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Bordetella pseudohinzii is the provisional name for a pro-
posed novel species of Bordetella that is the only species with 
transcriptionally active clustered regularly interspaced short 
palindromic repeats (CRISPR) and CRISPR-associated sys-
tems.10 Genomic sequencing has identified that Bordetella hinzii 
strains previously identified in mice are actually B. pseudohinzii 
and are genetically distinct from the B. hinzii strains that have 
been isolated from poultry and humans.11 At our facility, there 
was an association between infection with B. pseudohinzii and 
increased neutrophils in the bronchoalveolar lavage fluid of 
mice.4 Infected mice did not have clinical signs, but histology 
demonstrated mild to moderate rhinitis.4 B. pseudohinzii was 
cultured from the oropharynx and lung and was identified 
in lung tissue and feces from infected mice by using a PCR 
assay for B. hinzii that crossreacts with B. pseudohinzii.4 Fecal 
PCR analysis is the preferred ante mortem diagnostic method 
to identify mice infected with B. pseudohinzii.4 Infection with 
this organism complicated pulmonary research at our insti-
tution and made it necessary to rederive and maintain a B. 
pseudohinzii–negative mouse colony for investigators studying 
pulmonary disease. To eradicate B. pseudohinzii, cross-foster 
rederivation and antibiotic administration in the drinking water  
were evaluated.

Cross-foster rederivation has been used to eliminate mu-
rine pathogens from rodent colonies.1,2,8,9,12,18,21 Cross-foster 
rederivation does not require specialized training, is less labor 

intensive than are other methods of rederivation, and does not 
require the euthanasia of donor females. At our institution, 
cross-foster rederivation is routinely performed and has been 
used to eliminate Helicobacter spp., murine norovirus, mouse 
hepatitis virus, and pinworms.1 The disadvantages of cross-
foster rederivation are that it cannot be used for pathogens 
that are transmitted in utero, and pups can potentially become 
contaminated between birth and cross-foster, either through 
exposure to the cage environment or from close contact with 
the dam. In utero infection with Bordetella species has not been 
reported, but transmission can occur from dams to offspring 
due to close contact.3,16

Antibiotic administration in the drinking water can be 
used to treat a large population of mice simultaneously, has 
a low labor cost, and is less stressful than are other methods 
of administration that require restraint or injection. Pasteurella 
pneumotropica has been eliminated from mouse colonies through 
the administration of enrofloxacin in the drinking water, thus 
demonstrating that this method of delivery can be successful 
against organisms that colonize the oropharynx.5,20 Antibiotic 
sensitivity testing of B. pseudohinzii isolates from the mouse 
colony demonstrated susceptibility to imipenem, amikacin, 
gentamicin, tobramycin, marbofloxacin, tetracycline, and sul-
famethoxazole and trimethoprim (TMS).4 TMS is a bactericidal 
drug that is regularly administered in the drinking water to 
immunocompromised mice at our facility; we therefore evalu-
ated whether this standard practice eliminates B. pseudohinzii 
infection. We also evaluated tetracycline in light of the avail-
ability of large-animal formulations that can be easily delivered 
in the drinking water. Although tetracycline is bacteriostatic, it 
is considered an effective antibiotic for intracellular bacteria, 
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performed every 2 wk, as described earlier. The original par-
ents for all litters that were cross-fostered were investigators’ 
strains and were tested for B. pseudohinzii by fecal PCR analysis 
to confirm infection-positive status prior to their inclusion in 
the statistical data set. All investigator strains were immuno-
competent, with the exception of toll-like receptor 4 (TLR4) 
knockout mice.

