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Abstract

Background: The control of genome stability is relevant for the worldwide BCG vaccine preventing the acute
forms of childhood tuberculosis. BCG sub-strains whole genome comparative analysis and revealing the triggers of
sub-strains transition were the purpose of our investigation.

Results: Whole genome sequencing of three BCG Russia seed lots (1963, 1982, 2006 years) confirmed the stability
of vaccine sub-strain genome.

Comparative analysis of three Mycobacteruim bovis and nine M. bovis BCG genomes shown that differences between
“early” and “late” sub-strains BCG genomes were associated with specific prophage profiles. Several prophages common
to all BCG genomes included ORFs which were homologues to Caudovirales. Surprisingly very different prophage
profiles characterized BCG Tice and BCG Montreal genomes. These prophages contained ORFs which were homologues
to Herpesviruses. Phylogeny of strains cohort based on genome maps restriction analysis and whole genomes sequence

data were in agreement with prophage profiles. Pair-wise alignment of unique BCG Tice and BCG Montreal prophage
sequences and BCG Russia 368 genome demonstrated only similarity of fragmetary sequences that suggested the
contribution of prophages in genome mosaic structure formation.

Conclusions: Control of the extended sequences is important for genome with mosaic structure. Prophage search tools

are effective instruments in this analysis.
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Background

BCG (Bacille-Calmette-Guérin) vaccine is used broadly
in various regions for the prevention of acute forms of
childhood tuberculosis as part of the national childhood
immunization programme. Despite these efforts, world-
wide 9.6 million people are estimated to have fallen ill
with TB in 2014. TB prevalence in 2015 was 42% lower
than in 1990, as a result of vaccination against TB [1].
BCG vaccine is under control of the World Health
Organization (WHO). The development of international
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requirements for the manufacture and control of BCG
vaccine was first considered by the WHO Expert Commit-
tee on Biological Standardization (ECBS). In 2009 year
WHO ECBS established WHO Reference Reagents for
BCG vaccines of three different sub-strains (Danish1331,
Tokyo 172-1 and Russian BCG-I) and quality control re-
quirements, including genetic characterization of final lots
and working seeds of BCG vaccines [2].

According to WHO and GMP requirements, BCG
Russia sub-strain genome was sequenced in Russian re-
search laboratories [3—5]. Now it is available in GenBank
along with the sequences of other BCG sub-strains, be-
cause since the 1920s numerous sub-strains have
evolved from the original strain BCG. And now
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Mycobacterium bovis BCG sub-strains comprise an ex-
cellent source for investigating the bacterial evolution.
In this context, the endpoints of evolution are assessed
likewise in the study of Darwinian biological species evo-
lution [6]. Moreover, the progenitor of BCG strain was
lost, a data describing sub-strain cultivation that could
impact the sub-strain fitness are not available. Thus,
genome characteristics can be used for searching a
trigger of BCG sub-strains transition. Since phages are
considered as an evolution tool, and prophages, as in-
complete inserted phage sequences, contribute to the di-
versification of the bacterial genome architecture, the
special emphasis was made on these mobile elements of
bacterial genome.

Following Brussow H. et al. [7], 12 years later we can
re-affirm that there is a renaissance of phage research.
The information on whole bacterial genome collected in
the international databases provides increasing resources
for prophage sequences discovering. While discussing
reintroduction of the fitness factor by phages, the re-
searches usually refer to virulent factors of pathogenic
bacteria [8]. Taking into account an essential role played
by phages in the short-term adaptation processes, our
goal was to assess a potential contribution of prophages
in the mosaic structure of vaccine BCG sub-strains.

Methods

Bacterial strain

“368 shch” generation of sub-strain NSCPM 700001
Mycobacterium bovis BCG-I (Russia) from National
State Collection of Pathogenic Microorganisms of “The
Scientific Center for Expertise of Medical Application
Products,” Russia’s Ministry of Health, was produced in
2006 and named ‘BCG Russia 368’. This generation is
used for the production of the Russian BCG vaccine.

