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Abstract

Patients with progressive sarcoidosis exhibit increased expression of
programmed death-1 (PD-1) receptor on their CD41 T cells. Up-
regulation of this marker of T cell exhaustion is associated with a
reduction in the proliferative response to T cell receptor (TCR)
stimulation, a defect that is reversed by PD-1 pathway blockade.
Genome-wide association studies and microarray analyses have
correlated signaling downstream from the TCR with sarcoidosis
disease severity, but the mechanism is not yet known. Reduced
phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits
proliferation by inhibiting cell cycle progression. To test the hypothesis
that PD-1 expression attenuates TCR-dependent activation of
PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed
PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at
baseline and after PD-1 pathway blockade inCD41Tcells isolated from
patients with sarcoidosis and healthy control subjects.We confirmed an

increased percentage of PD-11 CD41 T cells and reduced proliferative
capacity in patients with sarcoidosis compared with healthy control
subjects (P, 0.001). There was a negative correlation with PD-1
expression and proliferative capacity (r =20.70, P, 0.001).
Expression of key mediators of cell cycle progression, including PI3K
and AKT, were significantly decreased. Gene and protein expression
levels reverted to healthy control levels after PD-1 pathway blockade.
Reduction in sarcoidosisCD41Tcell proliferative capacity is secondary
to altered expression of key mediators of cell cycle progression,
including thePI3K/AKT/mTORpathway, viaPD-1up-regulation.This
supports the concept that PD-1 up-regulation drives the immunologic
deficits associated with sarcoidosis severity by inducing signaling
aberrancies in key mediators of cell cycle progression.
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Sarcoidosis is a granulomatous disease
characterized by spontaneous secretion of
Th1 cytokines, but reduced cytokine
expression and proliferative capacity
after T cell receptor (TCR) stimulation
among subjects experiencing disease
progression (1, 2).

TCR activation is an organized and
intricate process that integrates both

extracellular and intracellular signals.
Stimulation of the TCR/CD3 complex
together with costimulatory molecules, such
as CD28, promotes T cell activation and
cytokine secretion, and directly regulates cell
cycle progression (3–5). CD28 has been
shown to mediate cell cycle progression via
activation of the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B, also known

as AKT, signaling pathway (6). Activation
of the TCR and engagement of CD28 by its
ligand results in the association of CD28
with the Src Homology 2 (SH2) domain of
PI3K, located in its p85 subunit (7).

Programmed death (PD)-1 signaling
inhibits AKT activation by impeding CD28-
mediated phosphorylation of PI3K (8).
Furthermore, PD-1 engagement has also
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been shown to suppress CD41 T cell
proliferation by repressing TCR-induced
activation of the PI3K/AKT pathway and
by suppressing S-phase kinase-associated
protein 2 (Skp2) transcription (9). The
importance of lymphocyte cell-specific
protein-tyrosine kinase (LCK) activity for
initiation of TCR signaling has been
established by several investigations
(10–12). After TCR engagement, the
sarcoma kinase, p56LCK (LCK), is responsible
for phosphorylating sequences of the
immunoreceptor tyrosine-based activation
motif in the TCR–CD3 complex (11). Mice
with an LCK deficiency in systemic T
lymphocytes have been reported to exhibit
diminished proliferative capacity (13).

We report for the first time that PD-1 is a
key regulator of the deficient TCR signaling
and reduced proliferative capacity linked to
sarcoidosis severity. Analysis of sarcoidosis
CD41 T cells with impaired proliferative
capacity reveals PD-1 up-regulation with
reduced PI3K/AKT/mechanistic target of
rapamycin (mTOR) expression. This

expression defect was completely eliminated
with PD-1 pathway blockade, and was
accompanied by return to normal
proliferative capacity.

Materials and Methods

Study Population
Patients with sarcoidosis were diagnosed at
Vanderbilt University Medical Center
(Nashville, TN) according the American
Thoracic Society/World Association for
Sarcoidosis and Other Granulomatous
Disorders (WASOG) clinical, histological,
and radiographic diagnostics. All subjects
provided written informed consent
approved by the Vanderbilt Institutional
Review Board. Study participants were
categorized solely based upon CD41 T cell
proliferative capacities of 50% or greater
(“normal”; ranges analogous to healthy
control subjects) and less than 50%
(“impaired”). This cut off was based upon
prior publications demonstrating
proliferative capacities of less than 50% with
sarcoidosis disease severity (1, 2). Participant
demographics are outlined in Table 1.
Table 2 summarizes demographics for the
subjects with sarcoidosis characterized by
their proliferation phenotype.

