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Abstract

The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental 

insults during childhood programs the individual to develop chronic disease in adulthood. 

Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure 

to adverse childhood experiences is regarded as an independent risk factor capable of predicting 

future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral 

stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to 

elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular 

disease, including hypertension. The purpose of this review is to highlight current epidemiological 

studies linking ELS to the development of cardiovascular disease and to discuss the potential 

molecular mechanisms identified from animal studies. Overall, this review reveals the need for 

future investigations to further clarify the molecular mechanisms of ELS in order to develop more 

personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress 

including cardiovascular and heart disease in adulthood.
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1. Introduction

Early life stress (ELS) is known to increase the risk of psychiatric disorders and health risk 

behaviors including smoking, overeating, and substance abuse (Danese et al., 2009; Dong et 

al., 2004; Freedman et al., 2007). In the last two decades a growing number of clinical 

studies demonstrated that exposure to ELS serves as an independent risk factor for the 

development of chronic disease. Therefore, ELS has been proven as a robust predictor of the 
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risk for ischemic heart disease, cardiovascular disease, stroke, respiratory disease, diabetes 

and cancer (Alastalo et al., 2013; Joung et al., 2014; Low et al., 2009; Murgatroyd and 

Spengler, 2011; Parrish et al., 2013; Romans et al., 2002.; Slopen et al., 2012; Su et al., 

2015; Vaiserman, 2014; Weder et al., 2014; Yang et al., 2013).

Although it is well known that exposure to ELS influences the biological responsiveness to 

future stress, the physiological and molecular mechanisms are not completely understood. 

There is substantial evidence that stress delivered by parents and other caregivers can affect 

a child’s developing brain architecture and chemistry increasing the susceptibility to stress-

related disorders later in life (Carroll et al., 2013; Furukawa et al., 1999). This finding has 

been mirrored in animal models as well (Caldji et al., 1998; McEwen et al., 2015; Sapolsky 

and Meaney, 1986; Weaver et al., 2004). Stress responses include activation of a variety of 

hormonal and neurochemical systems across the body. In this regard, the hypothalamic- 

pituitary-adrenocortical (HPA) system and the sympathetic nervous system (SNS) have 

received special attention. In addition, it has been shown that several vasoactive peptides 

such as vasopressin, endothelin-1 and angiotensin II are released secondary to behavioral 

stimuli, exerting amplificatory effects in cardiovascular reactivity (Aguilera and Rabadan-

Diehl, 2000; Loria et al, 2010b; Mangiafico et al., 2002; Mayorov, 2011; Spieker et al., 

2002; Treiber et al., 2000). Cardiovascular reactivity reflects an enhanced response in blood 

pressure, heart rate or other hemodynamic parameters to secondary stressors (Manuck & 

Krantz, 1985). Importantly, it has been shown that individuals showing exaggerated 

cardiovascular responses linked to acute and/or chronic behavioral stress may be at higher 

risk for the development of cardiovascular disease including hypertension and coronary 

artery disease than those individuals that do not display this positive correlation. (Beutel et 

al., 2014a; Carrol et al. 2013; Ginty et al., 2016; Spartano et al., 2014). Moreover, the 

impaired post-stress recovery of blood pressure has been shown blunted in patients with a 

history of ELS (Evans et al., 2013).

In this review, we will provide an overview of epidemiological data linking ELS to the 

development of cardiovascular disease. Also, we will discuss the use of animal models as a 

tool to mimic the effects of ELS on key components of the cardiovascular regulation in order 

to analyze the underlying molecular mechanisms leading to chronic disease.

2. From allostasis to toxic stress

Not all stress is harmful. In a child, when the stress response is activated in the context of a 

supportive psychosocial environment (e.g. supportive relationship with parents), these 

physiological effects are balanced and return to basal levels (National Scientific Council on 

the Developing Child, 2004). As a result of this adaptive process, there is a development of 

healthy stress response or even resilience to stress (Daskalakis et al., 2013; Smith and 

Carlson, 1997; Steptoe et al., 2009). Traumatic events can also be tolerable, or even 

beneficial, depending on the duration, intensity, and timing of the stressful experience, as 

well as its context (Shonkoff and Garner, 2012). Since a child’s ability to cope with stress in 

the early years has consequences for physical and mental health throughout life, 

understanding the origin and complexity of different types of stress responses to early 

adverse experiences can help us make better conclusions about the type of interventions 
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needed to potentially reduce the risk for later negative physiological outcomes in each 

patient.

