannell data with
those collected from smaller species and juveniles of tree species
(�1 yr old). These data were gathered directly from the primary
literature. In addition, to examine the predictions of the me-
chanical hypothesis advocated by McMahon (see below), we
incorporated the data originally used by McMahon in his seminal
study of tree biomechanics. These data come from the size
record holders of tree species.

The allometric constant k4 in our derivations was determined
by regressing standing MS against the product of average plant
height and the square of average basal stem diameter. For tree
species, MS includes the mass of the trunk and all branches, twigs,
and bark; for nonwoody species or juveniles of woody species, MS
is total stem mass, regardless of whether stem tissues are
photosynthetic in part or whole. Model Type II regression
analyses of the data were used, because our objective was to find
the functional relationships for stem height, diameter, and mass.

The Euler–Greenhill Formula. We compared trends in our large data
set against those predicted by the mechanical scenario treated by
McMahon (1) and McMahon and Kronauer (2). Specifically, we
used the Greenhill formula (16, 17), which is a generalization of
the Euler formula (6), to calculate the critical buckling length
Lcrit and the critical stem mass Mcrit for plants differing in D.

Lcrit is the height to which a plant can grow before its
self-supporting stem buckles under its own weight; Mcrit is the
mass of that stem. For columnar and conical stems (� � 0 and
� � 1, respectively), Lcrit � 0.79 (E��)1/3 D2/3 and Lcrit � 1.24
(E��)1/3 D2/3, respectively, where E is Young’s modulus (i.e.,
stiffness), and � is the specific weight (i.e., density times the
acceleration of gravity). For green (wet) wood, E � 6.8 GPa and
� � 9.4 kN�m3 are generally reported (18). Therefore, with
tapering modes � � 0 and � � 1, the critical buckling lengths are
given by the formulas Lcrit � 70.9 D2/3 and Lcrit � 111.4 D2/3,
respectively. Likewise, for a tapering mode � � 0, Mcrit � (��4)

Fig. 1. Predicted and observed scaling relationships for plant height L (m),
basal stem diameter D (m), and total stem dry mass MS (kg). (a) Hypothetical
relationships between L and D predicted by Eq. 5 for three different values of
k6 when k5 � 35. With increasing numerical values of D, the slope of the
log–log L vs. D relationship converges on 2�3; with decreasing values of D, the
relationship becomes more log–log nonlinear and convex, as predicted by Eq.
5. (b) The scaling of L with respect to D across self-supporting herbaceous
plants and trees. Predictions of the mechanical theory (using the Euler–
Greenhill formula for stems with tapering modes � � 0 and � � 1, respectively)
are indicated by dashed and solid straight lines, respectively. Prediction of the
growth-hydraulic model shown by the solid curved line (using Eq. 5, k5 � 34.64,
and k6 � 0.475). The model predicts a log–log linear relationship with a slope
of 2�3 for large values of D. The scatter observed for data points is attributed
to species- and site-specific differences in k5 and k6 (as a consequence of
different growth rates and allocation patterns to stem, leaf, and root con-
struction). (c) The scaling of MS with respect to D. Data from the Cannell
compendium and other primary sources. Predictions of the mechanical theory
are shown by dashed and solid straight lines (for stems with tapering modes
� � 0 and � � 1, respectively). Prediction of the growth-hydraulic model is
shown by the solid curved line (using Eq. 6), which has a slope of 8�3 for large
values of D.
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� D2 Lcrit � 55.7 � D8/3, and for a tapering mode of � � 1, Mcrit
� (��12) � D2 Lcrit � 29.16 � D8/3 (�, bulk tissue density; �, tissue
specific weight). Therefore, when � � 557 kg�m3 (see ref. 18), the
Euler–Greenhill formula predicts Mcrit � 31,025 D8/3 and Mcrit �
16,242 D8/3, respectively.