Cell Isolation
Peripheral blood was processed as
previously described (14, 15). CD41 T cells
were isolated from peripheral blood
mononuclear cells using Dynabeads CD41

isolation kit (Invitrogen, Grand Island, NY)
according to the manufacturer’s protocol.

Cell Cycle Progression Analysis
Actively cycling CD41 T cells from healthy
control subjects and patients with
sarcoidosis were determined by in vitro
labeling with bromodeoxyuridine (BrdU).
After fixation, cells were stained with
conjugated antibodies against BrdU and
counterstained with 7-AAD, followed by
flow cytometric analysis with BD

Pharmingen BrdU Flow Kits (BD
Biosciences, San Jose, CA), according to the
manufacturer’s instructions.

Flow Cytometry
Antibodies specific for CD3, CD4, CD45RO,
cytokine–cytokine receptor (CCR) 7, CD25,
CD127, CCR4, CCR6, CXCR3, forkhead
box P3, and PD-1 (BD Biosciences, San
Jose, CA) were used for surface staining of
cells as previously described (1). All
experiments were carried out with an LSR-
II flow cytometer (BD Biosciences), with a
minimum of 100,000 events per sample.
Calibrator beads were used to calibrate the
FACS machine before each run. Cells were
gated on live cells based on forward- and
side-scatter properties. Cells were gated on
singlets, CD31, and CD41 populations, and
then analyzed using FlowJo X software
(Tree Star, Ashland, OR).

Proliferation Assay and In Vitro
Blockade of PD-1 Pathway
For the blockade experiment, peripheral
blood mononuclear cells were labeled with
carboxyfluorescein succinimidyl ester as
previously described (1), then incubated
overnight with or without the combination
of anti–PD-1 (5 mg/ml), anti–PD-ligand 1
(2 mg/ml), and anti–PD-ligand 2 (2 mg/ml)
in RPMI 1640–supplemented medium
before stimulation with anti-CD3 (OKT-3)
and anti-CD28 (1 mg/ml; BD Biosciences)
antibodies at a final concentration of 23
106/ml for 5 days, 5% CO2 atmosphere.

RNA Isolation and Quantitative
RT-PCR
Total cellular RNA was extracted from
purified, resting CD41 T cells or after 5-day
TCR stimulation, then cDNA was
generated as previously described (2).
Quantitative RT-PCR amplification was
performed in triplicate using 23 TaqMan
Universal PCR Mastermix (Applied
Biosystems/Life Technologies, Foster City,

Table 1. Sarcoidosis and Healthy Control Demographic Information

Characteristics
Patients with
Sarcoidosis

Healthy Control
Subjects

n 38 26
Sex (female/male), n 22/16 14/12
Age, median (min, max), yr 47 (20, 67) 35 (22, 67)
Race, n 19 W/19 AA 19 W/6 AA/1 AI

Definition of abbreviations: AA, African American; AI, American Indian; W, white.

Clinical Relevance

Sarcoidosis is a granulomatous disease
characterized by spontaneous T helper
cell type 1 cytokine production but
reduced cytokine secretion and
proliferative capacity succeeding T cell
receptor stimulation among subjects
experiencing disease progression. This is
the first investigation to demonstrate the
specific T cell receptor signaling
mediators that play a critical role in the
loss of sarcoidosis proliferative capacity
through programmed death (PD)-1
intervention. Specifically, we
demonstrate that PD-1 strategically
targets a key tyrosine kinase, lymphocyte
cell-specific protein-tyrosine kinase,
and effectively prevents signaling
through the phosphatidylinositol
3-kinase/AKT/mechanistic target of
rapamycin pathway, a crucial pathway
for cell cycle progression and IL-2
transcription (cytokine that promotes
lymphocyte proliferation), thereby
affecting sarcoidosis T cell proliferation.
More importantly, this work is the first to
reveal normalization of these molecular
mediators of proliferation after PD-1
pathway blockade in patients with
sarcoidosis.
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CA) and TaqMan gene expression
assays targeting programmed cell death
1 (PDCD1) PDCD1, LCK, PIK3CD, AKT,
andMTOR (TaqMan gene expression assays;
Applied Biosystems/Life Technologies).
Gene expression levels were normalized to
b-actin and glyceraldehyde phosphate
dehydrogenase. All reactions were
performed in a StepOnePlus Real Time
PCR System (Applied Biosystems).

