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Abstract

Background

Oat and barley beta-glucans are prebiotic fibers known for their cholesterol-lowering activity,
but their action on the human gut microbiota metabolism is still under research. Although the
induction of short-chain fatty acids (SCFA) following their ingestion has previously been
reported, no study has investigated their effects on proteolytic uremic toxins p-cresyl sulfate
(pCS) and indoxyl sulfate (IS) levels, while others have failed to demonstrate an effect on
the endothelial function measured through flow-mediated dilation (FMD).

Objective
The aim of our study was to evaluate whether a nutritional intervention with a functional

pasta enriched with beta-glucans could promote a saccharolytic shift on the gut microbial
metabolism and improve FMD.

Methods

We carried out a pilot study on 26 healthy volunteers who underwent a 2-month dietary
treatment including a daily administration of Granoro “Cuore Mio” pasta enriched with barley
beta-glucans (3g/100g). Blood and urine routine parameters, serum pCS/IS and FMD were
evaluated before and after the dietary treatment.

Results

The nutritional treatment significantly reduced LDL and total cholesterol, as expected. More-
over, following beta-glucans supplementation we observed a reduction of serum pCS levels
and an increase of FMD, while IS serum levels remained unchanged.
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Conclusions

We demonstrated that a beta-glucans dietary intervention in healthy volunteers correlates
with a saccharolytic shift on the gut microbiota metabolism, as suggested by the decrease
of pCS and the increase of SCFA, and associates with an improved endothelial reactivity.
Our pilot study suggests, in addition to cholesterol, novel pCS-lowering properties of beta-
glucans, worthy to be confirmed in large-scale trials and particularly in contexts where the
reduction of the microbial-derived uremic toxin pCS is of critical importance, such as in
chronic kidney disease.

Introduction

A huge amount of scientific evidence is shedding new light on the relationship, both in healthy
and in disease conditions, between the human body and its symbiotic super-organism hosted
in the intestine: the microbiota [1]. It is by now established that, in the complex functioning of
the human organism, it plays a central role [2]. Beyond its contribution to physiological and
“beneficial” functions such as the development of the immune system and the energy-harvest-
ing from indigestible complex carbohydrates, the role of microbiota in a variety of diseases is
gradually emerging: chronic kidney disease (CKD), obesity, diabetes and cardiovascular dis-
ease (CVD) show the presence of a dysregulation (so-called “dysbiosis”) of the gut microbiota
composition and metabolism [3-6]. Microbial metabolism represents the molecular link by
which microbiota interacts with human physiology and diseases [7]. This metabolism, mainly
divided in saccharolytic or proteolytic, is generally believed to foster health when the balance is
shifted towards the first one because of the different actions of the metabolic products derived
from the two catabolic pathways [8]. The saccharolytic one, in fact, mainly leads to the release
of short-chain fatty acids (SCFA), known for their immune-modulating, anti-inflammatory
and in general beneficial activities [9-12]. Conversely, the downstream metabolites of the pro-
teolytic pathway are represented by “toxic” compounds [13], among which p-cresyl sulfate
(pCS) and indoxyl sulfate (IS), normally excreted by the kidneys, but emerging as the main
uremic toxins which accumulate in the blood when the kidney function declines, such as in
CKD, where they are by now recognized to promote inflammation, cardiovascular complica-
tions and disease progression [14,15]. Nutritional strategies acting on the gut microbiota to
restore health are appealing areas of research, since prebiotic fibers and food in general offer
the unique possibility to modulate the microbiota composition and metabolism [16,17]. In
fact, non-refined cereals, legumes and in general plant-derived food, such as the ones abun-
dantly represented in Mediterranean Diet, are supposed to promote intestinal wellness (and
subsequently a general healthy status) by acting a “selective pressure” on saccharolytic bacteria
and metabolism [18].

Beta-glucans are dietary fibers mainly found in whole-grain cereals, such as barley and oat,
already recognized for their ability to lower LDL and total cholesterol [19] in a dose of 3 daily
grams. EFSA and FDA allow declaring this nutritional claim in labels of commercially avail-
able functional foods [20-23]. Some researches on humans demonstrated the increase of circu-
lating SCFA following beta-glucans ingestion [24], and also our group recently published
results showing the modulation of the gut microbiota composition and the increase of SCFA
levels after beta-glucans treatment [25], but no human trial investigated, at the same time, the
effects on proteolytic uremic toxins pCS and IS. Additionally, some studies were set up in
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order to investigate the presumptive beta-glucans effects on ameliorating the endothelial func-
tion [26-28] but again, in our knowledge, none demonstrated any effect on flow-mediated
dilation (FMD).