Reference genomes

M. bovis complete genomes and one genome assem-
bled in chromosome were imported from GenBank.
They represented 11 biosamples. Three M. bovis
strains were isolated from Bos taurus: AF2122/97 (Ac-
cession Number NC_002945.3); 1595 (NZ_CP012095.1);
30 (CP010332.1), one strain M. bovis BCG was isolated
from a human patient with tuberculosis - 3281
(NZ_CP008744.1), and, the other strains were vaccine
BCG sub-strains: Tokyo 172 (NC_012207.1), Pasteur
1173P2 (NC_008769.1), Moreau RDJ (NZ_AM412059.1),
Mexico (NC_016804.1), Korea 1168P (NC_020245.2), 26/
ATCC 35735/Montreal (CP010331.1), 63839/ATCC
35743/ Tice (NZ_CP003494.1).

DNA isolation
Preparation of genomic DNA for the whole genome se-
quencing was performed according to the Protocols [9].
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DNA isolation for the whole genome mapping was made
as described in [10].

Genome sequencing and assembly

Two types of libraries were used for BCG Russia 368
genome sequencing by 454 Roche platform: shortgun
and paired-end. The latter was built according to the
3 kb protocol. Sequencing procedure was performed
using the GS Junior Titanium Sequencing Kit, i.e. GS
Junior + Series XL+ Kit according to the manufac-
turer’s guidelines.

Assembly was performed with 454 Sequencing System
Software v.2.7 and v.3.0 (Roche), yielding five scaffolds.
PCR and Sanger sequencing were used for gap closure
with primers presented in Additional file 1: Table S1.
Most gaps were found in the sequences of PPE/PE-
PGRS genes. Prediction of the secondary structures of
this DNA sequences and calculation of the minimum
free energy (MFE) structure were performed using RNA-
fold web server [11]. GC-reach DNA fragments amplifi-
cation was optimized by both the involvement of 10%
DMSO (Sigma) and 5% D-(+)-Trehalose dehydrate
(Sigma). Sanger sequencing of amplicons was successful
only in 5% DMSO presence.

Whole genome map creating

Whole genome map (WGM) of the sub-strain BCG
Russia 368 was created by the laboratory of OpGen Incor-
porated Company (Maryland, USA), according to the
Argus™ Optical Mapping System User Manual [10]. DNA
was digested with Nhel. Map Solver software version 3.2
was employed for creating the final circular WGM.

Restriction maps analysis

GenBank files of the reference strains were taken for the
restriction maps in silico generation with Nhel digestion.
Map Solver software version 3.2 was utilized for the
maps alignment and the cluster tree drawing. The
lengths of tree branches indicated the relative differences
between two nodes.

Genome map analysis and visualization

M. bovis BCG Russia 368 genome map was performed
in GeneWiz [12] and GenomeVx browsers [13, 14]. Gen-
ome atlas option of GeneWiz primarily GC Skew was
selected as an appropriate instrument for verifying the
accuracy of genome assemblies and OriC detection.
Other DNA properties: Intrinsic Curvature, Stacking
Energy, Position Preference, Global Direct repeats, Glo-
bal Inverted repeats, AT content — were essential for
genome structure description. GenomeVx browser was
useful for the visualization of combination of different
structural elements position.
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Genome annotation

The software Rapid Annotations Subsystems Technology
and SEED [15, 16] were employed for annotating the
genome BCG Russia 368. Complementary analysis was
made with conserved domains search services: KEGG
[17], KEGG OC [18], COGs [19]; protein subcellular
localization prediction software: TMHMM Server v.2.0
[20], SignalP 4.1 Server [21], PSORTb version 3.0.2 [22],
InterPro server [23, 24].

ISfinder was used for the prediction of insertion se-
quences (IS) elements and the additional annotation of
resolvases, transposases and inregrases genes. IS ele-
ments family and sub-groups; as well as inverted repeats
flanking IS elements were determined using ISfinder
database [25, 26].

CRISPRfinder served as a tool for the prediction of
clustered regularly interspaced short palindromic repeats
and genes encoding CRISPR-associated Cas and Csm
family proteins [27, 28].