In animal models, positive experiences after weaning, such as being exposed to an 

environment rich in opportunities for exploration and social play have been shown to 

compensate to some degree for the negative behavioral consequences of prenatal stress and 

postnatal neglect (Reynolds et al., 2010; Zanca et al., 2015). This compensation involves 

adaptive changes in both the architecture and the chemistry of the developing brain. 

However, the brain is not infinitely plastic. Some stress-related effects (e.g., reduced 

glucocorticoid (GR) in the hippocampus) may lead to permanent changes in the adult 

phenotype (Filipović et al., 2005). For instance, chronic stress can increase anxiety and 

decrease memory and cognitive flexibility (Marin et al., 2011). From the point of view of 

therapeutic approaches, it is promising that these changes in neuronal circuitry are reversible 

in a healthy, resilient brain (Russo et al., 2012).

Allostasis refers to the body’s response to toxic stress such as loud noise, hostility, fatigue, 

isolation, hunger, and threats to safety (Sterling and Eyer, 1981). Allostatic load is the “wear 

and tear on the body” and results when these allostatic systems including the HPA axis, 

metabolic pathways, and immune system are hyperactivated after a stressful event. The 

concept of allostatic load has been described to explain these adverse health outcomes in 

adulthood. The autonomic nervous system and HPA axis lead to adaptation, coined as 

“allostasis” by Sterling and Eyer when the body responds to stress (Sterling and Eyer, 1981); 

however, these responses to stress can have long-term deleterious effects on the body 

(McEwen, 1998). The hippocampus plays a key role in perception of stress or the level of 

allostatic load that an individual will experience (McEwen, 1998). According to the 

allostatic load hypothesis, ELS induce biological changes that modify the maturation of 

allostatic systems. Frequent or chronic activation of allostatic systems may cause allostatic 

overload, thereby resulting in chronic disease later in life (Katz et al., 2012; Misra et al., 

2013).

Yet, when the environmental insults overwhelm the individual’s capacity to adapt to the 

stressor, it becomes harmful and toxic. Toxic stress is defined as “the excessive or prolonged 

activation of physiologic stress response systems in the absence of buffering protection 

afforded by stable responsive relationships (Shonkoff and Garner, 2012)”. It has been shown 

that toxic stress can disrupt the developing brain, thereby influencing health outcomes 

decades later (McEwen, 2006). Examples of toxic stress include significant adversity such as 

poverty, abuse, neglect, neighborhood violence, or the substance abuse or mental illness of a 

caregiver. Table 1 shows the findings from a large number of cohort studies that were able to 

identify biomarkers associated with higher cardiovascular risk in response to the exposure to 

different sources of ELS. Overall, the intensity, length and number of adverse factors seem 

to have an additive effect in the physiological outcomes analyzed and certainly predict an 

enhanced risk to develop cardiovascular disease during the adult life (Dong et al., 2004; 

Felitti et al., 1998).
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3. Early life stress and cardiovascular disease: what the cohort studies 

revealed

Numerous clinical studies link ELS to a broad range of negative health outcomes. The 

association between ELS and psychosis, depression, anxiety, and attempted suicide are 

typically studied. However, more recent attention has been brought to ELS as an 

independent risk factor for hypertension, obesity, substance abuse, smoking as well, which 

are major contributors in the development of cardiovascular disease (CVD) and type 2 

diabetes (Brent and Silverstein, 2013; Luecken, 1998; Varese et al., 2012).

