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The relevance of the accessory vpr, vpu, and nef genes for human immunodeficiency virus type 1 (HIV-1)
replication in human lymphoid tissue (HLT), the major site of viral replication in vivo, is largely unknown.
Here, we show that an individual deletion of nef, vpr, or vpu significantly decreases HIV-1 replication and
prevents CD4� T-cell depletion in ex vivo HLT. However, only combined defects in all three accessory genes
entirely disrupt the replicative capacity of HIV-1. Our results demonstrate that nef, vpr, and vpu are all
essential for efficient viral spread in HLT, suggesting an important role in AIDS pathogenesis.

Human immunodeficiency virus type 1 (HIV-1) and simian
immunodeficiency virus (SIV) have several genes that are not
absolutely required for viral spread in cell lines (7, 46) and are,
therefore, called accessory genes. However, subsequent studies
have indicated that these genes might play important roles in
infected hosts in vivo, as well as in primary cells (reviewed in
references 7 and 46). HIV-1 encodes Vif, Vpr, Vpu, and Nef.
In contrast, HIV-2 and SIVmac do not encode Vpu but rather
another late protein, Vpx (51). Vif suppresses the antiretrovi-
ral cellular enzyme APOBEC3G (36, 42, 48) and is essential
for efficient viral replication in primary cells and in vivo (12).
The in vivo importance and exact functions of the other acces-
sory proteins are less clear, although it has been established
that they modulate multiple host cell processes (reviewed in
references 7 and 46). For example, Nef downregulates CD4 (2,
19, 37, 45), enhances virion infectivity (9, 37), alters T-cell
activation (4, 13, 43), and interferes with major histocompati-
bility complex antigen presentation (26, 41, 50). Vpr is a virion-
associated protein (10) which induces G2/M arrest (18, 40) and
plays a role in the nuclear transport of the preintegration
complex in nondividing cells (39). Vpr also enhances infection
of macrophages (14), activates HIV transcription (1, 17), and
induces apoptosis (38, 44, 47). Vpu promotes virion release
(49, 54) by counteracting host restriction factors (30, 52),
downregulates CD4 during the late stages of HIV-1 infection
(34, 53), and inhibits NF-�B activation (3).

Studies using the SIVmac model have demonstrated that nef
is important for efficient replication in vivo and for disease
progression (31). The contribution of the other accessory
genes to SIV or HIV-1 virulence is less clear. Deletion of vpr

neither attenuates SIV replication nor prevents disease pro-
gression in infected monkeys (20). Results obtained with chi-
meric simian-human immunodeficiency viruses suggest that
vpu might contribute to viral pathogenesis (35). The role of the
accessory genes in HIV-1 pathogenesis is even less clear than
their role in SIVmac pathogenesis. The importance of Nef in
HIV infection of humans has been confirmed in several long-
term nonprogressors (11, 32). Also, it has been suggested that
sequence variations in Vpr and Vpu might be associated with
nonprogressive HIV-1 infection (5, 44).

Understanding the role of the accessory HIV-1 proteins in
AIDS in humans requires adequate experimental systems. In
vivo, critical events in HIV disease occur in lymphoid tissues
(15, 16). It has been shown that Nef, concordantly with its
important role in vivo (11, 31, 32), enhances HIV-1 replication
in human lymphoid tissue ex vivo (24). This system supports
productive HIV-1 infection without exogenous stimulation (22,
23) and provides a useful model for studying the importance of
the accessory genes for HIV-1 replication in infected human
individuals. In the present study, we used this system to inves-
tigate the role of accessory genes by infecting blocks of human
tonsillar tissue with HIV-1 mutants containing single or com-
bined deletions of vpu, vpr, and nef and evaluated virus repli-
cation and CD4�-T-cell depletion.