Results and Discussion
Reduced major axis regression analyses of the Cannell data set
showed that k0 � 2.05 � 0.02 yr�1 (n � 391, r2 � 0.814, F � 9,559,
P � 0.0001), k1 � 0.281 � 0.02 kg1/4 yr�1 (n � 391, r2 � 0.899,
F � 9,856, P � 0.00001), k2 � 136.8 � 0.04 kg�m2 (n � 587, r2

� 0.789, F � 2,193, P � 0.0001), k3 � 0.423 � 0.02 (dimen-
sionless) (n � 338, r2 � 0.944, F � 5,676, P � 0.0001), and k4 �
202.3 � 0.01 kg�m3 (n � 552, r2 � 0.939, F � 8,444, P � 0.00001).
Therefore, k5 � 34.64 m1/3 and k6 � 0.475 m (see Eqs. 5 and 6).
Based on these values, a log L vs. log D nonlinear (convex)
relationship was obtained by using Eq. 5 for small values of D,
whereas a log–log linear trend with a slope of 2�3 was predicted
for large values of D. Additionally, Eq. 6 predicts a nonlinear
(convex) log MS vs. log D relationship for small values of D and
a log–log linear trend with a slope of 8�3 for large values of D.

These expectations agreed with the trends observed empiri-
cally for log–log plots of either L vs. D or MS vs. D (Fig. 1 b and
c). In contrast, the mechanical model obtained using the Euler–
Greenhill formula predicted invariant slopes (i.e., 2�3 and 8�3).
It also overestimated plant height and stem biomass by one or
more orders of magnitude, whereas our model provided, on
average, far more accurate estimates of these important vari-
ables. In this regard, differences between observed and esti-
mated plant heights using the Euler–Greenhill formula have
often been used to calculate safety factors against mechanical
failure under the conditions of self loading (e.g., ref. 19).
Although this approach is legitimate from a mechanical per-
spective, the biological meaningfulness of the magnitudes of such
safety factors remains problematic, because it is unclear whether
the maximum theoretical heights to which plants can grow are
defined phenomenologically by strictly mechanical or physiolog-

ical factors. Certainly, the model presented here successfully
predicts plant height (and standing stem biomass) without
evoking any mechanical hypothesis.

Under any circumstances, our results are entirely consistent
with many other previous reports and also in part with the
seminal work of McMahon (1), who showed for the first time that
a log–log line with a slope of 2�3 passes through the center of
mass of the bivariate plot of L vs. D for exceptionally large
(record-holder) trees. Although no statistical analyses were
performed by McMahon (see ref. 6), other studies dealing with
large trees report a 2�3 slope for the relationship between L and
D. However, numerous studies dealing with small or interme-
diate-sized plants (e.g., refs. 5, 8, and 10) report a log–log
nonlinear (convex) relationship for L vs. D, which is predicted by
Eq. 5 (see refs. 6 and 9).

Our derivations do not explain why plant growth scales as the
3�4 power of body size, nor why leaf mass scales isometrically
with respect to body growth (see Eq. 1). Numerous functional
hypotheses have been advocated for this purpose (1, 20–22).
Some are based on the surface areas to volumes of n-dimensional
objects (20); others stress the importance of mass-transfer
principles (21); and others assert that the 3�4 scaling of growth
with respect to body mass emerges from a fractal-like inner
dimension (22). Each of these hypotheses emphasizes (or at least
resonates with) the biological requirement to conduct and
distribute fluids, regardless of the body plan involved. The model
presented here draws additional attention to this biological
imperative, which has recently been highlighted by Koch et al.
(23), albeit in different but highly related ways. Our model also
shows that plant length, diameter, and mass scaling relationships
are flexible, that is, they can and do vary across species due to
species-specific differences in biomass partitioning patterns and
ecological responses to different environmental conditions. In
this sense, our model shows that the scaling relationships gov-
erning these variables are adaptive and functionally f lexible,
particularly when compared with the rigid (and excessive) ex-
pectations of a strictly mechanical hypothesis.
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