A seminal paper from Dong et al. first described the relationship between ELS, given by 

exposure to adverse childhood experiences (ACEs). Dong’s group reported a dose-response 

relationship of ACEs to ischemic heart disease (Dong et al., 2004). In addition, children 

raised in low socioeconomic status households under stressful conditions have developed 

elevated blood pressure over time and increased vascular reactivity to stress (Carroll et al., 

2013). In the Bogalusa Heart and other studies, those individuals with the greatest trajectory 

of blood pressure increase during childhood and adolescence had severalfold higher 

prevalence of hypertension and increased mortality as adults (Oikonen et al., 2011). Further 

evidence has been provided by a natural human event involving Finnish children separated 

from their parents during World War II revealed that those children separated at ages 4–7 

years had systolic blood pressure approximately 9 mmHg higher as adults than non-

separated individuals while those separated at different ages did not have significant 

difference in systolic blood pressure. Notably, Woodall and Matthews have reported that 

boys aged 8–17 (but not girls) from unsupportive families have stronger heart rate responses 

during a series of laboratory stressors (Matthews et al., 1990).

More recently, findings from the Georgia Stress and Heart (GSH) study revealed that 

individuals who were exposed to multiple ACEs display a greater increase in blood pressure 

levels in young adulthood compared to control individuals in a 23-year follow up period (Su 

et al., 2015). This effect was present independent of BMI and the authors suggest that 

increased levels of endothelin-1 (Su et al., 2014) may be a potential mechanism linking ELS 

and the development of stress-induced elevations in blood pressure.

In a situation of extreme adversity, starvation plays a detrimental role in terms of 

programming for adult disease. Several epidemiological reports following birth cohorts 

exposed to famine (Dutch 1944–1945; Ukraine 1932–1933; Chinese Famine 1959–1961) 

reveal that exposure to starvation conditions in early life induce metabolic disease in 

adulthood including a cluster of metabolic syndrome biomarkers such as dyslipidemia, 

hypertension, obesity, type 2 diabetes, and cardiovascular morbidity (Vaiserman, 2014), all 

risks factor for coronary artery disease. In sum, these studies (also see Table 1) show that 

there is a highly sensitive window of life to induce permanent changes in the cardiovascular 

system (Anda et al., 2009; Miller et al., 2011).
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4. Maternal Separation as an animal model to mimic childhood adversity

There is growing evidence of comorbidities for anxiety, depression and CVD (Davidson, 

2012; Glassman, 2007; Halaris, 2009; Huffman et al., 2013; Ruo et al., 2003), challenging 

the current research community to provide animal models in order to investigate the 

mechanisms by which behavioral stress during the developmental stages of life influences 

adult cardiovascular function. Multiple models of perinatal programming have shown to 

induce a significant increase in blood pressure in the offspring. These models include 

restraint stress during gestation days 15 to 21, maternal protein deprivation, and 

glucocorticoid exposure via dexamethasone administration during gestation (Harris and 

Seckl, 2011; Igosheva et al., 2004; Mizuno et al., 2013). However, maternal separation 

(MatSep) and similar models of chronic behavioral stress seem to induce a “first hit” effect 

that does not change the baseline cardiovascular parameters in young adult rodents, but 

primes the physiological systems to overreact in response to a secondary stressor or “second 

hit.”(Ho et al., 2016; Loria et al., 2010b; Sanders and Anticevic, 2007).

MatSep is a well-established model of ELS in which neonatal pups are separated from their 

mothers for 3 hours a day from postnatal day 2 to 14 (Lehmann et al., 2000; Lippmann et al., 

2007; Loria et al., 2010b).

Originally, MatSep has been widely used in the psycho-neuroendocrinology field to assess 

its long lasting effects on behavioral responses. These results demonstrated that animals 

exposed to MatSep develop depressive-like behavior and anxiety in adult life.