The aim of our study was to evaluate whether a nutritional intervention with a functional
pasta enriched with beta-glucans could be able to effectively reduce the proteolytic metabo-
lism, in addition to the increase of the saccharolytic one, and to ameliorate the endothelial
function, on an in vivo human study. To this purpose, we carried out a pilot study on 26
healthy volunteers, which underwent a 2-months dietary treatment including a daily adminis-
tration of Granoro “Cuore Mio” pasta enriched with barley beta-glucans (3g/100g). Blood and
urine routine parameters, serum pCS/IS and FMD were evaluated before and after the dietary
treatment.

Materials and Methods
Patients and study design

The pilot study was carried out in accordance with the Helsinki Declaration (IV Adaptation)
and the European Guidelines for Good Clinical Practice. As a pilot study, no sample size calcu-
lation was performed and a target of 30 participants was established. The protocol of the study
was approved by the Ethical Committee of the Azienda Ospedaliero-Universitaria Consorziale
Policlinico of Bari, Italy (Authorization nr. 1570/2014, 1* December 2014). The authors con-
firm that all ongoing and related trials for this intervention are registered in the ClinicalTrials.
gov registry database; because of administrative issues that led to a delay in the ClinicalTrials.
gov registration, we registered the trial after the enrolment of the participants started (Identi-
fier nr. NCT02710513, 7™ March 2016). Healthy volunteers were enrolled according to the fol-
lowing inclusion/exclusion criteria: (i) Inclusion criteria: Healthy people aged 30-70 years old;
BMI ranged between 18.5 and 24.9; omnivorous diet; (ii) Exclusion criteria: Diabetes type

2; urine protein > 1g/24h; antibiotics and probiotics administration by 15 days before the
enrollment; gastrointestinal, celiac, inflammatory systemic and chronic liver diseases; recent
diagnosis of cancer; corticosteroid or immunosuppressive therapies; previous major acute car-
diovascular pathologies (heart attack, cerebral ictus); hyperlipidemia; consume of alcohol; psy-
chiatric diseases.

Primary Outcome: Reduction in LDL and total cholesterol; Secondary Outcomes: modu-
lation of SCFA fecal levels, modulation of pCS and IS, effects on FMD. The study was carried
out at the ambulatories of the Nephrology and Cardiovascular Disease Units of our Depart-
ment. After a two-months run-in period in which each volunteer followed a Mediterranean-
based free diet including a daily supply of 100 g of usual pasta, each volunteer (grouped in
4-6 people per day) was given a supply of pasta “Cuore Mio” Granoro (Pastificio Attilio Mas-
tromauro Granoro s.r.l.—Corato BA-Italy) and was instructed to include a daily portion
(100 g, dry weight) of functional pasta in their Mediterranean-based diet for two months.
The pasta was made with mixed durum wheat (75%) and whole barley (25%) flour, providing
an amount of 3 g of beta-glucans for 100 g of pasta. Each person was visited before (T0) and
after (T2) the beta-glucans intervention, and anthropometric parameters (height, weight,
BMI) and FMD measurements were taken and registered on an electronic case report form.
Food frequency and 24-hours recall questionnaires were administered in order to obtain
information about food intake, and blood and feces samples were collected. The latter were
used to determine SCFA concentration, by gas-chromatography mass spectrometry-solid-
phase microextraction (GC-MS/SPME), as detailed elsewhere [25]. No incentive was pro-
vided to the volunteers.
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Nutritional analysis

As previously reported [25], the FFQ and the 24-hours recall questionnaire administered at
T0 and T2 were used to extrapolate the data on a single component intake, by using the
official Italian food composition databases (INRAN, http://nut.entecra.it/646/tabelle_di_
composizione_degli_alimenti.html and IEO, http://www.bdal10ieo.it/uk/index.aspx) and to
calculate the PREDIMED score [29].