Lysates, SDS-PAGE, and Western
Blotting
CD41 T cells were TCR stimulated and
lysed as described previously (9). Cell
lysates were resolved by SDS-PAGE and
then analyzed by Western blotting. Band
visualization and densitometry was
completed using a Li-COR Odyssey
Infrared Imaging System (LI-COR
Biosciences, Lincoln, NE) and studio
software. For more detailed information,
see the supplemental MATERIALS AND

METHODS section.

Statistical Analysis
Comparisons between cohorts were performed
using an unpaired, two-tailed Student’s t test.
Multiple group comparisons were performed
using a one-way ANOVA. Proliferation
data were analyzed using the Mann–Whitney
U test. Pearson’s correlation was used to
determine relationships. Statistical analysis
for all figures was performed using Prism
version 6.0 (GraphPad Software, Inc., La Jolla,
CA). A P value ,0.05 was considered
statistically significant.

Results

PD-1 Up-Regulation on Sarcoidosis
CD41 T Cells Strongly Correlates with
Loss of Proliferative Capacity
Sarcoidosis CD41 T cells exhibit reduced
proliferative capacity upon TCR
stimulation, compared with healthy
controls (1, 2). It was also noted that

blockade of the PD-1 pathway restored
proliferative capacity in sarcoidosis CD41

T cells (1). Prior reports have demonstrated
that the degree of PD-1 up-regulation on
T cells is a contributor to the manifestation
of immune dysfunction (16). We began by
examining PD-1 expression on healthy
control and sarcoidosis CD41 T cells.
A significantly greater percentage of
sarcoidosis CD41 T cells expressed PD-1
than did healthy controls (P = 0.0063, two-
tailed t test; Figure 1A). We also assessed
for median fluorescent intensity on CD41

T cells from both cohorts. The PD-1
median fluorescent intensity was not
significantly higher on sarcoidosis CD41

T cells than on healthy controls (P = 0.30;
Figure 1B). Comparing proliferation
potential between subjects with sarcoidosis
and healthy control subjects, we observed
significantly lower proliferative capacity
among subjects with sarcoidosis (P,
0.0001; Figure 1C). In addition, percent
proliferation was compared among patients
with sarcoidosis expressing high and
normal levels of PD-1 (within healthy
control range; Figure 1D). We investigated
the correlation of PD-1 expression on
sarcoidosis CD41 T cells with proliferation
and noted that the percentage of cells
expressing PD-1 correlated significantly
with loss of proliferative capacity
(Figure 1E; r =20.70; P, 0.001). CD41

T cell subsets were analyzed for PD-1
receptor expression as well as proliferation.
Decreased proliferation was noted on
sarcoidosis CD41 CD251 T regulatory cells
compared with that on healthy controls
(sarcoidosis, n = 8; healthy control, n = 6; P =
0.0196). Both sarcoidosis CD41 CD251 T
regulatory cells and Th17 cells exhibited an
up-regulation in PD-1 receptor expression
compared with the controls (P = 0.008, P =
0.0.0448, respectively). A correlation analysis
between PD-1 receptor expression and
proliferation of sarcoidosis CD41 CD251 T
regulatory cells revealed a significance of
0.0283 (r =20.6865; data not shown).

Cellular proliferation reflects an
increase in cell numbers due to cell growth
and division. Investigation of cellular
proliferation revealed patients with reduced
numbers of proliferating CD41 T cells,
in addition to subjects demonstrating
normal (levels comparable to healthy
control subjects) proliferation (Figure 2A).
To confirm that the observed difference in
proliferation was due to decreased rate of
cellular division and not increased cell
death, we performed a cell cycle assay. Flow
cytometric analysis of BrdU incorporation
and DNA content revealed that sarcoidosis
CD41 T cells did not progress from the
G0/G1 phase to the S phase, and even less
to the G2/M phase (Figure 2B). Overall,
significantly fewer sarcoidosis CD41 T cells
demonstrated progression through the
terminal phase of the cell cycle compared
with healthy control CD41 T cells (Figures
2C and 2D). Closer inspection of these
cohorts revealed PD-1 expression to be
significantly elevated in sarcoidosis CD41

T cells with impaired proliferation and cell
cycle progression when compared with
healthy controls (P, 0.001; Figure 2E);
this distinction in PD-1 expression was
not apparent in subjects with sarcoidosis
with normal proliferative capacity when
compared with healthy control subjects
(P = 0.8531; Figure 2E).