MatSep has been most widely performed in rats and mice, but also different species 

including non-human primates, rabbits, pigs, guinea-pig, birds (see review Loria et al., 

2013). The variety of species, length of separation protocol and the period of life for the 

analysis of the outcomes (e.g. juvenile vs. adult) have resulted in numerous derangements 

described in the literature. However, rodents are the most consistently used models perhaps 

due to their similar responses to stress in comparison to humans as well as availability, cost-

effectiveness and the possibility for genetic manipulation in the investigation of basic 

molecular mechanisms. Previously, we have reported impaired blood pressure regulation in 

rats exposed to 3 hours of maternal separation daily from postnatal day 2–14 (Loria et al., 

2013a). Within a murine model, MatSep with early weaning consists of separating the litters 

for 4 hours per day during postnatal days 2–5 followed by 8 hours per day from postnatal 

day 6–16 with weaning at day 17 induces vascular endothelial dysfunction and superoxide 

production thus increasing cardiovascular risk (Ho et al., 2016).

MatSep in rodents is ideally suited to model ELS in humans because of the strong parallels 

in long-term neuronal and cardiovascular outcomes. For instance, many symptomatic 

characteristics associated with the consequences of emotional trauma have been shown to 

impact the cardiovascular system of rodents in a similar fashion to the observed in adult 

humans (Beutel et al., 2014; Loria et al., 2013a; Mascitelli et al., 2006; Rahman et al., 2013; 

Sanders and Anticevic, 2007). Rodent models mimic the behavioral outcome of ELS in 

humans such as anxiety and depression (Heim and Binder, 2012; Schmidt et al., 2011; 

Uchida et al., 2010). Similar to humans, rodents exposed to MatSep have increased risk of 
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developing hypertension and cardiovascular pathologies in adulthood (Loria et al., 2013a; 

Loria et al., 2010b). Interestingly, MatSep in mouse has been a useful paradigm to model 

childhood neglect as well (Fabricius et al., 2008; George et al., 2010).

Nevertheless, a number of concerns were raised denoting some limitations of using MatSep 

as a model of ELS including: 1) there is a mismatch of environment and developmental 

period between humans and rodents since the postnatal life in mice aligns with the third 

trimester in humans; conversely, this mismatch provides a useful experimental model to 

perform interventions avoiding in utero manipulation, 2) emotional stress in humans is often 

self-perpetuated from an initial stressor, whereas in other animal species, stressors are often 

acute and non-self-perpetuated, thus allowing the researcher to evaluate the effect of stress in 

the absence of self-perpetuation and 3) there is remarkable consensus of effect across a 

variety of different MatSep protocols, but the development of a standardized protocol (e.g. 

time and length of separation) would help move the field forward.

Given that MatSep enhances the correlation between stress-induced cardiovascular 

outcomes, the use of an adequate protocol and species to study the molecular mechanisms 

by which ELS enhances adult cardiovascular disease risk can be proposed taking into 

account the nature of the phenotypic outcomes of interest.

5. Mechanisms contributing to ELS-induced cardiovascular dysfunction

5.1. The central nervous system (CNS)

The brain processes environmental input from emotional, sexual and physical abuse, neglect 

or illness differently at critical ages (Cirulli et al., 2009; Furukawa et al., 1999). It is well-

accepted that ELS has detrimental effects on adult health, especially when experienced 

through critical “windows of plasticity.” During development, the timing of ELS can be 

harming if occurring when neural system differentiation and synapses are being formed and 

reinforced (Gershon and High, 2015). When children experience toxic stress, their cortisol 

levels remain elevated for prolonged periods of time. Both animal and human studies show 

that long-term elevations in cortisol levels can alter the function of a number of neural 

systems, suppress the immune response, and even change the architectural regions in the 

brain that are essential for processes such as learning and memory (Kumari et al., 2013; 

Pervanidou and Chrousos, 2011).

One mediator of neural function and plasticity is the brain derived neurotrophic factor 

(BDNF). It has been hypothesized that BDNF is a candidate molecule through which early 

life experiences persistently modify brain structure and function (Branchi et al., 2004). 

BDNF is active within the hippocampus, cortex, and basal forebrain and is important for 

cognitive function, energy homeostasis, long term memory and neurogenesis (Marosi and 

Mattson, 2014). While MatSep decreased BDNF decreased in hippocampus and striatum, it 

increased in ventral tegmental area. Unlike, cAMP response element binding protein 

(CREB) and fosB were unchanged in all brain regions from animals exposed to MatSep.