Blood analyses

Blood samples were processed for routine analyses, including metabolic parameters: total and
high-density lipoprotein (HDL) cholesterol and glycaemia were measured using Siemens
enzymatic methods (Dimension Vista 1500, Siemens Health Diagnostics, Deerfield, IL), while
glycated haemoglobin (HbA1c) levels were determined using high-performance liquid chro-
matography (BioRad D10, Pratteln, Switzerland). LDL cholesterol levels were estimated by
using the Friedewald equation for values < 300 mg/dl. An additional aliquot of blood for each
patient/time point was centrifuged at 3000 rpm for 10 minutes. The obtained serum samples
were then stored at —80°C until use.

Liquid chromatography/electrospray ionization—mass spectrometry/
mass spectrometry (LC/ESI-MS/MS) for quantification of uremic toxins
pCS and IS

Serum samples were treated following the procedure reported by Itoh [30]. Briefly, unpro-
cessed serum (20 L) was diluted with 40 pL of distilled water. A 50 pL aliquot of diluted
serum was added to 200 pL acetonitrile containing internal standard (100 ng/mL of stable-iso-
tope-labelled compounds; indoxyl-d4 sulphate from Toronto Research Chemicals, North
York, ON, Canada) in a Sirocco 96-well protein precipitation plate (Waters, Milford, MA,
USA), and the mixture was mixed and centrifuged to remove protein precipitation according
to the manufacturer’s protocol. After centrifugation, 40 pL of filtrate, eluted in the Sirocco’s
collection plate, were diluted with 120 pL of 5 mmol/L ammonium acetate solution (Sigma)
before LC/MS/MS analysis. Quantitative analysis of pCS and IS was performed by selected
reaction monitoring (SRM) of LC/ESI-MS/MS. HPLC analysis of each sample (5 uL) was per-
formed using a gradient elution with a LC-20Avp LC system (Shimadzu, Kyoto, Japan) on an
Atlantis dC18 column (2.1 mmx50 mm, 3 pm) (Waters, Milford, MA, USA) at a flow rate of
0.2 mL/min with the column maintained at 40°C. The gradient solution consisted of a solvent
A (5 mmol/L ammonium acetate solution) and a solvent B (methanol). We operated in a nega-
tive ion mode with an elution solution of 20% B (A:B; 80:20, by volume) for 2 min followed by
a linear gradient up to 60% B for the next 2 min and up to 95% for the next 3 min. After 1.5
min at 95% B it was returned to 20% B over the next 0.5 min, followed by 20% B for 11 min,
making a total cycle time of 20 min/sample.

The SRM method of LC/ESI-MS/MS was carried out using a triple quadrupole mass spec-
trometer (API4000, AB SCIEX, Carlsbad, CA, USA) equipped with an ESI source. The MS/MS
parameters for the quantification of IS were: Q1 (212.08 m/z), Q3 (80.0 and 132.0 m/z), reten-
tion time (Rt, 2.4 min), DP (-38.40 V), EP (-11.00 V), CP (-25.80 V), CXP (-4.87 V). The MS/
MS parameters for the quantification of pCS were: Q1 (186.8 m/z), Q3 (106.9 m/z), retention
time (Rt, 4.66 min), DP (-50.30 V), EP (-6.30 V), CP (-31.00 V), CXP (-14.00 V). MS/MS oper-
ating conditions were as follows: curtain gas: 20 psi; ion source gas 1: 60 psi; ion source gas 2:
70 psi; collision gas: 4; ESI: -4 kV; ion source temperature: 500°C; interface heater: ON. Data
acquisition and processing were carried out using the software package Analyst 1.6.2. To
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calibrate the total serum concentration, a 40 pL aliquot of the commercially available pCS
(ALSACHIM, Bioparc ILLKIRCH, FRANCE) and IS (Toronto Research Chemicals, North
York, ON, Canada) of known concentrations in distilled water (seven concentrations of each
metabolite were used for calibration curve) was spiked into a 20 uL aliquot of a pool of healthy
subjects human serum, which was pre-processed in active carbon (2.5 g/ 50 mL serum) to
remove internal metabolites. The serum containing the known aliquots of pCS and IS was
then processed as described previously. Calibration curve range for both metabolites was from
0.02 to 2 pg/mL and correlation coefficients (r) for the measurement of total serum concentra-
tion was 0.9994 and 0.9999 for pCS and IS, respectively. The calibration curves showed almost
linear correlation coefficients in the range between the minimum and maximum concentra-
tions. Samples with pCS and IS levels beyond the maximum concentrations of the calibration
curves were diluted with distilled water and then reanalysed by LC/ESIMS/MS analysis.