HIV-1 NL4-3 vpr and vpu deletion mutants (21) were kindly
provided by Ronald C. Desrosiers through the AIDS Research
and Reference Reagent Program. Full-length proviral pBRNL4-
3 variants with single and combined deletions of vpr, vpu, and
nef were generated with standard cloning techniques. Briefly,
to generate the vpr-defective forms, the gag-pol-vif-vpr region
of p210-19 containing a deletion in vpr (21) was inserted into
full-length nef-open and nef-defective HIV-1 NL4-3 proviral
clones (8) by using the NarI and EcoRI sites located in the 5�
long terminal repeat and the vpr gene. Similarly, a vpu-deleted
EcoRI-NheI restriction fragment derived from p210-13 (21)
was cloned into the NL4-3 proviral constructs to obtain vpu-
deleted HIV-1 mutants. Finally, vpr-deleted NarI-EcoRI re-
striction fragments were inserted into the vpu- and/or nef-
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defective proviral constructs to obtain HIV-1 variants with
combined defects in the accessory genes.

Human tonsils removed during routine tonsillectomies were
dissected, set up in culture at the air-liquid interface, and
infected as described earlier (23). Briefly, for testing of each
virus in tissue from one donor, 100 ng of p24 was applied to
each of 27 tissue blocks. For each HIV-1 variant, the experi-
ment was repeated n times (each time with tissues from a
different donor). Viral production was evaluated by measure-
ment of the p24 core antigen released into the pooled medium
bathing all 27 blocks by HIV-1 p24 enzyme-linked immunosor-
bent assay (Coulter, Miami, Fla.). In agreement with earlier
observations for various HIV-1 isolates (23, 29), p24 produc-
tion was first noted on day 6 postinoculation, and virus repli-
cation increased until the end of the experiment on day 12 or
15 (Fig. 1A).

A single deletion of any of the accessory genes nef, vpr, and
vpu decreased viral replication (Fig. 1A). On average, deletion
of nef decreased the ability of HIV-1 NL4-3 to replicate in ex
vivo-infected human lymphoid tissues to 13% � 7% (n � 11,
P � 0.001) of that of the wild-type parental virus and deletion
of vpr and vpu decreased it to 38% � 9% (n � 14, P � 0.003)
and 32% � 16% (n � 14, P � 0.002) of that of the wild-type
virus, respectively (Fig. 1B). Combined deletion of vpr and vpu
impaired HIV-1 replication more severely and reduced cumu-
lative p24 production to 11% � 3% (n � 12, P � 0.002) of that
of the wild-type virus. Similarly, additional deletion of either
vpr or vpu further attenuated replication of the nef-deleted
HIV-1 variant (Fig. 1B). Thus, although vpr and vpu seem to be
less critical than nef, both clearly contribute to efficient viral
replication in ex vivo-infected human lymphoid tissue. Never-
theless, only the combined deletion of all three accessory genes
completely disrupted HIV-1 replication (Fig. 1B).

We evaluated the number of productively infected CD4� T
cells by flow cytometry of cells mechanically isolated from
control and infected-tissue blocks and stained for CD3, CD8,
CD4, and p24 (23, 27). To account for CD4 downregulation by
viral infection, productively infected CD4� T cells were de-
fined as CD3� CD8� p24�. The numbers of HIV-1-infected

cells in tissues infected with all tested mutants were signifi-
cantly diminished, relative to those in tissues infected with
wild-type virus (P � 0.008) (Fig. 2A). The progressive loss of
CD4� T lymphocytes is a major characteristic of HIV-1 infec-
tion and AIDS. We evaluated this loss in tissues infected by
wild-type virus and accessory gene-deleted HIV-1 variants us-
ing flow cytometry. To normalize for differences in tissue block
size and cellularity and to account for CD4 downregulation by
viral infection, CD4�-T-cell depletion was expressed as the
ratio of the number of CD8� T cells to the number of CD8�

T cells, the amount of which was not changed by HIV infection
(23, 27). Consistent with findings in a previous study, wild-type
NL4-3 HIV-1 depleted ex vivo-infected tissues of 40 to 50% of
these cells within 12 days of infection. In contrast, the deletion
mutants caused less CD4�-T-cell depletion (a maximum of
about 15%) (Fig. 2B). There was a strong correlation (R2 �
0.88, P � 0.0006) between the number of productively infected
CD4� T cells and the level of their depletion (Fig. 2C). Al-
though deletion of either of the accessory genes significantly
decreased the efficiency of mutant replication, the number of
infected cells, and therefore CD4�-T-cell depletion, from lev-
els observed with the wild-type virus, donor-to-donor variabil-
ity did not allow the ranking of different mutants in terms of
these parameters.

We have previously shown that the loss of CD4� T cells in
ex vivo human lymphoid tissue results mainly from the death of
HIV-1-infected cells (27, 28). Thus, although molecular mech-
anisms for low viral infectivity and virus production may be
different for different mutants, they all result in a lower num-
ber of infected cells and hence less CD4�-T-cell depletion in
infected tissues. However, more experiments need to be done
to clarify whether the accessory genes might also play a direct
role in cell killing, for example, through the proapoptotic ac-
tivity reported for Vpr (38, 44, 47). We found that in 3 out of
13 experiments the vpr-deleted virus replicated with an effi-
ciency similar to that of wild-type HIV-1 but caused no signif-
icant CD4�-T-cell depletion (1.3% � 1.3% in tissues infected
with vpr-deleted HIV-1 versus 36% � 10% in tissues infected
with wild-type virus). In any case, our data indicate that intact

FIG. 1. Replication of HIV-1 variants in human lymphoid tissue ex vivo. For each of the indicated HIV-1 variants, 27 tissue blocks were
inoculated with 100 ng of p24 and medium was collected every 3 days. (A) Representative replication kinetics of wild-type NL4-3 and deletion
mutants. (B) Average production of virus. Matched tissues from 13 donors were inoculated with the wild-type virus or with accessory gene-deleted
mutants as indicated, and for each condition cumulative production of p24 by 27 tissue blocks over 15 days was measured. Presented are means
� standard errors of the means of these values expressed as percentages of those measured in cultures infected with the wild-type virus.
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vpu, vpr, and nef genes are critical for the loss of CD4� T
lymphocytes, resulting in immunodeficiency associated with
AIDS.

Many of the suggested mechanisms of facilitation of HIV-1
infection by accessory genes are related to their involvement in
cell activation. For example, Vpr has been shown to potentiate
Nef-induced activation of NFAT (33). We have previously
shown, and we confirm in the present study (Fig. 3), that Nef

enhances HIV-1 responsiveness to interleukin-2 (IL-2) in hu-
man lymphoid tissue ex vivo (24). It is unclear whether Vpu
or Vpr might also facilitate cell activation by autocrine and
paracrine cytokine production. Therefore, we tested in
matched tissues from seven donors whether Vpu and Vpr
change the sensitivity of the system to IL-2. Our results dem-
onstrate that IL-2 stimulates the replication of both wild-type
NL4-3 and its mutants (Fig. 3A). On average, however, exog-

FIG. 2. CD4�-T-cell depletion in human lymphoid tissue infected
ex vivo with HIV-1 variants. (A) Percentages of infected cells; (B) loss
of CD4� T cells in human lymphoid tissue infected ex vivo with HIV-1.
Productively infected CD4� T cells were defined as CD3� CD8� p24�,
as described in the text. To evaluate CD4�-T-cell depletion, cells were
mechanically isolated from control and infected matched tissues (27
pooled blocks for each variant) on day 12 postinfection, stained for
CD3, CD4, CD8, and p24, and analyzed with flow cytometry. Deple-
tion is expressed as 100% minus the percentage of CD4� T cells that
remained in the tissue after 12 days of infection, evaluated as described
earlier (23, 29). Presented are average depletion values � standard
errors of the means for tissues from 4 to 12 donors. (C) Correlation
between depletion and virus infection of CD4� T cells in ex vivo-
infected human lymphoid cultures. Accessory gene deletions are indi-
cated in the following order: Vpr, Vpu, Nef.