Recent Imaging studies on adults with a history of childhood stress revealed a significant 

impact in the frontal cortex, corpus callosum, amygdala, locus coeruleus, hippocampus, 
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HPA axis and cerebellum (Brietzke et al., 2012; Hanson et al., 2015; Reynolds, 2013). As 

such, adults with a history of childhood adversity also have reduced hippocampus and 

prefrontal cortex volumes (Danese et al., 2009; McEwen et al., 2015).

It is important to discuss that in some condition, ELS during early stages of life exerts 

profound effects to impart resilience to later psycho-physiological dysfunction. A review of 

Dr. Meaney’s work (Roth and David Sweatt, 2011) has described the molecular changes in 

the brain following high-quality maternal care that provided resilience to stress later in life. 

These adaptations were attributable to increased hippocampal glucocorticoid receptor (GR) 

expression, increased expression of transcription factor NGFI-A decreased hypothalamic 

corticotropin releasing factor (CRF) expression leading to enhanced glucocorticoid feedback 

sensitivity. This data further enforces that the quality of social support is the key event to 

determine exposure to or protection to secondary behavioral stressors (Ozbay et al., 2008; 

Smith and Carlson, 1997).

C57BL/6 inbred mice have been noted for resiliency to early environmental stressors 

(Anisman, 2001; Shanks et al., 1990). Selection for low or high care C57BL/6 mothers also 

has a minimal impact on offspring behavior and stress response (Pedersen et al., 2011). 

These studies suggest that alternative more severe models of ELS, beyond three hours, 

combined with early weaning are necessary to induce the ELS-like phenotype in mice 

(George et al., 2010; Ho et al., 2016).

5.2. The Hypothalamic-Pituitary-Adrenal (HPA) Axis

An important role of the hypothalamic-pituitary-adrenal (HPA) axis response is regulation of 

many biological systems in the body to allow an individual to adapt to its environment and 

promote survival (Munck et al., 1984). Glucocorticoid secretion improves cardiovascular 

tone, suppresses immune function, and mobilizes energy stores to enable the individual to 

cope with its environment including stressors. However, prolonged exposure to elevated 

glucorticoids has deleterious effects to many organ systems within the body including the 

central nervous system, immune system, and regulation of blood pressure (McCormick and 

Mathews, 2007; Woolley et al., 1990).

Through the actions of glucocorticoid hormone signaling in the brain, the HPA axis is 

involved in programming responses to future challenges, thereby influencing how an 

individual will respond to stressors in adulthood. Glucocorticoid secretion, which occurs 

with levels peaking in the morning and declining throughout the day in a diurnal pattern, are 

involved in the suppression of their own release through fast (seconds), delayed (minutes to 

hours), and slow (hours to days) negative feedback systems that inhibit the release of 

adrenocorticotrophin hormone (ACTH) (Dallman et al., 1987; Keller-Wood and Dallman, 

1984). The hippocampal subiculum transynaptically inhibits the HPA axis by way of the bed 

nucleus. Experimentally, it was shown that (1) HPA-inhibitory influences of medial 

prefrontal cortex (mPFC) and hippocampal formation (HF), are additive and (2) anterior bed 

nucleus of the stria terminali (aBST) plays a more substantial inhibitory role over stress-

induced HPA responses than ventral subiculum (Cullinan et al., 1993; Radley and 

Sawchenko, 2011). The hippocampus itself can become more damaged with increased 

exposure to stress (Brown et al., 1999), thus perpetuating this loss in feedback inhibition to 
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the HPA axis. Electrical stimulation of the hippocampus has been shown to have an 

inhibitory effect on the HPA axis by reducing glucocorticoid levels (Herman et al., 2003). 

Lesion studies indicate that a damaged hippocampus prolongs HPA axis responses to acute 

stress (Herman et al., 1998) most likely through a genomic mechanism.