The search for prophage sequences was made with
PHAST (PHAge Search Tool) [29, 30]. GenVision Plug-
In of the DNASTAR Lasergene programm package was
selected for the visualization of prophages sequences.

Phylogeny reconstruction
The full genome comparison and phylogeny reconstruc-
tion was based on BLAST alignment and Neighbor Join-
ing algorithm [31] used in NCBI BLAST. The trees were
represented by MEGA 6.0 [32].

BCG Russia 368 genome sequence was deposited in
GenBank with the accession number NZ_CP009243.1.

Results

BCG Russia sub-strain genome stability

BCG sub-strain genome stability is the most important
question of the vaccine manufacture. According to the
WHO requirements for the production and control of
BCG vaccines molecular genetic characterization should
be included in the quality control of BCG vaccines.
Thus, we made WGS of the last BCG Russia seed lot of
2006 named BCG Russia 368. Also, we sequenced two
previous generations of BCG Russia sub-strain: BCG
Russia 311 from seed lot of 1963 and BCG Russia 977
from seed lot 1982. Searching variants in DNA se-
quences demonstrated that SNP in the sub-strain BCG
Russia 368 in position 3175301 according to the BCG
Tokyo as reference, in uridylyltransferase gene, was a
synonymous mutation without replacement in the pro-
tein sequence. However, this mutation was not present
in the earlier generations. The second finding was an in-
sertion of TGT instead of C in position 2744580, in
glycerol-3-phosphate acyltransferase gene (Fig. 1). This
mutation truncated the protein. It was shorter than ori-
ginal product, but contained the conservative domain
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and could be functional. Not all reads had this replace-
ment: 14% in BCG Russia 311 and 54% in BCG Russia
977. 1t is important that this mutation was absent in the
last generation (BCG Russia 368). These data could prove
the stability of the sub-strain BCG Russia genome. The
last generation genome BCG Russia 368 was deposited in
GenBank with the Accession Number NZ_CP009243.1. In
the text below we will discuss only the last generation of
this sub-strain.

Comparison of the “early” sub-strains genomes

BCG sub-strain Tokyo 172 genome, belonging to the
“early” sub-strains group, was used as reference in the
genome sequence comparison. First, BCG Tokyo is an
“early” sub-strain closest to BCG Russia sub-strain as
regards the time of its provision by the Pasteur Institute
to Tokyo (in 1925). Second, as BCG Russia sub-strain it
was lyophilized in 1940s and used later as a freeze-dried
vaccine. Then, in 1960 the 172nd transfer on bile-potato
medium was freeze-dried and adopted as a primary seed
lot [33]. Finally, the genome of this seed lot was one of
the first BCG genomes that were accurately sequenced,
assembled and submitted to GenBank [34].

No substantial differences in genome sequences of BCG
Russia 368 and BCG Tokyo 172 were found. The identi-
fied genomic differences were presented in Table 1 and
could be subdivided into three groups: RD (region of dif-
ferences), ins/del and SNP (Additional file 2: Table S2).
Only two RD were detected between the “early” sub-
strains. The first one was a 22 bp insertion in TetR family
transcriptional regulator gene of BCG Russia 368 genome.
This deletion (RD16) in BCG Tokyo genome was found in
one variant of Japan BCG vaccine (Type I), submitted in
GenBank. Type II had an RD16 band identical to those of
other BCG sub-strains [35].

The second RD was a 1602 bp deletion in BCG Russia
368 genome, corresponding to the region from 4110452 to
4112053 bp in BCG Tokyo 172, beginning in JTY_RS19265
(ribonuclease gene), including JTY_RS19270 (antitoxin
VapB48 gene) and finishing inside JTY_RS19275 (glutam-
ate-cysteine ligase gene).

The sub-strain BCG Russia was a progenitor of the
sub-strains used for vaccine production in Bulgaria
(BCG Sofia) and India. Nowadays, these BCG vaccines
are among four variants used by the UNICEF (The
United Nations Children’s Fund) on behalf of the Global
Alliance for Vaccines and Immunization: BCG-Denmark
produced by the Statens Serum Institute in Denmark,
BCG-Russia (genetically identical to BCG-Bulgaria) pro-
duced by Bulbio (BBNCIPD) in Bulgaria and by the
Serum Institute in India, and BCG-Japan produced by
the Japan BCG Laboratory [36].