FIG. 3. Effect of exogenous IL-2 on replication of HIV-1 variants in human lymphoid tissue ex vivo. Matched infected tissues were inoculated
with HIV-1 variants and cultured without or with IL-2 (50 U/ml). For each condition and each donor tissue, 27 tissue blocks were inoculated.
(A) Representative time course of p24 production in unstimulated and IL-2-stimulated tissues inoculated with wild-type virus or HIV-1 variants
with accessory gene deletions. (B) Cumulative viral production over 12 days of infection by wild-type virus or HIV-1 variants with accessory gene
deletions. Presented are means � standard errors of the means of the fold increases of p24 production (relative to the replication of the wild-type
virus in the absence of IL-2) in tissues from seven to nine donors inoculated ex vivo with the indicated HIV-1 variants. The numbers above each
bar give the fold increase of virus production in the presence of IL-2 relative to production of the respective HIV-1 mutants in the absence of IL-2.
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enous IL-2 increased NL4-3 wild-type virus production about
13-fold, whereas production by the vpr and vpu deletion mu-
tants was enhanced only 2.5- to 5.4-fold (Fig. 3B). Conse-
quently, the difference between the replication rate of the
wild-type HIV-1 and those of vpr- or vpu-deleted variants be-
comes more dramatic in IL-2-stimulated tissues: without IL-2,
this difference was approximately two- to threefold, whereas in
the presence of IL-2 it increased to five- to eightfold (Fig. 3B).
Thus, accessory gene-deleted HIV-1 variants are less sensitive
to stimulation by cytokines.

To investigate mechanisms by which accessory genes might
affect viral spread in ex vivo-infected human lymphoid tissue,
we measured the production of various cytokines known to
affect HIV-1 replication. However, we did not detect any sig-
nificant effect of nef, vpr, or vpu on the levels of macrophage
inflammatory protein 1� (MIP-1�), MIP-1	, stromal cell-de-
rived factor 1, RANTES, inducible protein 10, IL-1�, IL-1	,
tumor necrosis factor alpha, IL-15, and IL-16 (data not shown).
Thus, it remains to be clarified whether the described effects of
mutant viruses occur at transcriptional or posttranscriptional
levels. Previous data suggest, however, that accessory genes
might contribute to efficient replication in human lymphoid
tissue ex vivo by various mechanisms. We have demonstrated
that the ability of Nef to enhance HIV-1 replication in ex
vivo-infected human lymphoid tissue correlates with its func-
tional activity in CD4 downmodulation (25). This Nef function
might be critical for the production of fully infectious viral
particles from CD4� T cells (6). Vpu might enhance viral
spread by both the same and different mechanisms because it
downmodulates CD4 (34, 53) but it also increases the release
of virus particles (49, 54). Finally, Vpr is known to play a role
in virus transcription, cell proliferation, and apoptosis. Most
likely, the multifunctional nef, vpu, and vpr genes enhance
HIV-1 replication in ex vivo-infected human lymphoid tissue
by several mechanisms. A major finding of our study is that the
levels of viral replication and the numbers of infected cells are
low in human lymphoid tissue infected with the vpu-, vpr-, or
nef-defective viruses.

In conclusion, all three accessory genes, nef, vpr, and vpu, are
important for efficient replication and CD4�-T-cell depletion
in ex vivo-infected human lymphoid tissues. Some effects of
these genes may be related to cell activation. Most importantly,
our data suggest that, like Nef, Vpr and Vpu are relevant for
efficient viral infection and for CD4 T-cell depletion in HIV-
1-infected individuals.
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