Hyporesponsive period in rodents—Early postnatal life is a sensitive period and there 

is a distinct pattern of HPA axis activity during early development that was first described in 

rodents. HPA axis activity maintains stable with low circulating glucocorticoids levels 

during the stress hyporesponsive period (SHRP) which corresponds to postnatal days 1–10 

in mice and postnatal days 3–14 in rats (Sapolsky and Meaney, 1986; Schmidt et al., 2005; 

Stanton et al., 1988).

Prolonged maternal separation implemented during the SHRP causes neonates to display 

elevated basal and stress-induced levels of glucocorticoids, thus making the HPA axis hyper-

responsive to future stressors. Chronic stress exposure during this period can have a long-

lasting impact on the HPA axis (Gunnar and Quevedo, 2007). Long-lasting alterations in the 

HPA axis induced by ELS in rodents have been linked to epigenetic modifications in 

regulatory regions of stress-related genes as described above. Specifically, impairment of 

mother-infant interactions during the postnatal period has been shown to upregulate 

hippocampal glucocorticoids receptor (GR) and to increase hypothalamic corticotropin-

releasing factor (CRF), corticosterone, and ACTH levels (Korosi et al., 2010; Lehmann et 

al., 2000; Lippmann et al., 2007; Nishi et al., 2013)

Corticosterone levels and ACTH suppression—A key physiological response to 

stress involves the increased secretion of glucocorticoids. A major role of glucocorticoids is 

to regulate glucose mobilization during stressful periods as part of the adaptive response to 

stress. However, the adaptive responses to stress through glucocorticoids can become 

harmful when its threshold is exceeded. Excessive glucocorticoids lead to hyperlipidemia, 

hypertension and vasoconstriction, thus increasing the risk for cardiovascular events 

including myocardial infarction, stroke, and heart failure. MatSep has been shown to 

increase plasma corticosterone release and elevate Neuronal Growth Factor levels in the 

hippocampus, which can affect the development and maturation of specific organs that 

regulate blood pressure control including the heart, vasculature, kidney, and brain (Igosheva 

et al., 2004), suggesting that ELS presents the capability to exert programming effects.

To measure HPA activity, human populations often undergo a dexamethasone suppression 

test followed by a low dose ACTH stimulation test to examine pituitary and adrenal gland 

function by measuring urinary levels of cortisol. ELS is associated with persistent changes in 

HPA axis function, with ELS-exposed adults often exhibiting a flattened cortisol circadian 

rhythm and both hypo- and hyper-responsiveness to future stressors (Miller et al., 2013). A 

recent study examining the relationship between the HPA axis and cardiovascular risk 

factors in obese children revealed a positive association between systolic blood pressure and 

ACTH and cortisol levels (Prodam et al., 2013) thereby the risk for cardiovascular disease.

The mechanisms by which glucocorticoids and a dysfunctional HPA axis mediate the 

development of hypertension during postnatal life are still unclear. Numerous studies have 
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demonstrated that acute or chronic exposure of the fetus to elevated maternal glucocorticoids 

during pregnancy programs the offspring for hypertension and cardiovascular disease 

(Moritz et al., 2003) (Ortiz et al., 2003, 2001). Additionally, glucocorticoids directly regulate 

blood pressure by increasing sodium and calcium intake within the vascular smooth muscle 

(Kornel et al., 1993) and by increasing vascular responsive to Ang II (Provencher et al., 

1995) and noradrenaline (Bian et al., 1992). Nonetheless, few studies have addressed the 

long-term consequences of the exposure to elevated corticosterone levels during postnatal 

life using animal models. The glucocorticoid-induced changes in both central and peripheral 

sites of cardiovascular control may be reflected in enhanced cardiovascular responses to 

acute stress seen in MatSep mice (Pote et al., 2013) and rats (Loria et al., 2010b). Meaney’s 

group has demonstrated that offspring exposed to less maternal care display elevated 

glucocorticoid responses to stress (Weaver et al., 2004). On the other, it has been shown that 

foster litters during maternal separation can prevent the sensitization of the HPA axis (Huot 

et al., 2004). These findings support the implication of the HPA-programmed sensitivity on 

the correlation between ELS and heightened response to stressors.