Reduced Expression of the PI3K/AKT
Pathway Is Present within
Sarcoidosis CD41 T Cells with
Impaired Proliferative Capacity
After TCR stimulation, the tyrosine kinase,
LCK, is immediately recruited to the
immunological synapse (17). After its
activation, key downstream signaling events
involving protein kinases, such as PI3K and
its target AKT, are critical for the initiation
of cellular proliferation (18). We
hypothesized that disruption of these
signaling pathways would account for the
proliferative defect of sarcoidosis T cells.
We therefore assessed the expression of
PDCD1, LCK, PI3K, and AKT in CD41

T cells from healthy control subjects,
patients with sarcoidosis with impaired
CD41 T proliferative capacity, and patients
with sarcoidosis with normal T cell
proliferation. There were increased PDCD1
expression levels in sarcoidosis CD41

T cells with reduced proliferation compared
with both healthy subjects (P = 0.01) and
patients with sarcoidosis with normal
proliferation (P = 0.03) (Figure 3A).

Table 2. Sarcoidosis Normal versus Impaired Proliferation Demographic Information

Characteristics Normal Impaired

n 17 21
Sex (female/male), n 12/5 10/11
Age, median (min, max), yr 50 (24, 65) 46 (20, 67)
Race, n 9 W/8 AA 10 W/11 AA

Definition of abbreviations: AA, African American; W, white.
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Sarcoidosis CD41 T cells from subjects
with normal proliferation did not yield
statistically significant differences from
those from healthy control subjects
(P = 0.87; Figure 3A). We observed
significantly reduced LCK, PI3K, and AKT
expression in the sarcoidosis CD41 T cells
with impaired proliferation compared with
those of both healthy controls (P, 0.01)
and from subjects with sarcoidosis with
normal proliferation (P = 0.04, P = 0.01,
P = 0.03, respectively; Figures 3C, 3E, and
3G). Importantly, there were no detectable
differences between the healthy cohorts and
normally proliferating sarcoidosis CD41

T cells for any of the genes (P = 0.80, P = 0.50,
P = 0.59, respectively; Figures 3C, 3E, and
3G). Furthermore, a comparison between
the impaired sarcoidosis CD41 T cells
expressing high PD-1 and normal PD-1 levels
was made (Figures 3B, 3D, 3F, and 3H).

To examine the functional activity
of LCK, PI3K, AKT, and mTOR kinases
in sarcoidosis CD41 T cells with
reduced proliferation, we quantified
phosphorylation by Western blotting
using anti-phosphotyrosine antibodies.
Compared with healthy control subjects
(n = 5), subjects with sarcoidosis with
impaired proliferation (n = 5) demonstrated

a significant reduction of phosphorylation
of LCK on tyrosine 394 (Y394), which
marks the activated form of the kinase
(P = 0.029; Figure 4B). Significant reductions
in PI3K p85 (Y458/Y199), as well as AKT
threonine 308 (T308) and mTOR serine
2,448 (S2448) were also detected (Figures
4D, 4F, and 4H; P = 0.022, P, 0.01,
P = 0.0240, respectively). A significant
decrease in total protein levels at baseline
(no stimulation) in sarcoidosis CD41