Based on the published data we could trace the gen-
ome characteristics of BCG Russia daughter sub-strains.
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Fig. 1 Comparison of whole and truncated variants of glycerol-3-phosphate acyltransferase in BCG Russia generations. a protein sequence.
b sequence of gene fragment with mutation. Hash — amino acids residues important for the enzymatic activity

The BCG sub-strain used for production in Bulgaria
(named Sofia SL222) was analyzed by Stefanova T. et al.
with M. tuberculosis microarrays. 1.6-kb deletion that af-
fects the Rv3697c and Rv3698 homologues was detected.
The authors also noted the deletion of this region in
BCG Russia but not in any other strain [37]. It is con-
cluded that RD 1602 bp is an old deletion, because BCG

Table 1 Genomic differences of two pairs of sub-strains

Differences Number of differences
BCG Russia368/BCG  BCG Tokyo 172/Pasteur
Tokyo 172 1173P2 [34]

RD (more than 20 bp) 2 20

Ins/del <20 bp (1-9 bp) 10 20

SNP 52 68

intergenic "

synonymous 8

nonsynonymous 31

(without nonsence)

Nonsense as variant of 2
nonsynonymous

Pasteur was replaced with BCG Russia in Bulgaria BCG
Laboratory in 1950s.

It should be noted that differences between the “early”
sub-strain Tokyo and the “late” sub-strain Pasteur were
more significant and the number of RD increased ten-
fold, according to Seki M. et al. [34].

Only ten ins/del (1-9 bp) differences were found
between BCG Russia and BCG Tokyo genomes. Their
number and size were lower than the ins/del differences
between BCG Tokyo and BCG Pasteur genomes [34].

However, the number of SNPs was nearly the same in
the two pairs of the genomes. Sixty percent of the SNP
in BCG Russia 368 genome were nonsynonymous, but
most of them were associated with conservative substi-
tutions in the proteins. Only seven proteins had radical
substitutions (Additional file 1: Table S2), though three
of them were from PE-PGRS/PPE family. This finding
has emphasized the significance of these proteins for
BCG sub-strains adaptation.

Restriction analysis of genome maps
Genome comparison demonstrated that RD has played a
more important role in BCG sub-strains differentiation.
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Method and equipment for performing this analysis
were offered by OpGen Incorporated Company. As
the first step, the assembling of DU2 region in BCG
Russia 368 genome and the number of tandem dupli-
cations in this region were tested with the Argus™ Op-
tical Mapping System. The WGM of BCG Russia 368
sub-strain is shown in Fig. 2. The comparison of DU2
regions was made separately (see Fig. 3). As you can
see, the restriction maps of BCG Russia 368 and BCG
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Tokyo 172 are identical in this region, but differ from
BCG Pasteur optical map. These data suggest the
presence of triple tandem duplications in DU2 region
of BCG Russia 368.

The optical maps of six reference BCG sub-strains
were added to the map similarity cluster construction
(Fig. 4). The cluster was subdivided into two groups.
BCG Tice (ATCC 35743) was included in the group of
the “early” sub-strains, while BCG Mexico was added to

Mycobacterium bovis BCG-Russia 368 Nhel

Fig. 2 Circular restriction map of BCG Russia 368 whole-genome
A\
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the “late” sub-strains in accordance with the Nhel
restriction fragments.