For the antibiotic study, it was necessary to infect mice with 
B. pseudohinzii. The exact pathogenesis of B. pseudohinzii is 
unknown, but other Bordetella species are transmitted through 
infectious aerosols, close contact with infected animals, and 
exposure to contaminated fomites.6 PCR-positive inhouse-bred 
mice were cohoused with negative vendor mice, to mimic a 
natural route of infection. To avoid pregnancy and aggression, 
only female mice were used for cohousing. Female C57BL/6J 
and Crl:CD1 mice (age, 6 wk) were tested for B. pseudohinzii 
by fecal PCR analysis when they arrived at the facility, and 
all were negative for the organism. These female mice were 
cohoused with inhouse-bred female C57BL/6 mice that were 
positive for B. pseudohinzii by fecal PCR analysis until all mice 
were PCR positive for B. pseudohinzii (after 4 to 6 wk of cohous-
ing). The female C57BL/6 mice that were used for cohousing 
were then included in the antibiotic study. So that both sexes 
were represented, inhouse-bred male C57BL/6 mice that were 
positive for B. pseudohinzii by fecal PCR testing were included 
in the antibiotic study. Mice were group-housed by sex, with 4 
animals per cage.

Cross-foster rederivation. The cross-foster rederivation proce-
dure has been described previously.1 Briefly, breeder cages were 
checked for litters daily, and those that were younger than 24 
h were collected. The pups were lightly sprayed with 200 ppm 
chlorine dioxide and were left wet for 2 min. The surrogate 
mother was kept in her cage with a maximum of 2 of her own 
pups and the cross-fostered litter. The surrogate’s remaining 
pups were euthanized with CO2 followed by decapitation.

TMS study. Mice that were PCR positive for B. pseudohinzii 
were provided with TMS in the drinking water (Sulfamethoxa-
zole and trimethoprim oral suspension, cherry flavor, HI-TECH, 
Amityville, NY). TMS-containing water was prepared by mix-
ing 8 mL of the oral suspension (320 mg sulfamethoxazole and 
64 mg trimethprim) into a 16-oz bottle of autoclaved water, 
thus yielding 0.66 mg/mL sulfamethoxazole and 0.13 mg/mL 
trimethoprim. Fresh bottles of TMS water were placed weekly 
and wrapped with aluminum foil. After either 4 wk (n = 12 
cages: 6 cages of female Crl:CD1, 4 cages of female C57BL/6J, 
and 2 cages of inhouse-bred male C57BL/6 mice) or 6 wk (n = 12 
cages: 6 cages of female Crl:CD1, 3 cages of inhouse-bred female 
C57BL/6, and 3 cages of inhouse-bred male C57BL/6 mice) of 
treatment, the TMS water was removed, and antibiotic-free 
water was provided. Fecal samples were collected from each 
cage for B. pseudohinzii PCR testing at the end of treatment and 
every 2 wk thereafter. If a cage was positive for B. pseudohinzii, 
the mice were euthanized with CO2 followed by cervical dislo-
cation. Animals were monitored daily for any adverse clinical 
signs associated with treatment. One female Crl:CD1 mouse 
was euthanized prior to the end of treatment due to ulcerative 
dermatitis.

Tetracycline study. Mice that were PCR positive for B. pseu-
dohinzii were provided with tetracycline (TetraMed 324 HCA, 
Bimeda, Le Sueur, MN) in the drinking water. Tetracycline 
water was prepared by mixing 3 g of powder (2140 mg of tet-
racycline) into a 16-oz bottle of autoclaved water, thus yielding  
4.5 mg/mL tetracycline.7 Fresh bottles of tetracycline water were 
placed weekly and wrapped with aluminum foil. After 6 wk of 

and most canine Bordetella bronchiseptica isolates are susceptible 
to this antibiotic.17,19

