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Dynamic interactions between a membrane binding
protein and lipids induce fluctuating diffusivity
Eiji Yamamoto,1* Takuma Akimoto,1 Antreas C. Kalli,2,3 Kenji Yasuoka,4 Mark S. P. Sansom2*

Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphati-
dylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in
biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it
lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to
the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian
motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally
fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time.
Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements.
This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules.
Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of
proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound
proteins may in turn contribute to the formation/dissolution of protein complexes in membranes.
INTRODUCTION
Cell membranes provide a unique and complex environment for
biological reactions, in which both protein-lipid and protein-protein
interactions within the membranes play a key role (1–3). Diffusion
of biomolecules within membranes is crucial for regulating many as-
pects of cell function. Macromolecular complexity and crowding cause
spatiotemporal heterogeneity and thus influence the diffusion process
in cell membrane environments.

Peripheral membrane proteins are present within the cytoplasm of
cells and associate with cell membrane surfaces in a lipid-dependent
fashion. They play key roles in many trafficking and signaling events
within cells. Association of peripheral proteins on membrane surfaces
is determined by lipid-binding modules, of which the pleckstrin ho-
mology (PH) domains are a well-studied family. PH domains are a
structurally conserved family of proteins that bind to specific lipids
[phosphatidylinositol phosphates (PIPs)] that are present in cell mem-
branes (4, 5). Although structures and membrane interactions have
been studied for different PH domains (6–8), understanding the dif-
fusive behavior of PH domains bound to a cell membrane surface re-
mains challenging (9–11). Recently, a number of studies have suggested
that PIP molecules cluster around membrane-bound peripheral pro-
teins (12, 13). This clustering may affect the diffusivity of peripheral
proteins on the membrane surfaces and is thus likely to play a role
in regulating their function.

Using single-particle tracking techniques, one can obtain the tra-
jectories of biomolecules. Diffusion is often characterized by the time-
averaged mean square displacements (TAMSDs)

�d2ðD;tÞ ¼ 1
t � D

∫
t�D

0 ½ r→ðt′þ DÞ � r
→ðt′Þ�2dt′ ð1Þ
where r
→ðtÞ and D(≪t) are the position of the tracked particle and the

lag time, respectively. In simple diffusion processes, diffusivity is char-
acterized by the slope of the TAMSD for long-time measurements,
that is,�d2ðD;tÞ ∼ 2dDD, where d is the dimension and D is the dif-
fusion coefficient. In this case, the diffusion coefficient is uniquely
determined depending on the viscosity of the medium and/or the
shape of the Brownian particle. However, in living cells, proteins
can change their shapes, and properties of the surrounding environ-
ments change with time. Therefore, the diffusivity obtained by long-
time measurements fails to capture the short-time diffusivity, defined
as the diffusivity obtained by short-time measurements, which is
considered to be intrinsically fluctuating under diffusion processes.
Moreover, anomalous diffusion, seen as a sublinear time dependence
of TAMSDs, is not unusual but rather is ubiquitously observed for
both proteins in cell membranes (14, 15) and, for example, mRNA
(16), chromosomal loci (17), lipid granules (18), and insulin granules
(19) within cells. Moreover, using molecular dynamics (MD) simu-
lations, subdiffusive motions have also been observed in the diffusion
of lipids (20–23), of transmembrane proteins (24), and of water mol-
ecules at the surface of membranes (25).