Map Similarity Cluster using UPGMA
M. bovis (BCG Pasteur 1173P2)
. bovis (BCG str. Korea 1168P)
. bovis (BCG str. Mexico)
. bovis (BCG str. ATCC 35743)
. bovis (BCG str. Moreau RDJ)
. bovis (BCG str. Tokyo 172 DNA)
. bovis (BCG-Russia 368)

Genome map analysis

After the verification of all tandem repeats and the gap
closure, the sequence of assembling genome BCG Russia
368 was visualized in GeneWiz (Fig. 5). The place of the
change in GC-Skew agreed with the OriC and the first nu-
cleotide position in BCG Russia 368 genome. Different
types of repeats, shown in this Figure, correlated with the
specific genome elements identified with the specific re-
sources (see “Methods”, Table 2). The position of these el-
ements in BCG Russia 368 genome was marked on circles
in Fig. 6 (Additional file 3: Table S3). As demonstrated, Percent Difference

=T 2= £

LI D B | 1
54 3 210

most of these elements are coinciding, overlapping or Fig. 4 Map similarity cluster of BCG sub-strains with UPGMA. The
interconnecting. Therefore, the BCG genome can be de- cluster was obtained using created in silico optical restriction maps
scribed as repeat Of repeatS. Even prophage fragments of BCG Russia 368 and six reference BCG sub-strains. OpGen MapSOlver
have repeats in the genome sequence. However, while v.3.20. program with cluster method UPGMA and alignment score 3

.. . o . was used for the cluster construction
characterizing PE/PGRS genes, sometimes it is impossible J

to differentiate bacterial and phage genes.

Prophages in M. bovis genomes
Phages seem to be the best candidates for indentifying
mosaic genome structure in the regions of repeats. We

1

Mycobacterium bovis (BCG str. Russia 368) [Nhel] (in silica)
| — =

Mycobacterium bovis (BCG str. Pasteur 1173P2) [Nhel] (in silico)

Fig. 3 DU2 region of aligned optical maps for BCG Russia 368 and reference BCG sub-strains. 1 fragment of BCG Russia 368 optical restriction
map created in silico. 2 whole-genome restriction map fragment of BCG Russia 368. 3 and 4 fragments of BCG Tokyo 172 and BCG Pasteur
1173P2 optical restriction maps created in silico. All restriction maps were obtained by DNA digestion with Nhel. Restriction sites are shown as vertical
lines. Green, blue and purple bars represents tree copies of DU2 region in BCG Russia 368 and BCG Tokyo 172 genomes. DU2 region includes the genes
from the astB to the sdhD (green bar). In the copied regions (blue and purple bars), the astB gene was truncated
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Table 2 Specific genome elements in BCG Russia genome

Name Number
REP 6
CRISPR 5
Prophage 2

PPE protein gene 66

PE protein gene 33
PE_PGRS protein gene 69

IS element 41

used PHAST for the computational identification of pro-
phages in M. bovis genome sequences. All the discovered
prophages (see Fig. 7) were split into three groups. The
first group included the common prophages of M. bovis
and M. bovis BCG. A 7.5 kb prophage was found in
three M. bovis genomes and in the most of BCG ge-
nomes, except BCG Tice and Montreal sub-strains. A
20.3 kb prophage of M. bovis was replaced with 11.2 kb
prophage in the “early” sub-strains genomes (BCG
Tokyo, Moreau, Russia), but the former prophage was
lost in “late” sub-strains genomes. The second group
comprised six BCG Montreal prophages, and the third —
15 BCG Tice prophages. The prophages in these groups
were specific and did not coincide with prophages of
other sub-strains (see Fig. 6, circle B). The most of phage
ORFs in the common M. bovis prophages were anno-
tated as genes of Caudovirales (Myoviridae, Siphoviridae,
Podoviridae) — typical bacteriophages. However, the
most of phage ORFs in BCG Tice or BCG Montreal pro-
phages were similar to the genes of various Herpes vi-
ruses (Human, Bovine, Macaci, Alcela, Anguil).

Comparative prophage analyses confirmed the mosaic
BCG genome structure. Alignment of BCG Montreal
and BCG Tice phage sequences with BCG Russia 368
complete genome indentified a high similarity only for
fragments of BCG Tice/BCG Montreal prohages. They
are shown in Fig. 6 (circle B) as the purple (BCG Tice)
and blue (BCG Montreal) bars. Thus, 13.4 and 13.9 kb
prophage of BCG Tice were subdivided into 5 and 3
fragments, respectively, in BCG Russia 368 genome. The
comparison demonstrated multiple gaps ranging from
14 to 128 bp in the sequences of BCG Russia 368 that
are homologous to BCG Montreal prophages.