Materials and Methods
Facility. The Biologic Resources Laboratory is the centralized 

animal facility at the University of Illinois at Chicago, which has 
an AAALAC-accredited animal care and use program. Excluded 
microbial agents are Helicobacter spp., Mycoplasma pulmonis, 
pinworms, fur mites, murine norovirus, mouse rotavirus, mouse 
hepatitis virus, mouse parvoviruses, minute virus of mice, 
pneumonia virus of mice, reovirus 3, Sendai virus, ectromelia, 
lymphocytic choriomeningitis virus, murine adenovirus 1 and 
2, polyomavirus, and Theiler murine encephalomyelitis virus. 
Mice were group-housed in autoclaved static microisolator 
cages with autoclaved corncob bedding, autoclaved nesting 
enrichment (Cotton square, Ancare, Bellmore, NY), and auto-
claved municipal water bottles with weekly cage changes. All 
cages were opened in class II biosafety cabinets or HEPA-filtered 
animal transfer stations according to standard microisolation 
practice, which included the disinfection of gloves with 100 
ppm chlorine dioxide (Quip Laboratories, Wilmington, DE) 
between cages. Rooms had a 14:10-h light:dark cycle, and 
mice had unrestricted access to an irradiated diet (Rodent Diet 
7912, Envigo, Teklad, Indianapolis, IN). All animal work was 
performed under IACUC-approved protocols.

Animal housing. Cross-foster rederived mice were housed in 
a restricted-access suite, with access limited to members of the 
veterinary staff and selected veterinary and animal care tech-
nicians. In addition, entrance to the suite was permitted only 
when other animal housing or procedure rooms had not yet 
been entered that day. Facility procedures followed those de-
scribed previously, except that the concentration of the chlorine 
dioxide solution used in the suite was 200 ppm. The surrogate 
colony and rederived mice were tested for B. pseudohinzii every 
2 wk by using fecal-pellet PCR analysis of pooled samples (6 to 
8 cages per pool). If a pooled sample was PCR positive for B. 
pseudohinzii, each cage in the pool was retested individually to 
identify the positive cages, which were immediately removed 
from the suite.

Mice treated with antibiotics in the drinking water were 
housed in a dedicated restricted access room that was separate 
from the cross-foster restricted-access suite and other facility 
animals. Access was limited to members of the veterinary staff 
and selected animal care technicians.

PCR analysis. The PCR procedure has been described previ-
ously.4 Briefly, total nucleic acids were extracted from fecal 
pellets by using a commercially available platform (One-For-All 
Vet Kit, Qiagen, Valencia, CA). The B. pseudohinzii PCR assay was 
based on a proprietary service platform (IDEXX Laboratories, 
Westbrook, ME), which targets a region of the outer membrane 
protein A gene that is conserved among all B. pseudohinzii and  
B. hinzii genomic sequences deposited in GenBank. A hydrolysis 
probe-based real-time PCR assay targeting a housekeeping gene 
(18S rRNA or 16S rRNA) was used to determine the amount 
of genomic DNA present in the test sample, to confirm DNA 
integrity, and to ensure the absence of PCR inhibitors. Diag-
nostic real-time PCR analysis using standard primer and probe 
concentrations and a commercially available mastermix (LC480 
ProbesMaster, Roche Applied Science, Indianapolis, IN) was 
performed on a commercially available real-time PCR platform 
(LightCycler 480, Roche).

Animals. Surrogate colony breeding animals were male and 
female CRL:CD1-Elite mice. All animals were tested on arrival 
and were negative for B. pseudohinzii by fecal PCR analysis  
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from a contaminated dam and cage environment, whereas the 
administration of antibiotics in the drinking water is designed 
to eliminate the microbial agent from animals with an estab-
lished infection and does not address the carrier state or cage 
contamination. Antibiotic administration in the drinking water 
decreases microbial burden, but when antibiotic administration 
is discontinued, recrudescence of a carrier state or reinfection 
from contamination in the cage can occur. The presence of a 
carrier state is not surprising, given that Bordetella species are 
able to evade the immune system within phagocytes, and B. 
bronchiseptica can form biofilms in the nasal cavity of mice.6 
Cross-foster rederivation can prevent the initial infection of 

treatment (n = 12 cages: 6 cages of female Crl:CD1, 4 cages of 
female C57BL/6J, and 2 cages of inhouse-bred male C57BL/6 
mice), the tetracycline water was removed, and antibiotic-free 
water was provided. Fecal samples were collected from each 
cage for B. pseudohinzii PCR testing at the end of treatment and 
every 2 wk thereafter. If a cage was positive for B. pseudohinzii, 
the mice were euthanized with CO2 followed by cervical disloca-
tion. Mice were monitored daily, and no adverse clinical signs 
were observed throughout the study.