Various stochastic models of anomalous diffusion have been pro-
posed to interpret the physical origin of the diffusion process on the
assumption that the environment is homogeneous (26, 27). However,
this assumption is unlikely to be valid in a cell membrane that pres-
ents a heterogeneous environment (3). Furthermore, the quenched
trap model, that is, diffusion on a random energy landscape, provides
a rich behavior that is different from that of a homogeneous envi-
ronment (28, 29). Revealing the origins of diffusion is important be-
cause it will allow us to understand the physical properties of a range
of processes, for example, viscoelasticity with crowding of macromol-
ecules (16, 18, 20–23, 25), transient immobilization in the presence of
obstacles with heavy-tailed trapping (14, 19, 25), and jamming in the
presence of obstacles (14, 19). Diffusivity may also change temporally
because of changes in the surrounding environment or because of dy-
namically fluctuating shapes of biomolecules (30, 31). Stochastic models
for heterogeneous diffusion processes, in which diffusivity is a spatio-
temporally random quantity, have been developed recently in order to
interpret the anomalous diffusion of biomolecules in heterogenous
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crowding environments [for example, spatial heterogeneity (32)
and temporal heterogeneity (33–38)].

Here, using MD simulations, we investigate the diffusive behav-
ior of the DAPP1 PH domain on a lipid membrane surface, explor-
ing how the diffusivity of the protein changes with respect to time.
Moreover, we show that the fluctuating diffusivity of the bound
protein arises from the underlying protein-lipid interactions,
which, in turn, dynamically change in time, and that the process
is ergodic.
RESULTS
Simulations of PH domain interactions with a membrane
To investigate the diffusion process of a peripheral protein on a mem-
brane surface, we performed coarse-grained MD (CG-MD) simulations
(39) of the DAPP1 PH domain interacting with a PIP-containing lipid
bilayer membrane. In the initial configuration of each simulation, the
PH domain was displaced ca. 9 nm away from the lipid bilayer surface.
One hundred simulations were run, each for 10 ms starting from dif-
ferent initial orientations of the PH domain relative to the bilayer, thus
yielding a total simulation time of 1 ms. We tracked the protein on the
membrane surface and analyzed PH domain diffusion for the last 8 ms
of each trajectory for which the protein was bound to the membrane
(see fig. S1). Note that 3 trajectories were removed from the initial en-
semble of 100 as the protein molecule, having bound, subsequently
dissociated from the bilayer. Additionally, we subtracted the center of
mass (COM) of the associated bilayer leaflet from the trajectories of the
protein to remove effects of COMmotion of the membrane as a whole
(20, 22, 24, 25). The TAMSD of the PH domain on the lipid membrane
surface exhibits transient subdiffusion, that is,�d2ðD;tÞºDa for shorter
lag times, switching to�d2ðD;tÞºD for longer lag times (see Fig. 1). The
power-law exponent a changes from 0.7 to 1.0 at a crossover point
around 10 ns, which corresponds to the crossover point for anom-
alous diffusion of lipids within pure lipid bilayers (20–24). Note that
the diffusion coefficient is of the same order of magnitude as the ex-
perimentally measured diffusion coefficient of the GRP1 PH domain
(9, 10, 13). Similar transient subdiffusion is also observed for other PH
domains (13). Moreover, we confirmed that there is no aging of
TAMSDs, that is, 〈�d2ðD;tÞ〉 ¼ const:, and that there is ergodicity of
the diffusion process, that is, the ensemble-averaged MSD is consistent
with the TAMSD (see fig. S2).
Yamamoto et al. Sci. Adv. 2017;3 : e1601871 20 January 2017
Anticorrelated motion of the PH domain over shorter
time scales
The diffusive properties of lipids are known to show correlated
motions relevant to fractional Brownian motion (FBM) (20–23).
The correlated motions of lipids were also shown to affect the dy-
namics of interfacial water molecules on the membrane surface
(25, 40). To investigate the impact of the FBM of the lipid molecules
on the PH domain, we calculated the displacement autocorrelation
function (DAF) of the protein