FMD

FMD is considered as an index of nitric oxide-mediated vasodilatation. As it is known that
temperature, food, stress, drugs and sympathetic stimuli influence the FMD [31], we per-
formed the study with the subjects fasting for at least 8-12 hours, in a quiet air conditioned
room (22-24°C), early in the morning. Moreover, the subjects were asked not to exercise,
smoke, or take exciting substances like coffee/tea, chocolate which could impair the endothe-
lial function and for at least 4-6 hours before the exam. The subjects were positioned supine
and underwent a preliminary evaluation to explore the anatomy and identify landmarks;
particular attention was directed to poor quality images, the presence of atherosclerotic pla-
ques, calcifications, arterial tortuosity or kinking. The scan was done at the level of the right
brachial artery between 5 and 10 cm above the antecubital fossa using a 7.0 MHz or higher
linear probe. The study was performed using a high resolution ultrasonograph (Philips
Sonos 5500) connected to an image analysis system, certified by the CNR of Pisa (MVE II)
[32], for computing the brachial artery diameter in real-time by analyzing B-mode ultra-
sound images, setting positivity to the test value at less than 5%. All the ultrasound examina-
tions were performed by the same physician in order to reduce the observer bias. With the
subject in supine position for at least 10 minutes, the arm was positioned comfortably in
such a way as to get good images of the humeral artery. The selected artery segment to be dis-
played was above the antecubital fossa in a long axis projection, in order to identify the part
where the anterior and posterior intimal interfaces between the lumen and vessel wall were
clear. Moreover, in order to maintain the same image during the whole study, we used a
probe-supporting device. A sphygmomanometer cuff was placed in the distal site to the
humeral artery, i.e. on the forearm, and then, the brachial artery profile was manually traced
on image analysis system. After 1 minute of flow image baseline acquisition, the artery was
occluded by inflating the cuff to at least 50 mmHg above systolic pressure for exactly 5 min
[31]. When the cuff was deflated, it induced a short state of high flow (reactive hyperemia)
through the brachial artery due to the reduced downstream resistance caused by the ische-
mia-induced dilatation. The resulting increased shear stress provides the stimulus for nitric
oxide release from endothelium and dilatation of the humeral artery. Within 15 seconds
from the end of artery occlusion, the flow velocity was measured and then the degree of
hyperemia. Furthermore, the image of the artery was recorded for 3 minutes after cuff
deflation. The image analysis system shows the instantaneous diameter of brachial artery
throughout the study and draws the diameter curve. The latter is automatically analyzed,
providing the FMD value corrected for age, gender and body weight, as the ratio of the
change in diameter (difference between the maximum post-deflation and baseline value)
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divided by the baseline value. FMD was analyzed as the percentage increase in brachial artery
diameter compared to the baseline after the application of a pressure stimulus.

Statistical analysis and correlations

All the analyses, performed at group level, were based on the intention to treat. Experimental
data are presented in tabular form as mean + SD (parametric variables) or median and inter-
quartile range (non-parametric variables) and in graphical form as mean + SEM or median
and interquartile range, respectively. Differences between quantitative parametric variables
were analyzed by Student two-tailed, paired t-tests, while differences between quantitative
nonparametric variables were tested against Wilcoxon test as appropriate. Laboratory values,
pCS and FMD passed the D’Agostino&Pearson normality test, while IS did not follow a nor-
mal distribution. For this reason, the Pearson analysis was applied to the correlation between
parametric variables, except that between pCS and IS, performed with the Spearman test. Sta-
tistical significance was considered when p values were < 0.05. All the analyses were per-
formed using GraphPad Prism (GraphPad software, version 6, San Diego, CA).

Results
Study population

The study started in December 2014 and ended in April 2015. In order to ensure the target of
30 enrolled volunteers, as many as 40 people were assessed for eligibility between acquain-
tances of the study staff and screened after a first phone contact: 12 were excluded (5 did not
meet the inclusion criteria and 7 declined to participate). As many as 28 healthy volunteers (12
males and 16 females) were recruited after they signed a written informed consent. 2 subjects
(1 male, 1 female) dropped out before starting the intervention with the functional pasta for
personal reasons. The remaining 26 volunteers (11 males, 15 females, Table 1) completed the
2-month intervention (Fig 1) and their data were included in the final analysis.

