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RNA polymerase from mesophilic Deinococcus radiodurans displays the same cold sensitivity of promoter
opening as RNA polymerase from the closely related thermophilic Thermus aquaticus. This suggests that,
contrary to the accepted view, cold sensitivity of promoter opening by thermophilic RNA polymerases may not

be a consequence of their thermostability.

Thermophilic enzymes are known to work at low tempera-
tures much slower than their mesophilic counterparts. Such
cold sensitivity is believed to be a penalty for their more rigid
structure, which ensures high protein thermostability. The in-
creased rigidity of thermophilic enzymes is supposed to reduce
their conformational mobility at low temperatures and to block
structural changes required for catalysis (5, 16). Accordingly, it
is anticipated that comparative study of thermophilic enzymes
may help to characterize conformational dynamics involved in
catalysis.

Promoter opening by RNA polymerase (RNAP)—a crucial
step of transcription involving DNA melting around the point
of RNA initiation—seemed to conform to this paradigm. It
was demonstrated long ago that RNAPs from moderately ther-
mophilic Bacillus species opened promoters at higher temper-
atures than the RNAP from mesophilic Escherichia coli (13,
15); both the core and o subunit were responsible for the
observed cold sensitivity (12). Using chemical probes, it was
shown that thermostable RNAP from Thermotoga maritima
opened promoters through a series of isomerization events
that were very similar to those observed with the E. coli enzyme
but that occurred at higher temperatures (10). Recent studies
of Thermus thermophilus (18) and Thermus aquaticus RNAPs
(11) confirmed cold sensitivity of promoter opening by ther-
mophilic RNAPs relative to that by E. coli RNAP. It was
concluded that cold sensitivity of promoter opening by ther-
mophilic RNAPs was a penalty for adaptation to high temper-
atures, resulting in more rigid protein structure (18). This
conclusion was based, however, on a taciturn assumption that
all mesophilic RNAPs were similar to E. coli RNAP, i.e., they
were cold resistant. However, scrutiny of limited information
available about RNAPs from mesophilic bacteria other than
E. coli hinted that this may not be the case (8, 17). To clarify
the issue, we compared RNAPs from 7. aquaticus and Deino-
coccus radiodurans. T. aquaticus RNAP was chosen because
X-ray structures of 7. aquaticus and closely related 7. ther-
mophilus RNAPs were available. D. radiodurans RNAP was
chosen because this bacterium is the closest mesophilic coun-
terpart of 7. aquaticus (7, 9). The strong phylogenetic relation-
ship between T. aquaticus and D. radiodurans suggested that
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most differences between their RNAPs were likely to result
from different temperature adaptations of these bacteria. Sur-
prisingly, many characteristics ascribed previously to thermo-
philic RNAPs were also found in the mesophilic D. radiodurans
enzyme. This demonstrated that comparison of thermophilic
RNAPs with E. coli RNAP as the only representative of me-
sophilic enzymes indeed may lead to misleading conclusions.

We isolated E. coli and D. radiodurans cores from corre-
sponding cells essentially as described previously (1, 3, 4).
Recombinant T. aquaticus core and E. coli and T. aquaticus o
subunits were overproduced in E. coli cells containing appro-
priate plasmids (1, 11). The D. radiodurans rpoD gene was am-
plified from the genomic sequence (GenBank accession num-
ber NP_294640.1) and cloned into the pET28 plasmid. The
recombinant protein was overproduced and purified by anal-
ogy with the T. aquaticus o” subunit. E. coli, T. aquaticus, and
D. radiodurans holoenzymes were reconstituted by mixing core
enzymes with a fivefold excess of o subunit. We then compared
promoter binding, open complex formation, elongation, and
termination by these RNAPs. We found that 7. aquaticus
RNAP differed from E. coli RNAP in most assays used. It
displayed reduced stability of promoter complexes at the op-
timal temperature, was more resistant to rifampin and more
sensitive to streptolydigin than the E. coli enzyme, was less
prone to abortive RNA synthesis, and showed specific differ-
ences in RNA termination (Table 1). As expected, D. radiodu-
rans RNAP was thermosensitive and had a mesophilic temper-

TABLE 1. Properties of E. coli, T. aquaticus, and
D. radiodurans RNAPs

RNAP
Characteristic :
E. coli  T. aquaticus Dd. radio-
urans
Temperature optimum* (°C) 37 60 37
Residual activity (%) after heating 15 74 2
for 10 min at 65°C
Ratio of activities (%) at 20 and 45°C 53 0.25 0.6
Open complex half-life time® >30 min <20s <20s
Sensitivity to rifampin® (pg/ml) 0.1 100 100
Sensitivity to streptolydigin® (ug/ml) >10 <0.1 <0.1

“ Measured in a multiple-round transcription assay on a template containing
T7 Al promoter and X tR2 terminator (14); the activity was quantified as the sum
of runoff and terminated RNA products.

> Measured in the transcription assay at the optimum temperature in the
presence of 5 pg of heparin/ml.

¢ Concentration of antibiotic required to inhibit 90% of the RNAP activity.
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FIG. 1. Permanganate footprints of E. coli (Eco), D. radiodurans

(Dra), and T. aquaticus (Taq) RNAPs and hybrid holoenzymes on the

nontemplate strand of lacUVS5 promoter at 20, 45, and 65°C. Arrows

with numbers indicate the positions of hyperreactive thymine residues

relative to the starting point of transcription. M lanes are A+G cleav-
age markers.

ature optimum. At the same time, the D. radiodurans enzyme
behaved very similarly to 7. aquaticus RNAP in most other
transcription assays (Table 1 and data not shown).