CDðtÞ ¼ 〈ðxðt þ DÞ � xðtÞÞðxðDÞ � xð0ÞÞ〉=D2 ð2Þ

Figure 2A shows the normalized DAF CD(t)/CD(0) for D = 0.1 and
2 ns. The DAF of free FBM decays from negative values to zero via a
power law (41), CD(t)/CD(0) ∼ − (a − a2)(D/t)2 − a/2. The normalized
DAF for D = 0.1 ns agrees well with the theoretical behavior of free
FBM with a = 0.7 (41). Although the normalized DAF for D = 2 ns is
not consistent with FBM, we can clearly see a cutoff around 10 ns,
which implies that TAMSDs correspond to normal diffusion for D >
10 ns. The behavior of the protein exhibits anticorrelation compa-
rable to the anticorrelated motions of lipids (20–23). Thus, the dif-
fusion process of the peripheral PH protein on the membrane
surface at shorter time regions is affected by the FBM of lipids with
which it interacts.

To confirm whether the diffusive features are well described by the
FBM, we examined the Gaussianity of the displacement. In particular,
we calculated the propagator, that is, the probability that a particle is
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Fig. 1. The TAMSDs of 97 trajectories of the PH domain on the membrane
surface. The measurement time for each trajectory t is 8 ms. The black solid lines
are shown for reference.
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Fig. 2. Anticorrelated motion and non-Gaussianity of the PH domain diffus-
ing on the membrane surface. (A) Normalized DAF CD(t)/CD(0) of the protein for
D = 0.1 ns (black) and 2 ns (yellow). The inset shows the log-log plot. The solid and
dashed cyan lines indicate the theory of FBM. (B) The propagator as a function of the
normalized position, defined by x=s ≡ ~x, where the SDs s are 0.1, 0.6, and 5.4 nm for
D = 10−4, 10−2, and 1 ms, respectively. Each different symbol represents a different lag
time D. The dashed line is a Gaussian distribution with unit variance. The propagators
deviate from Gaussianity for x > 4s.
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found in (x, x + dx) at the lag time D. However, the normalized prop-
agator P(x, D) has a non-Gaussian shape (see Fig. 2B). Therefore, the
anomalous diffusion of the PH domain may be accounted for by the
coexistence with other diffusive properties.

Fluctuating diffusivity of the PH domain
Interactions between the protein and PIP molecules in the bilayer are
crucial for the localization of the PH domain on the membrane sur-
face. As shown in Fig. 3A, the number of PIP molecules interacting
with a bound PH domain changes with time. These dynamic inter-
actions are expected to affect the diffusivity of the protein because
the diffusivity crucially depends on the properties of the PH/PIP
complex, including the number of PIPs present in this complex. In
other words, the short-time diffusivity (corresponding to the short-
term, that is, sub-nanosecond, subdiffusion regime) may change with
time as the number of bound PIPs changes. To better characterize
the diffusive behavior of the PH domain, we propose a new method
to estimate the short-time diffusivity. To the best of our knowledge,
there is currently no method to estimate the short-time diffusivity
without knowing the times at which diffusivity changes substantially.
Using our estimation method (see Materials and Methods for more
details), we can detect variations of the short-time diffusivity as a
function of time in a trajectory (see Fig. 3B). Here, we obtained five
different diffusive states over the duration of the simulation. Thus,
we have successfully detected the fluctuating diffusivity of the PH
domain. To investigate the effect of clustering of PIPs about the
Yamamoto et al. Sci. Adv. 2017;3 : e1601871 20 January 2017
PH domain on the diffusivity of the protein, we calculated the num-
ber of PIPs bound by the PH domain in each diffusive state (see Fig.
3B). We then examined the correlation between the time-dependent
diffusivity [D(t)] and the number of bound PIPs ½NðtÞ�� across the
whole ensemble of 97 simulations analyzed [see Fig. 3C; the prob-
ability density functions (PDFs) of D(t) and NðtÞ� are shown in fig. S3].
It is evident that the diffusivity of the protein is lower when more
PIPs are bound than when fewer PIPs are bound. There is a neg-
ative correlation (correlation coefficient = −0.42) between the short-
time diffusivity and the number of bound PIP molecules. In Fig. 3D, we
show the typical trajectory of the PH domain bound to the membrane
surface corresponding to Fig. 3B. Although the PH domain diffuses in
the same place, the short-time diffusivity differs. This means that the
short-time diffusivity of the PH domain undergoes a temporal fluctua-
tion depending not on spatial heterogeneity but instead on temporal
changes in the number of bound PIP molecules.