5.3. The sympathetic nervous system (SNS)

Sympathetic activation is one of the fastest systems in response to stressors (Farah et al., 

2004; Lee et al., 2004; Randall et al., 1994). Acute stressors induce neuro-humoral and 

vascular responses that lead to greater blood pressure reactivity to stress or to delayed post-

stress blood pressure recovery (Chida and Steptoe, 2010; Gerin and Pickering, 1995). It has 

been shown that alteration in a single acute stress response event can predict future 

cardiovascular disease risk (Chen et al., 2007), such as stroke (Jern et al., 1989) and 

hypertension (Kohan and Padilla, 1994). Acute stress can trigger autonomic and 

neuroendocrine-mediated changes in cardiac contractility and peripheral vascular resistance 

(Reich et al., 1981) and involves vasoactive mediators such as plasma endothelin (ET-1) 

(Fujii et al., 2005; Kaehler et al., 2002), angiotensin II (Mayorov, 2011) and corticosterone 

(Taniyama and Griendling, 2003; Treiber et al., 2000).

While a large body of literature addresses the mechanisms by which SNS mediates the stress 

response, it is less frequent to find studies in animal models that have investigated the 

mechanisms underlying autonomic activation in response to emotional stress during 

postnatal life. The priming of the neuroendocrine responses to stress may have its origin in 

the brain as discussed above. In particular, we now know that early life abuse and neglect 

have adverse effects upon the developing brain and body that can result in poor self-control 

and emotional regulation, impaired cognitive development, and increased risk of 

cardiovascular, metabolic and immune system diseases (Boersma et al., 2014; Danese et al., 

2009).

The neonatal rodent lacks the ability to produce sympathetic responses to hypoglycemia 

until the growth of the adrenal nerve supply has occurred. A surge in activity of 

postganglionic neurons occurs during the third postnatal week, which is associated with a 

profound elevation in the overall sympathetic hyperactivity and development of the 

baroreceptor regulation of sympathetic tone (Bartolome et al., 1980). However, it is possible 

that exposure to stressors early in this developmental queue accelerates a number of events, 
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exacerbating the sensitivity of blood pressure regulatory mechanism such as the baroreflex 

function.

Four structurally related proteins including NGF brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT3), NT4/5, and NT6 have been considered as the key mediators of the 

ELS-induced developmental changes in the autonomic responses (McEwen et al., 2015; 

Murgatroyd et al., 2009; Weder et al., 2014). Nonetheless, the consequences of emotional 

stress during the specific window of plasticity on the reset of the sensitivity of the autonomic 

system have an amplificatory effect at the end-organ level, which will be further highlighted 

in the sections below.

Heart—Myocardium growth during the early postnatal period must respond not only to the 

increasing demands of the rapidly growing animal but also to the relatively sudden changes 

in the patterns of blood flow and circulatory resistance occurring shortly after birth. Cardiac 

tissue, specifically cardiomyocytes, undergoes structural and functional physiological 

changes that may be altered by exposure to behavioral stress (Anversa et al., 1980). The 

effect of MatSep on heart function has been reported in different animal models. Using 

borderline hypertensive rats (BHR), the first generation offspring of spontaneously 

hypertensive and Wistar-Kyoto rats, it was shown that MatSep alters the cardiovascular 

stress response induced by 30 min of restraint stress (Sanders and Anticevic, 2007). Despite 

a similar mean arterial pressure response, rats exposed to MatSep showed exaggerated heart 

rate response compared to control counterparts. MatSep also increased the stress-induced 

Fos positive cells in the central nucleus of the amygdala (CeA), paraventricular nucleus of 

the hypothalamus (PVN), and the bed nucleus of the stria terminalis (BNST) (Sanders and 

Anticevic, 2007). These nuclei play an important role in integrating the physiological and 

behavioral response to stress. Thus, MatSep enhances the neuronal activation leading to an 

overactive autonomic system in response to stressful environmental cues.