Statistical analysis. Statistical analysis was performed by using 
SAS Enterprise Guide (version 4.3, SAS Institute, Cary, NC). The 
3 antibiotic-treatment groups were pooled for a total of 36 cages, 
and Pearson χ2 testing was used to determine the association 
between the method of eradication (cross-foster rederivation 
compared with antibiotic administration in the drinking water) 
and B. pseudohinzii infection. An odds ratio was estimated from 
a logistic regression to determine the effectiveness of cross-foster 
rederivation compared with antibiotic administration. Logistic 
regression was also performed to detect whether the type of 
antibiotic, duration of treatment, sex, or strain was significantly 
associated with B. pseudohinzii infection. A P value less than 0.05 
was considered to be significant.

Results
Cross-foster rederivation study. Of the 29 litters cross-fostered 

into the barrier suite from breeding cages that were PCR positive 
for B. pseudohinzii, 24 of them were negative for the organism 
at all testing time points. In the 5 litters that were positive for  
B. pseudohinzii, the organism was detected at their first fecal PCR 
analysis, when the pups were 2 to 4 wk old.

TMS study. After 4 wk of TMS treatment, 10 of 12 cages were 
negative via fecal PCR for B. pseudohinzii, but only 5 of 12 cages 
were negative 2 wk after treatment and only 3 of the 12 cages 
were negative 4 wk after the treatment (Table 1). All 12 cages were 
negative for B. pseudohinzii immediately after 6 wk of TMS 
treatment, but only 1 of the 12 cages was still negative for B. 
pseudohinzii at 2 wk after treatment (Table 2).

Tetracycline study. A 6-wk treatment with tetracycline ren-
dered 9 of 12 cages negative for B. pseudohinzii. However, at 2 
wk after treatment, only 3 of the 12 cages were still negative for 
the organism (Table 3).

Statistical analysis. Pearson χ2 testing demonstrated that there 
was a strong association (P < 0.0001) between the method of 
eradication (cross-foster rederivation compared with antibiotic 
administration in the drinking water) and B. pseudohinzii infec-
tion (Table 4). The odds-ratio estimate from a logistic regression 
indicated that cross-foster rederivation was 19.883 times (95% 
confidence interval, 5.591 to 70.705) more effective than was 
antibiotic administration for the eradication of B. pseudohinzii. 
None of the other variables (type of antibiotic, P = 0.21; dura-
tion of treatment, P = 0.21; sex, P = 0.07; strain, P = 0.49) was 
significantly associated with eradication of B. pseudohinzii.

Discussion
This study demonstrated that cross-foster rederivation is 

superior to antibiotic administration in the drinking water 
for the eradication of B. pseudohinzii from mice and for the 
long-term maintenance of PCR-negative animals. The overall 
success rate was 82.75% for cross-foster rederivation compared 
with 19.44% for antibiotic administration in the drinking water. 
The difference in efficacy is likely due to the inherent differ-
ence in how the organism is eliminated by each treatment. 
Cross-foster rederivation prevents infection by removing litters 

Table 1. Fecal PCR results for cages of mice treated with TMS in the 
drinking water for 4 wk

Sex
End of  

treatment
2 wk after 
treatment

4 wk after 
treatment

Crl:CD1 Female 4 of 6 3 of 4 1 of 3
C57BL/6J Female 4 of 4 0 of 4 0 of 0
C57BL/6 Male 2 of 2 2 of 2 2 of 2

Total 10 of 12 5 of 10 3 of 5

Data are given as the number of cages negative for B. pseudohinzii among 
the total number of cages tested.