Heterogeneous diffusion with fluctuating diffusivity
If a system is non-ergodic and/or the time average is not taken for a
sufficiently long time period, the TAMSD does not coincide with the
MSD. In this case, the TAMSD exhibits broad scattering. The mag-
nitude of the fluctuations of the TAMSD can be quantified by the
relative standard deviation (RSD) (36–38, 42–44)

R t;Dð Þ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈�d2ðD;tÞ2〉� 〈�d2ðD;tÞ〉2

q

〈�d2ðD;tÞ〉
ð3Þ

In the case of non-ergodic diffusion processes, for example, the
continuous-time randomwalk (42–44) and annealed transit time models
(35), the RSD of TAMSDs converges to a nonzero value for all D≪ t
as t → ∞. This is totally different from ergodic diffusion processes,
for example, Brownian motion and FBM in the subdiffusion case
(45), for which the RSD converges to 0 with a power-law form t−0.5.
In this case, there would be no intrinsic differences between diffusivities
for short-time measurements and for long-time measurements. In
other words, fluctuations of the TAMSD come from the finite mea-
surement times. However, the difference from the scaling t−0.5 will
imply a possibility that the short-time diffusivity is intrinsically fluc-
tuating. Figure 4 shows the RSD of TAMSDs of the membrane-bound
PH domain. The convergence of the RSD to 0 is very slow, that is, the
power-law exponent is below −0.5, although the diffusion process is
ergodic, as shown by the agreement between the time-averaged and
ensemble-averaged MSDs (see fig. S2).

To interpret this, we consider a Langevin equation with fluctuat-
ing diffusivity (LEFD) model (36–38) as a temporally heterogeneous
diffusion process, dxðtÞ=dt ¼ ffiffiffiffiffiffiffiffiffiffiffi

2DðtÞp
wðtÞ, where w(t) is the white

Gaussian noise with 〈w(t)〉 = 0, and 〈w(t)w(t′)〉 = d(t − t′). The LEFD
model is reasonable because the PH domain has been shown to ex-
hibit fast and slow diffusivities depending on the number of bound
PIPs (see above), and the diffusion process of this model is ergodic.
To capture the essential features of the observed heterogeneous dif-
fusion, we consider the diffusivity D(t) to vary dichotomously, that
is, DS for a slow state and DF for a fast state (DS < DF). From the PDF
of the diffusion coefficient, D ¼�d2ðD;tÞ=2dD for D = 0.1 ms and t =
1 ms, we used DF = 17 and DS = 14 mm2/s (see fig. S4). In the LEFD
with a two-state model, sojourn time for each state is a random
variable, and we assume that these distributions follow power-law
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Fig. 3. Temporally heterogeneous diffusion process of the PH domain.
(A) Snapshots of the PH domain in a many-PIP–bound state (upper) and a few-
PIP–bound state (lower). The PH domain, lipid bilayer, and bound PIP are colored
yellow, silver, and cyan/red, respectively. (B) Time series of the short-time diffusivity
estimated by our method and the time-averaged number of bound PIPs
corresponding to the diffusive state. (C) Correlation between the short-time diffusion
coefficient and number of bound PIPs in each state. (D) Lateral trajectory of a PH
domain on the membrane surface. Colors of the trajectory correspond to each state
in (B). The black triangles indicate the start and end points.
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distributions with exponential cutoffs, r(t) ∼ t−1−g exp (−t/tc), and g =
0.6 was taken from a previous study (13) (see fig. S5), which explored
many-PIP–bound and few-PIP–bound states. As can be seen from Fig.
4, the RSD of the LEFD model is surprisingly in agreement with the
RSD from the MD simulations of the PH domain (tc = 10 ms was
fitted with the RSD of the PH domain). Moreover, the PDF of the
diffusion coefficient and the non-Gaussian propagator of the LEFD
model are similar to those of the PH domain (see fig. S6). This is fur-
ther evidence that the short-time diffusivity intrinsically fluctuates with
time. In many signaling processes, dynamic interactions of peripheral
and integral membrane proteins may be required. Thus, the fluctuating
diffusivity of the PH domains and the changes in their local lipid
environment may contribute to the dynamics of formation/dissolution
of signaling complexes and/or the recruitment/detachment of other
peripheral membrane proteins to the membrane.
DISCUSSION
In summary, we have used extensive (1 ms) MD simulations to in-
vestigate the diffusive properties of the DAPP1 PH domain bound to
the surface of a model cell membrane. Although the underlying dif-
fusion process is ergodic, the diffusivity of the protein fluctuates
anomalously, which may be attributed to the dynamic interaction
between the PH domain and the PIP molecules to which it is bound.