T cells was revealed compared with
controls: LCK (P, 0.01), PI3K (P, 0.01),
AKT (P = 0.0253), and mTOR (P = 0.0340)
(Figures 4A, 4C, 4E, and 4G).
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Figure 1. Strong negative correlation between programmed death (PD)-1 plus CD41 T cells and proliferation in patients with sarcoidosis. (A) Percent
total peripheral CD41 T cells expressing PD-1 from healthy control subjects (HCs) (n = 22) and patients with sarcoidosis (n = 34). (B) Median fluorescent
intensity (MFI) of systemic CD41 T cells expressing PD-1 in HC (n = 9) and subjects with sarcoidosis (n = 13) (P. 0.05). Representative histograms depicting
PD-1 levels for control subjects and a sarcoidosis patient. (C) Percent total peripheral CD41 T cells proliferating from HCs (n = 17) and patients with sarcoidosis
(n = 34) after in vitro T cell receptor (TCR) stimulation. (D) Proliferation percentages categorized according to high PD-1 or normal PD-1 expression levels.
(E) Linear correlation between percent PD-1 expression and proliferating CD41 T cells from patients with sarcoidosis. (F) Percent of proliferating systemic
CD41 CD251 T regulatory cells from HCs (n = 6) and subjects with sarcoidosis (n = 8) after TCR stimulation with plate-bound anti-CD3 and anti-CD28.
(G) Baseline PD-1 expression in peripheral CD41 CD251 T regulatory cells and (H) systemic T helper type 17 (Th17) cells (HC; n = 4; sarcoidosis, n = 6).
*P, 0.05, **P, 0.01, ****P, 0.0001; CFSE, carboxyfluorescein succinimidyl ester; FMO, fluorescence minus one; NS, not significant (P. 0.05).
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Significant Correlations between
PD-1 Receptor Expression and the
PI3K/AKT Pathway Gene Expression
After the identification of reduced
expression of key mediators of cellular
proliferation in the PI3K/AKT pathway, we
then compared gene expression data to
PD-1 receptor levels within the same
subjects with sarcoidosis using Pearson’s
correlation coefficient. The findings suggest
a significant negative correlation between
the LCK gene and PD-1 receptor expression
(r =20.50, P = 0.04; Figure 5A). A negative
correlation was also apparent for both PI3K
and AKT gene expression and the PD-1

receptor (r =20.61, P, 0.01; r =20.60,
P = 0.03, respectively; Figures 5B and 5C).

Blockade of PD-1 Pathway Restores
PI3K/AKT Signaling in Sarcoidosis
CD41 T Cells with Reduced
Proliferative Capacity
To assess if PD-1 up-regulation mediated
the reductions in PI3K/AKT signaling that
we detected, we examined their gene levels
in sarcoidosis CD41 T cells after PD-1
pathway blockade. As previously observed,
reduced LCK expression was noted between
healthy controls and sarcoidosis T cells
with impaired proliferation (P = 0.02;

Figure 6A). Remarkably, PD-1 pathway
blockade completely eliminated the
difference between healthy and sarcoidosis
CD41 T cells (P = 0.13; Figure 6A).
Diminished PI3K and AKT expression was
also observed in sarcoidosis CD41 T cells
with abnormal proliferation before PD-1
pathway blockade (P = 0.01 and P, 0.01;
Figures 6B and 6C). Expression levels were
restored to healthy levels after blockade
(P = 0.33 and P = 0.21, respectively; Figures 6B
and 6C). MTOR gene expression was also
reduced in sarcoidosis CD41 T cells with
reduced proliferation, but was restored to
levels akin to CD41 T cells of healthy
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controls after PD-1 blockade (P = 0.04,
preblockade; P = 0.64, postblockade;
Figure 6D).

Discussion

Prior genome-wide association studies
(GWASs) and microarray analyses
demonstrate that the PI3K/AKT signaling
pathway contributes to sarcoidosis severity,
yet the mechanism(s) by which this occurs
are not known. Independent GWAS
analyses implicate aberrancies in TCR
signaling, janus kinase/signal transducers
and activators of transcription (JAK/STAT)

signaling, and CCR signaling in sarcoidosis
severity. GWAS revealed a significant
association of single-nucleotide
polymorphisms in signature genes with
sarcoidosis susceptibility and severity
(unbiased signature genes: CX3CR1,
FKBP1A, NOG, RBM12B, SENS3, TSHZ2;
T cell/JAK/STAT pathway genes, such as:
AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R,
ITK, JUN, MALT1, NFATC2, PLCG1,
SPRED1, as well as those associated with
IL23/Th17 signaling) (19, 20). Ingenuity
pathway analysis to a cross-sectional
derivation microarray dataset identified up-
regulation of genes related to IFN signaling
and down-regulation of TCR signaling

pathways in severe sarcoidosis. CXCL9 and
TCR factors discriminated between chronic
versus nonprogressive disease, and CXCL9
predicted disease outcomes longitudinally.
Factors associated with lung function decline
included decreased TCR factor and increased
CXCL9. Down-regulation of the TCR
signaling pathway was associated with severity,
as manifested by lung function decline (21).