In contrast, the alignment of 7.5 kb BCG Russia 368
prophage versus BCG Tice and Montreal genomes dem-
onstrated that 0.9 and 6.6 kb fragments were residing in
different regions of BCG Tice/ Montreal genomes. The
transposase gene sequence from 7.5 kb BCG Russia 368
prophage was absent in BCG Tice / Montreal genomes.

Moreover, 7.5 kb BCG Russia 368 prophages sequence
had 922 bp repeat in BCG Russia 368 genome (marked
as red bar in Fug. 6, circle B). This sequence located in
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the same region as insertion element ISMtl. It should be
noted that not just a fragment, but two whole prophages
predicted by PHAST in BCG Russia 368 genome were
also associated with the incretion elements. Thus, 7.5 kb
prophage sequence was associated with IS1560 and
11 kb - with IS6110. The correlation between locations
of the prophage sequences and the IS elements empha-
sizes a considerable contribution made by phages to the
BCG genome evolution.

Phylogeny reconstruction

Phylogeny reconstruction was made using the genome
sequences of analyzed M. bovis strains and BCG sub-
strains. The tree demonstrated in Fig. 8 was compared
with known genealogical data of vaccine sub-strains
based on DU2 region [38, 39] and with prophage profile.
BCG sub-strains and M. bovis strains fall in two separate
clades. In BCG clade the “early” (Russia, Tokyo) and the
“late” sub-strains (Pasteur 1173P2, Korea 1168P, Mexico)
have formed discrete closely related groups with a few
exceptions. BCG Moreau sub-strain has formed a basal
branch. The most outstanding discrepancies were associ-
ated with positions of BCG Tice and BCG Montreal.
BCG Tice took the most divergent place on the tree and
BCG Montreal unexpectedly fell into the group of the
“early” sub-strains. BCG 3281, isolated from an adult pa-
tient with pulmonary tuberculosis, was close to the “late”
sub-strains. Interestingly, each of group on the tree had
specific sets of prophage sequences.

DU2 region genealogy correlated with the whole gen-
ome phylogeny in DU2-I “early” sub-strain group. BCG
3281 represented DU2-III group [40] creating a separate
branch on the phylogenetic tree. But DU2-IV group was
heterogeneous, since it included the above mentioned
sub-strains BCG Tice and BCG Montreal. The discrep-
ancy could be explained by the genome rearrangements
caused by numerous prophage sequences.

Discussion

The genomic variability of BCG sub-strains arose from
one progenitor has been shown in multiple studies using
comparative genome analysis. Identification of RDs, ins/
del differences and SNPs indicates the continuous nature
of in vitro evolution, which is still going on in BCG sub-
strains. We assumed that prophages can contribute to
genomic evolution and the BCG sub-strains diversity.
Prophages are known to constitute as much as 10-20%
of a bacterium genome. Many of these prophages appear
to be defective and are in a state of mutational decay.
However, recombination has occurred between related
prophages that reside at different locations in a bacter-
ium genome. In addition, many genes in defective pro-
phages remain functional [41]. So prophages, including
defective ones, can be important biological cause of
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and CRISPR elements); b phages sequences (according to PHAST); ¢ Insertion sequence elements; d genes for PE, PPE and PE_PGRS proteins.
Abbreviations: IS - insertion sequence elements, REP - repetitive extragenic palindrome element; CR - CRISPR or possible CRISPR sequences
predicted by CRISPRfinder; VNTR - variable number tandem repeat; Tl - BCG Tice (CP003494.1) phages sequences; MN - BCG Montreal (CP010331.1)
phages sequences; AF - M. bovis AF2122/97 (BX248333.1) phages sequences; PHR-2-rep - 922 bp repeat of 7.5 kb BCG Russia phages sequence;
PHR-1-11 kb BCG Russia phages sequence; PHR-2-7.5 kb BCG Russia phages sequence. Bars colors indicated phages sequences discovered in different
M. bovis genomes: purple - BCG Tice (CP003494.1); blue - BCG Montreal (CP010331.1); orange - M. bovis AF2122/97 (BX248333.1), red - BCG Russia

368 (CP009243)

genomic rearrangements. The analysis of these pro- The comparative genome analysis of nine BCG sub-
phages revealed unexpected evolutionary patterns sug-  strains and three M. bovis strains suggested our assump-
gesting widespread contribution of prophages to tion and revealed remarkable differences between their
bacterial fitness [42]. prophage profiles. On the other hand, unexpected
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changes in the genomes associated with the number and
composition of prophages were discovered in the ge-
nomes of the late strains Tice and Montreal.