Cell membranes are spatially and temporally inhomogeneous en-
vironments as a consequence of the formation of lipid (nano)domains,
the crowding of a variety of lipid and protein species, and interactions
with cytoskeletal components of the cell (3). These components of the
membrane environment are temporally and spatially regulated. Dy-
namic interactions of membrane proteins with lipids add a further
level of complexity that is therefore expected to make the diffusion
process of membrane proteins even more heterogeneous. In our study,
we have shown that this heterogeneity determines the diffusive nature
of key peripheral proteins on membrane surfaces. In particular, the
number of PIP molecules that are bound to a PH domain alters its
diffusivity. It is also likely that association/dissociation events may
add a further level of complexity to the dynamics of the protein on
the membrane surface. However, because we only observed three such
events in an ensemble of 100 × 10 ms, we are unable to reliably quan-
tify the consequences of the dissociation/association process. These
heterogeneous diffusion processes may be crucial for a variety of
biological processes (46, 47). Our results also suggest that lipid mole-
Yamamoto et al. Sci. Adv. 2017;3 : e1601871 20 January 2017
cules not only act as anchors for PH domains but also may provide a
mechanism that regulates their function by controlling their diffusion
and thus potentially modulating their interactions with other proteins
and receptors. It is possible that other classes of peripheral proteins
that interact with specific lipids [for example, C2 domains (48) and
PTEN (49)] may exhibit comparable diffusive behavior.
MATERIALS AND METHODS
MD simulations
CG-MD simulations were performed using GROMACS 4.5.5 (50)
with the Martini 2.1 force field (51, 52). The bilayer used in the
simulations consisted of POPC (1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine)/POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-l-serine)/PIP2 (phosphatidylinositol 4,5-bisphosphate)/
PIP3 (phosphatidylinositol 3,4,5-trisphosphate) [259 POPC
(73%), 71 POPS (20%), 18 PIP2 (5%), and 8 PIP3 (2%)] molecules.
The systems were solvated with 14,000 CG water molecules, and
NaCl ions at a 150 mM concentration were added to neutralize
the system. All systems were energy-minimized for 200 steps and
equilibrated for 1 ns with the protein backbone particles restrained.
For each repeat simulation within an ensemble, the protein was ro-
tated randomly around the x, y, and z axes to form a new initial
configuration. For the protein diffusive dynamics, 100 simulations
of 10 ms (overall 1 ms of simulation time) with the DAPP1 PH domain
[Protein Data Bank code: 1FAO (53)] were performed with a time step
of 20 fs, and trajectories were saved every 0.1 ns. For each simulation,
data for 0 to 2 ms were discarded before collecting data from 2 to
10 ms for analysis of PH domain diffusion. Thus, each simulation
analysis starts with a different distribution of PIP molecules around
the PH domain (see fig. S7). An elastic network model was applied to
all backbone particles within a cutoff distance of 0.7 nm to model
secondary and tertiary structures (54). The bond lengths were con-
strained to equilibrium lengths using the LINCS (Linear Constraint
Solver) algorithm (55). Lennard-Jones interactions were shifted to
zero between 0.9 and 1.2 nm, and Coulombic interactions were
shifted to zero between 0 and 1.2 nm. A pressure of 1 bar and a tem-
perature of 323 K were controlled using Berendsen’s algorithm (56)
with a coupling time of 1 ps. The above method predicts the correct
DAPP1 PH/bilayer complex, as we have shown in a previous work (8).
In that work, we have investigated the localization of 13 different PH
domains on the surface of a model lipid membrane using a multiscale
simulation approach. Strikingly, the PH/PIP complexes obtained by
our simulations are similar to the complexes obtained using x-ray
crystallography or nuclear magnetic resonance.