Diet intervention and serum levels of cholesterol

As previously reported [25], the diet intervention with pasta enriched with barley beta-glucans
(3 g for 100 g of pasta) did not change (p>0.05) the total daily intake of carbohydrates, total

Table 1. Descriptive characteristics and study results.

Age
HDL cholesterol (mg/dl)
LDL cholesterol (mg/dl)
Total cholesterol (mg/dl)
PCS (ppm)
IS (ppm)
FMD (%)
Glycaemia (mg/dl)
HbA1c (mmol/mol)

TO T2 p value
38.0 (34.5-43.0) - -
62.6+16.6 62.4+16.6 0.92
107.4£25.2 93.8+24.5 0.003
183.8 £ 30.3 173.3+27.4 <0.001
2.15+1.22 1.48+1.25 0.02
0.52 (0.37-0.77) 0.60 (0.44-0.73) 0.75
72+1.6 9.5+3.3 0.002
79.96 + 8.56 82.33+7.39 0.03
31.29+3.33 34.13+3.37 <0.001

The table reports the median age of the enrolled subjects and the numerical results of the study, before (T0) and after the 2-month intervention (T2).
Parametrical data (HDL, LDL and total cholesterol, pCS, FMD, glycaemia, HbA1c) are represented as mean * SD, non-parametrical ones (age, IS) are
reported as median and interquartile range; p-values of t-student and Wilcoxon tests of the differences between TO and T2 are reported, respectively. Age,
LDL and total cholesterol data already published by De Angelis et al. [25]. Abbreviations: HDL (high-density lipoprotein), LDL (low-density lipoprotein), pCS
(p-cresyl sulfate), IS (indoxyl sulfate), FMD (flow-mediated dilation), HbA1c (glycated haemoglobin).

doi:10.1371/journal.pone.0169635.1001
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v
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Fig 1. Study flow diagram. Graphical study representation, adapted from CONSORT® 2010 flow diagram, showing the total number of people assessed
for eligibility, enrolled, undergoing intervention and analyzed.

doi:10.1371/journal.pone.0169635.9001

proteins, fat, minerals (sodium, potassium, iron, calcium and phosphorus), and vitamins (thia-
mine, riboflavin, niacin, Vit. C and Vit. E). The only exception was the total amount of fibers
which was the highest in the volunteers after ingestion of pasta enriched with barley beta-glu-
cans (13.4 and 22.0 before and after diet intervention respectively, p<0.001). The adherence to
the Mediterranean Diet was assessed by the calculation of the PREDIMED score [29], ranging
from 8.1+1.7 before the intervention to 8.2+1.7 after it, without any significant difference pre
and post-intervention, confirming that the beta-glucans supplementation was the only change
introduced in volunteers diet. No particular clinical condition or adverse effect was reported
by any of the volunteers. In addition, the validity of the study was also confirmed by the reduc-
tion of serum levels of total cholesterol (183.8+30.3 vs 173.3+27.4 mg/dl; confidence intervals
(CI) [171.0-196.6] vs [161.7-184.8]; p<0.001) and LDL cholesterol (107.4+25.2 vs 93.8+24.5
mg/dl; CI [96.7-118.0] vs [83.4-104.1]; p = 0.003) in the whole population (Table 1, Fig 2). No

PLOS ONE | DOI:10.1371/journal.pone.0169635 January 20, 2017 7/16



@° PLOS | ONE

Beta-Glucans, Saccharolytic Bacterial Metabolism and Vascular Function

300

mg/dl

100

200

Cholesterol

150 s

100 %

=)

3 5
k=) =+ = =)
100 S———

£ -\:§“““ = £ £y =1

—= 50 ——

=S ——

50 _

9 &~ N ’ o QO
S S \ D
«Q\/ ,{1'\' <Q <V

Fig 2. Pasta enriched with beta-glucans lowered LDL and total cholesterol serum levels. Serum levels of HDL (Fig 2a), LDL (Fig 2b) and total
cholesterol (Fig 2c) of healthy subjects before (T0) and after (T2) two months of diet intervention with pasta enriched with barley B- glucans. Statistically
significant difference (* p<0.001; $ p<0.05). Graphical representation of data published by De Angelis et al. [25].

doi:10.1371/journal.pone.0169635.9002

difference was observed in HDL cholesterol levels (62.6+16.6 vs 62.4+16.6 mg/dl; p = 0.92).
Although reduced, cholesterol levels remained in the normality range.