Most importantly, 7. aquaticus and D. radiodurans RNAPs
possessed a similar cold sensitivity of promoter opening in
KMnO, probing experiments that detect thymines in single-
stranded but not in double-stranded DNA. We studied DNA
melting by E. coli, T. aquaticus, and D. radiodurans RNAPs
in lacUV5 promoter complexes at different temperatures us-
ing end-labeled DNA fragment as described elsewhere (2). In
brief, holoenzyme of RNAP (100 nM core plus 500 nM o) was
incubated with the promoter DNA (10 nM) in transcription
buffer (40 mM Tris-HCI [pH 7.9], 40 mM KCl, 10 mM MgCl,)
for 10 min at the temperatures indicated and treated for 10 s
with 5 mM KMnO,. The modified thymines were detected by
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piperidine strand cleavage (2). All three RNAPs melted DNA
around the starting point of transcription at 45°C. However,
only E. coli RNAP opened the promoter at 20°C (Fig. 1). At
65°C, only T. aquaticus RNAP melted the promoter, which
conformed to its higher thermostability in comparison with the
mesophilic RNAPs.

To determine the role of the core and o subunits in cold
sensitivity of promoter opening, we performed KMnO, foot-
printing experiments with hybrid core-o holoenzymes. Unfor-
tunately, the E. coli ¢’ subunit did not form active holoen-
zymes with T. aquaticus or D. radiodurans core polymerases
(data not shown) (11). However, holoenzymes containing
E. coli core and T. aquaticus or D. radiodurans o* subunits
were active and opened lacUVS5 promoter at 45°C but not at
20°C (Fig. 1). Thus, cold sensitivity of promoter opening by
T. aquaticus and D. radiodurans RNAPs is apparently deter-
mined primarily by their o subunits. It should be emphasized
that the KMnO, probing experiments presented here assessed
promoter opening under equilibrium conditions, while it re-
mains possible that T. aquaticus and D. radiodurans RNAPs do
possess some differences on intermediate stages of the open
complex formation.

It was previously shown that thermophilic 7. thermophilus
and T. aquaticus RNAPs possess certain defects in RNA elon-
gation compared with the E. coli enzyme (11, 18). To measure
the rate of RNA synthesis by E. coli, T. aquaticus, and D. ra-
diodurans RNAPs, we preformed stalled elongation complexes
on a DNA template containing T7 Al promoter and A tR2
terminator (14) and followed RNA elongation at different tem-
peratures. As is seen from Fig. 2, T. aquaticus and D. radio-
durans enzymes reached the tR2 terminator at 37°C as fast as
the E. coli enzyme. At 0°C, it took about 15 min to reach the
terminator for the E. coli and D. radiodurans enzymes at 100
pM NTP, while the 7. aquaticus enzyme failed to reach the
terminator even after 24 h at 1 mM NTP. At lower substrate
concentrations (100 uM NTP), T. aquaticus RNAP elongation
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FIG. 2. RNA elongation by E. coli (Eco), D. radiodurans (Dra), and T. aquaticus (Taq) RNAPs on the T7 Al promoter fragment followed by
\ tR2 terminator. The starting 20-mer RNA, runoff, and terminated transcripts are shown by arrows. Elongation was measured at different NTP
concentrations at 37 and 0°C. The sample in lane C was incubated for 24 h at 0°C with 1 mM NTP and then transferred to 37°C for the additional

5 min.
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was immeasurably slow (data not shown). Control experiments
showed that the 7. aquaticus RNAP elongation complex was
not dissociated or irreversibly inactivated at 0°C and was fully
active after transfer to 37°C (Fig. 2, lane C). The dramatic
defect in T. aquaticus RNAP elongation observed at 0°C sug-
gests that elongation requires conformational changes that are
severely impeded at low temperature.

Our data show that the dramatic cold sensitivity of elonga-
tion displayed by thermophilic 7. aquaticus RNAP may be
related to thermal adaptation. Since D. radiodurans RNAP had
the same elongation rates as the E. coli enzyme at all temper-
atures tested, one can conclude that the cold sensitivity of
RNA elongation is the only 7. aquaticus RNAP “defect” which
is correlated with its thermophily and thus could be regarded
as the penalty for its thermostability. In contrast, other func-
tional differences between T. aquaticus and E. coli RNAPs,
including cold sensitivity of promoter opening by the thermo-
philic enzyme, may not be consequences of adaptation to high
temperature. These differences may be a neutral character or
reflect adaptation to some unknown condition common to
T. aquaticus and D. radiodurans and some other bacteria. The
high level of homology between T. aquaticus and D. radio-
durans RNAPs implies that that the nature of the observed
promoter opening defects is similar for both enzymes. At the
same time, we also cannot exclude the possibility that these
features arise from different sequence and structure determi-
nants that have evolved independently in these bacteria. Igno-
rance on the adaptive role of the functional peculiarities of
T. aquaticus and D. radiodurans RNAPs does not prevent use
of these enzymes as natural mutants that have diverged from
E. coli by evolutionary design. As was shown for a few other
enzymes (6), such mutants may provide useful phenotypes for
structural studies that cannot be obtained with standard ge-
netic approaches.
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