Table 2. Fecal PCR results for cages of mice treated with TMS in the 
drinking water for 6 wk

Sex End of treatment 2 wk after treatment

Crl:CD1 Female 6 of 6 1 of 6
C57BL/6 Female 3 of 3 0 of 3
C57BL/6 Male 3 of 3 0 of 3

Total 12 of 12 1 of 12

Data are given as the number of cages negative for B. pseudohinzii among 
the total number of cages tested.

Table 3. Fecal PCR results for cages of mice treated with tetracycline in 
the drinking water for 6 wk

Sex End of treatment 2 wk after treatment

Crl:CD1 Female 4 of 6 1 of 4
C57BL/6J Female 3 of 4 1 of 3
C57BL/6 Male 2 of 2 1 of 2

Total 9 of 12 3 of 9

Data are given as the number of cages negative for B. pseudohinzii among 
the total number of cages tested.

Table 4. Pearson χ2 analysis (P < 0.0001) 

Method of eradication

Cross-foster 
rederivation (no. 

of litters)

Antibiotic admin-
istration (no. of 

cages)

B. pseudohinzii infection status
Not infected 24 7
Infected 5 29

Total 29 36
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B. pseudohinzii positive faster than did the C57BL/6J mice. More-
over, CRL:CD1 dirty-bedding sentinel mice in general colony 
rooms have been fecal-PCR positive for B. pseudohinzii.4 Until 
more is known about strain susceptibility to B. pseudohinzii, we 
recommended the use of CD1 mice as surrogate mothers in light 
of their natural maternal behavior and because they appear to 
be an effective contact sentinel that can be fecal-PCR positive for 
B. pseudohinzii within 2 wk of exposure to a contaminated litter.

Antibiotic administration in the drinking water was evaluated 
because it has been successfully used to eliminate Pasteurella 
pneumotropica and because it allows for the treatment of large 
numbers of mice simultaneously.5,20 The disadvantage of using 
this method as a form of eradication is that it can be difficult 
to administer therapeutic doses that reach clinically significant 
plasma concentrations (for example, due to precipitation in 
the water, degradation, and poor palatability).14,15 The initial 
high rate of negative fecal-PCR tests for B. pseudohinzii was 
promising; however mice quickly became PCR-positive for B. 
pseudohinzii during the 2- to 4-wk posttreatment period. The 
few cages that were negative at the final time point might also 
have become positive for B. pseudohinzii if further testing had 
been performed. Bordetella species are able to form biofilms in 
the nasal cavity and can live within phagocytic cells, both of 
these features make animals susceptible to becoming carriers.6 
We surmise that antibiotic administration decreased or tempo-
rarily stopped B. pseudohinzii shedding so that it could not be 
detected by fecal PCR; however animals were still colonized. 
Increased doses or an extended duration of treatment might 
prove to be efficacious for eradicating B. pseudohinzii; however 
this requires further investigation. The provision of antibiotics 
in the drinking water may also decrease the number of B. pseu-
dohinzii organisms and associated pulmonary inflammation and 
should be investigated with the understanding that antibiotic 
administration is a nonexperimental variable that might influ-
ence other aspects of pulmonary research.

B. pseudohinzii has the potential to confound pulmonary re-
search, and its eradication should be considered for colonies of 
mice used for the study of pulmonary disease. The current study 
demonstrated that cross-foster rederivation of litters younger 
than 24 h can be used successfully to eradicate B. pseudohinzii. 
Sterilized supplies, restricted room access, strict room entry 
order, and PCR testing as early as 2 wk after cross-fostering are 
critical to maintaining a B. pseudohinzii–negative mouse colony 
after cross-foster rederivation. Although additional studies 
need to be conducted to determine effectiveness, the provision 
of TMS in the drinking water of immunocompromised donor 
dams may decrease the bioburden to which litters are exposed 
prior to cross-fostering.
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