Serum levels of pCS and IS

In order to evaluate the effects of the dietary intervention on the microbiota metabolism, we
performed analyses of circulating pCS and IS. We observed a significant decrease in pCS (2.15
+1.22 vs 1.48+1.25 ppm; CI [1.6-2.7 vs 0.9-2.0]; p = 0.02) serum levels (Table 1, Fig 3a), while
IS levels remained unchanged in the population as a whole (Table 1, Fig 3b).

Improvement of vascular function

We measured endothelial function by FMD before and after the 2-month intervention period.
In order to avoid biases in the results, we took measurement at the same time in the morning.

We observed a marked and significant increase in the FMD value (7.20+1.58 vs 9.47+3.34; CI

[6.6-7.8] vs [8.1-10.8]; p = 0.002) (Fig 4), which indicated an improved vascular function.

Correlations

Consistently with their common biosynthetic pathway derived from the proteolytic metabo-
lism, we found a positive correlation between pCS and IS (Fig 5a). Moreover, we evidenced an
inverse correlation between FMD and total cholesterol (Fig 5b).

Discussion

In this study we demonstrate that a two-month dietary treatment providing a daily supply of
3g of beta-glucans, beyond its well-known cholesterol-lowering action, is associated with a sac-
charolytic shift in the gut microbiota metabolism and an improvement of the endothelial func-
tion, in a cohort of healthy volunteers. The dietary intervention, in fact, modulated microbial
metabolic markers panel, by decreasing pCS serum levels and increasing fecal SCFA concen-
tration, and was associated with an improved FMD.

Beta-glucans are fibres known for their ability to reduce LDL and total cholesterol [19-
23]. The aim of the present study was to explore additional health properties of beta-glucans.
In particular, we focused our attention on their action on the gut microbiota metabolism by
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Fig 3. Pasta enriched with beta-glucans lowered pCS, but not IS serum levels. Serum levels of pCS (A)
and IS (B) of healthy subjects before (T0) and after (T2) two months of diet intervention with pasta enriched
with barley B-glucans. In Fig 3b, continuous and dotted lines represent decreased and increased IS levels
after the intervention, respectively. *statistically significant difference (p<0.05).

doi:10.1371/journal.pone.0169635.9003
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20~

FMD

Fig 4. Improvement of FMD after the nutritional intervention. FMD measured before (T0) and after (T2) two months of diet
intervention with pasta enriched with barley B-glucans. Gender is evidenced with continuous and dotted lines for females and
males, respectively. *statistically significant difference (p<0.05).

doi:10.1371/journal.pone.0169635.9004

analysing systemic and local metabolic markers, and on the endothelial function through the
evaluation of FMD. Beyond the already reported reduction of LDL and total cholesterol
(underlining the compliance of the volunteers to the dietary scheme) and the increase in
SCFA [25], we show additional interesting evidence emerging from the same clinical trial. In
fact, the beta-glucans dietary treatment was effective in reducing pCS blood levels in the
study population, although the overall protein intake remained constant after the treatment,
being the fiber content the only food component that significantly changed during the diet
intervention. The slight induction in the glucose levels that we observed, although remaining
in the normality range, could likely be related to this increased fiber intake during the inter-
vention. Differently from pCS, IS did not change after the treatment. pCS and IS are pro-
duced respectively by phenylalanine/tyrosine and tryptophan degradation by the gut
microbiota and are normally excreted through the urine. In the context of CKD, where the
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Fig 5. pCS-IS and total cholesterol-FMD correlations. Graphical representation of the direct correlation
between pCS and IS (Fig 5a) and of the inverse correlation between total cholesterol and FMD (Fig 5b).
Round and squared points represents TO and T2 values, respectively. Correlation coefficients and p values
are represented in the figure.

doi:10.1371/journal.pone.0169635.9005
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excretory function declines, they are emerging as the novel “uremic toxins” since they accu-
mulate in blood in a proportion several-fold higher in comparison to healthy people [30,33].
Although directly correlated, as predictable from their common biosynthetic pathway, pCS
and IS followed a different trend in our study. This apparent contradiction finds confirma-
tion in some pieces of evidence in the literature, suggesting that pCS could be more suscepti-
ble than IS to intervention with food supplements [34,35]. The reasons for the differential
modulation of pCS and IS by our dietary intervention are unknown and are worthy to be
furtherly elucidated by future studies.