Both BCG Tice and BCG Montreal or Frappier were
taken from the Pasteur Institute after 1934 and, accord-
ing to the Brosch et al.,, they had close phylogenetic rela-
tions because they fall in one phylogenetic group “DU2
IV, Aint”[38]. The analysis of the history of BCG Tice
sub-strain demonstrated that the first Tice sub-strain

received by Dr. Rosenthal from the Pasteur Institute was
a progenitor of at least six different daughter BCG sub-
strains: H, K, E, L, LH, and BL. This fact emphasizes the
heterogeneity of the “late” BCG sub-strains. In 1952 the
sub-strain BL, shown to be strongly attenuated in la-
boratory studies, was mixed in the ratio 3:1 with a new
routine ‘P’ strain, received from the Pasteur Institute in
1951. This new sub-strain, called BLP, was freeze-dried
in 1952, and since 1953 only freeze-dried BCG vaccine
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Fig. 8 Phylogenetic tree for M. bovis strains based on full genome comparison with Neighbor Joining algorithm. Three colors of rectangles
correspond to the type of DU2 region in BCG sub-strains: blue - DU2-I, yellow - DU2-IIl, red - DU2-IV. Sets of common prophages are indicated by
colored frames. Green, blue, dark blue frames indicate prophage size in kb. Red frames with figures and asterisks reflect the number of prophages
identified in BCG Tice and BCG Montreal genomes
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from this mixed strain has been produced [33]. The his-
tory of BCG Montreal sub-strain is also known com-
pletely, because three times BCG sub-strains were sent
to Canada from the Pasteur Institute [33].

The appearance of new prophage profiles in BCG Tice
and BCG Montreal sub-strains reflects substantial
changes of BCG genomes, which can also affect vaccine
properties of the sub-strains. According to Zhang et al.
[43] BCG Montreal/Frappier and BCG Tice along with
BCG Phipps, BCG Prague sub-strains have lost the lar-
gest number of T-Cell epitopes, associated with its vac-
cine properties. In contrast, BCG Russia and BCG
Tokyo sub-strains are still characterized by the largest
number of T-Cell epitopes among other BCGs.

These findings prove the need for extensive genomic
regions sequencing to identify prophages as potential
markers of genomic rearrangement. Prophage studies
allow better understanding of the genetic differences and
characteristics of various BCG sub-strains and may also
be useful for monitoring genetic stability of the seed lot
sub-strain.

Conclusions

The 21st century has been marked by the growth of hu-
man migration from the regions with high TB incidence
and the increase in number of HIV-infected individuals.
As a result, the emphasis in TB vaccination campaign has
been shifted from children to adolescents and adults.

Fifteen vaccine candidates were assessed in clinical tri-
als in 2015. They were designed either for BCG replace-
ment vaccine or as a potential boost vaccine for the
protection of adolescents and adults. The list included
recombinant BCGs, attenuated M. tuberculosis strains,
recombinant viral-vectored platforms, protein/adjuvant
combinations, and mycobacterial extracts [1]. A subunit
vaccine based on the mycobacterial proteins fused to
cellulose-binding domain was developed in N.F. Gama-
leya Research Center [44].

On the other hand, new area of BCG vaccine appli-
cation has been proposed. As most humans are born
in bacteriological environments characterized by a low
microbial diversity, the effects of BCG vaccine admin-
istrated immediately after birth, as a modulator of Th-
1/Th-2 responses, is very important and should be
analyzed [45].

In this context, the task of BCG genome stability con-
trol is crucial and will continue to be relevant.
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