Estimation of short-time diffusivity
Here, we introduced an estimation method to detect the short-time
diffusivity. The stages of our method were the following: First, we
calculated the TAMSD restricted to the time window [t, t + T − D],
and thus, we obtained the temporal diffusion coefficients as a
function of t

D t;D;Tð Þ ¼ 1
2dDðT � DÞ∫

tþT�D

t ½ r→ðt′þ DÞ � r
→ðt′Þ�2dt′ ð4Þ

where T is a parameter that we had to determine suitably. Here, we
used D = 0.1 ms and T = 1 ms, which were the same values used for
10−2
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Fig. 4. RSD of TAMSDs of the protein (denoted by “• ”). The red solid line re-
presents the RSD of TAMSDs of the LEFD model with g = 0.6, tc = 10 ms, DF = 17 mm2/s,
and DS = 14 mm2/s. The black solid line is shown for reference.
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calculating a diffusion coefficient in fig. S3. However, this failed to
capture the short-time diffusivity because some time window [t, t +
T − D] contained the point at which the short-time diffusivity
changed substantially. For this reason, we introduced the renewal
time at which the diffusivity changed. The renewal time was defined
as the temporal diffusion coefficients crossed its mean. We divided
the obtained trajectory of D(t; D,T) into two states, a fast state F and
a slow state S, using the average calculated by the whole trajectory.
The transition point ti of each state was estimated by S → F [rS(ti) <
rF(ti)] or F → S [rF(ti) < rS(ti)], where

rF tið Þ ¼ 1
Tc
∫
tiþTc

ti
1ðDðt′;D;TÞ > DaÞdt′ ð5Þ

rS tið Þ ¼ 1
Tc
∫
tiþTc

ti
1ðDðt′;D;TÞ < DaÞdt′ ð6Þ

using the average Da, and we used Tc = 10 ns. The renewal time
detected the transition point from a fast to a slow diffusive state or
vice versa. Because we knew the renewal times t1, ⋯, ti, we calculated
the short-time diffusion coefficient in the time window [ti, ti+1]

D tð Þ ¼ 1
2dDðtiþ1 � ti � DÞ∫

tiþ1�D

ti
½ r→ðt′þ DÞ � r

→ðt′Þ�2dt′ ð7Þ

where ti is the ith renewal time, and we used D = 0.1 ns.
SUPPLEMETARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/1/e1601871/DC1
fig. S1. Distance between the COM of the protein and the bilayer for the 100 repeat simulations.
fig. S2. Ergodicity of the diffusion process.
fig. S3. Short-time diffusivity of the PH domain and number of bound PIP molecules.
fig. S4. PDF of the diffusion coefficient calculated byD ¼�d2ðD;tÞ=2dD for D = 0.1 ms and t = 1 ms.
fig. S5. PDFs of the residence times of many-PIP–bound and few-PIP–bound states.
fig. S6. Stochastic simulation of the LEFD model.
fig. S7. PIP molecules around the PH domain.
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