We previously demonstrated that the beta-glucans dietary treatment was able to induce a
modulation of the gut microbiota taxonomic composition and metabolism, leading to an
increase of SCFA levels [25]. This evidence, joined to the observed decrease of the circulating
uremic toxin pCS, suggests—for the first time on a human study, according to our knowledge
—the ability of beta-glucans to promote a saccharolytic shift in microbial metabolism.

Endothelial dysfunction is associated with several diseases, such as chronic heart failure and
diabetes mellitus [32,36], and evidence demonstrated the vascular benefits of some nutrients
in patients suffering from cardiovascular disease [37]. Notably, our study also evidences a posi-
tive effect of beta-glucans supplementation on the endothelial function in healthy subjects.
Indeed, a recent interventional study with supplementation of 6 g of beta-glucans contained in
a piece of oat bread failed to demonstrate a significant effect on FMD in hypercholesterolemic
patients [27], although it increased serum NO levels [28]. In another study, the efficacy of
whole oats and vitamin E to prevent endothelial dysfunction induced by a high-fat meal was
demonstrated on healthy subjects, through brachial artery peak flow, but also in this case no
difference in FMD was detected [26]. Differently from the aforementioned studies carried out
in patients at higher cardiovascular risk, in this study we report a significant increase in FMD
following the dietary treatment with the beta-glucans pasta. It is worth evidencing that it has
been suggested that alterations of FMD could have a major predictive value in patients at low
risk of cardiovascular events [38].

Interestingly, the inverse correlation we found between total cholesterol and FMD suggests
a hypothetical mechanism of beta-glucans-induced amelioration of FMD through cholesterol
reduction, even if our study does not allow us to confirm this hypothesis, neither we found sig-
nificant correlations between changes of FMD, uremic toxins and cholesterol.

Recently, a link between pCS blood concentration and cardiovascular risk has been under-
lined, especially in the context of the renal failure [39-41]. In this pathology, microbial-derived
proteolytic catabolites such as pCS and IS are not efficiently excreted by the kidney and accu-
mulate in the blood, accelerating the disease progression and promoting inflammation,
oxidative stress and cardiovascular complications [15]. In a recent paper, in particular, the
independent association between pCS and IS with structural and functional markers of CVD
was assessed, even if, as in the present study, no correlation was found between these uremic
toxins and FMD [42]. It is of interest that the total serum concentrations of pCS might be a
better predictor of CKD progression than IS [43] and that the association between plasma pCS
levels and the risk of CVD is not limited to the CKD population but can also be found in
patients with no renal diseases [44]. Finally, a recent meta-analysis indicated that elevated lev-
els of pCS and IS are associated with increased mortality in patients with CKD, and pCS, but
not IS, is associated with an increased risk of cardiovascular events [45].

We are aware of the limitations of the present study, in particular the small sample size, the
short duration of the study and the lack of a parallel control group. The main consequence is
that here we are just able to report the observed effects on metabolic microbial modulation
and on endothelial function following beta-glucans ingestion, but not to formulate a mecha-
nistic explanation of them, especially about the amelioration of FMD. In addition to the latter,
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the analysis of triglyceride rich lipoproteins (T'GRLs) should have allowed us to investigate at
molecular level the effects of beta-glucans on endothelial function [46,47].

Anyway, taking into consideration that the present research is a pilot study aimed to
explore new healthy properties of barley beta-glucans, we can conclude that a balanced diet
including a daily supply of beta-glucans, administrated for two months in healthy volunteers,
is associated with a saccharolytic shift in the gut microbiota metabolism, evidenced by a reduc-
tion of pCS toxin blood levels and an increase of SCFA production at colonic site. Moreover,
beyond reducing LDL and total cholesterol, beta-glucans treatment is associated with an ame-
lioration of the endothelial function. The finding of this study could give support, if demon-
strated in a larger scale and in a CKD context, to a recent and interesting branch of research
[16-18,34,35] focusing on nutritional strategies to reduce uremic toxins, with the future aim
to slow down CKD progression and reduce cardiovascular complications in end-stage renal
disease.
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