This investigation demonstrates that
sarcoidosis CD41 T cells do not have
normal cell cycle progression, but rather
demonstrate blocked progression through
the G1 phase, resulting in reduced
proliferation (Figure 2). Although there are
numerous mechanisms by which PD-1
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affects T cell proliferation, prior studies
have demonstrated that PD-1 impedes cell
cycle progression through the G1 phase by
suppressing transcription of the ubiquitin
ligase, Skp1/Cul1/Skp2 (SCFSkp2), which
encodes a component of this ubiquitin
ligase. PD-1 suppresses SKP2 transcription
by inhibiting PI3K/AKT signaling (9). PD-1
up-regulation also strategically inhibits
induction of a key tyrosine kinase, p56LCK,
which effectively decreases signaling
through the PI3K/AKT pathway.
Quantitative RT-PCR analysis for the

relative expression of this pathway confirmed
reduced expression of PI3K/AKT effectors in
sarcoidosis CD41 T cells with impaired
proliferative capacity and high PD-1
expression, whereas expression was normal
in healthy control subjects and in subjects
with sarcoidosis with normal proliferative
capacity (Figure 3). Equally encouraging, the
PI3K/AKT transcription defect was rescued
by PD-1 pathway blockade (Figure 6), with
resultant increases in CD41 T cell
proliferative capacity. This finding has
potential for therapeutic translation.

A clear understanding of how
enhanced immune function, specifically
proliferative capacity, contributes to
improvement in sarcoidosis clinical
outcome is not intuitive. Numerous elegant
studies demonstrate that sarcoidosis T cells
have increased cytokine production, as well
as evidence of TCR stimulation (22, 23).
These studies have been complemented by
molecular analyses demonstrating that
microbial antigens are present within
sarcoidosis granulomas (24–28) and that
these same antigens are targets of the
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sarcoidosis adaptive immune response (14,
26, 29–31). The expression of Th1
cytokines is the healthy adaptive immune
response attempt to signal immune
mediators that can clear foreign antigen,
leading to its clearance. Healthy T cells also
undergo a rapid, vast differentiation and
expansion program in response to foreign
antigens to facilitate their clearance. An
important immune evasion mediated by

foreign antigen is PD-1 up-regulation,
and the resultant effects of reduced
cytokine expression and proliferative
capacity after TCR stimulation. This loss
of proliferative capacity leads to impaired
clearance of microbial antigens; this
antigenic persistence leads to disease
progression in some subjects with
sarcoidosis (1, 2). Blockade of the PD-1
pathway not only resulted in immediate

restoration of T cell proliferation, but
also immediate induction of normal
expression of the key mediators of
cell cycle progression, including
PI3K/AKT/mTOR (Figure 6).

Limitations of this analysis include that
these results do not exclude the role of other
negative regulatory molecules, such as
cytotoxic T-lymphocyte-associated protein
4 (CTLA-4), in loss of proliferative capacity.
Although it does demonstrate one of the
signaling mechanisms by which the PD-1
pathway mediates loss of cell cycle
progression (i.e., proliferative capacity), it
is not an exhaustive analysis. It is quite
possible that other contributors to the loss
of immune function are present. Previous
reports demonstrate that the degree of
immunosuppression did not play a role in the
loss of sarcoidosis proliferative capacity, nor its
restoration after PD-1 pathway blockade (1, 2).

In conclusion, these studies provide
mechanistic insight into the relevant
signaling mechanisms by which PD-1
ligation alters sarcoidosis CD41 T cell
proliferative capacity. The significant role
that the PI3K/AKT pathway plays in
oncogenic transformation has been well
documented, and its involvement in cell cycle
progression and cellular proliferation has
been extensively investigated (32–35). PI3K
inhibition has been shown to impede the
growth of various cancers by attenuating cell
proliferation and inducing G1 cell cycle
arrest (36, 37). The inhibition of this pathway
is an important strategy for reduced
proliferation of malignant cells; it is therefore
suboptimal for a healthy immune response
against foreign antigen. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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