Studies using Wistar rats reported that MatSep did not have a significant effect on the 

intermittent restraint stress (IRS)-induced acute modifications of cardiac sympathovagal 

balance (Trombini et al., 2012). Heart rate variability analysis has shown similar values as 

reported in non-MatSep rats. MatSep did not affect the autonomic blockade with 

scopolamine and atenolol, which suggests a normal cardiac pacemaker intrinsic activity. 

However, MatSep had a significant effect in cardiac parasympathetic drive following IRS 

(Trombini et al., 2012).

Taken together, these functional changes in the autonomic function of the heart have an 

effect on the cardiac structure involving cardiomyocyte hypertrophy, increased density of 

vascular structures, and myocardial fibrosis. Although these are considered mild functional 

and structural cardiac alterations, these changes confer increased susceptibility to the 

development of an exaggerated response to secondary stressors.

Vasculature—ET-1 is a 21-amino acid peptide characterized and purified from cultured 

endothelial cells (54). The actions of ET-1 are the result of activation of two receptor 

subtypes, ETA (located on vascular smooth muscle and mediates vasoconstriction) and ETB 

(predominantly expressed on the vascular endothelium) (Barton et al., 1998; D’Angelo et al., 
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2005). Interestingly, both receptor subtypes are localized on sympathetic nerves (Milner et 

al., 2000). Studies have demonstrated a link between the ET-1 pathway and stress-induced 

raise in blood pressure in humans and rodents (D’Angelo et al., 2005; Kaehler et al., 2002; 

Spieker et al., 2002; Treiber et al., 2000). One potential link between ET-1 pathway and 

stress is given by the fact that exposure of vessels or cultured vascular smooth muscle cells 

from rat or rabbit to dexamethasone or cortisol resulted in concentration-dependent 

stimulation of endothelin release (Gómez-Guzmán et al., 2012; Intengan et al., 1998). Rats 

exposed to MatSep display acute stress-mediated ET release, indicating that alterations in 

the expression or function of the ET pathway may be implicated in the short- and/or long-

term control of stress-induced responses. Specifically, MatSep exaggerates the acute blood 

pressure response to acute behavioral stress, which involves ET-1. In this regard, D’Angelo 

et al. (D’Angelo et al., 2005) suggested that there is a crosstalk between the ET-1 Type A 

(ETA) receptors and catecholamines in the terminal nerves, enhancing vasoconstriction. For 

instance, acute behavioral stress showed that the lack of ET-B receptor subtype in non-

neuronal tissue, such as the vasculature, blunted the MatSep induced enhanced pressor 

response to stress that was observed in wild type MatSep rats (Loria et al., 2010a). 

Furthermore, in normotensive rats, endogenous ETA receptor activation attenuates the air jet 

stress-mediated pressor response (D’Angelo et al., 2005). This data suggests a cross-talk 

between the ETA receptor and the adrenergic pathway (Mangiafico et al., 2002). However, 

MatSep reduced both ETA and ETB receptors expression in the vasculature. Thus, reduced 

ET receptor expression, particularly ETA might lead to exaggerated activation of the 

adrenergic-mediated responses in MatSep rats.

Kidneys—The role of the SNS in the development of hypertension has been described in 

several experimental models such as spontaneously hypertensive rats (SHR) and Dahl salt-

sensitive (DS) rats (D’Angelo et al., 2005; Mattson et al., 2004; Zicha et al., 2012). 

Additionally, kidneys play a critical role in the regulation of fluid homeostasis and chronic 

blood pressure control (Dahl and Heine, 1975; Navar, 1997). Renal denervation (DnX) is 

one of the most studied therapies for resistant hypertension (Esler et al., 2010; Osborn et al., 

2005). In experimental models, Dr. Alexander’s group showed that the exacerbated renal 

nerve activation plays a causal role in the early onset of hypertension in a model of 

intrauterine growth restriction (IUGR) (Alexander et al., 2005; Ojeda et al., 2007). 

Furthermore, Samuelsson et al show that sympathetic activation leads to hypertension in 

offspring from obese dams and is most likely derived from early exposure to energy-dense 

nutrients (Kirk et al., 2009; Samuelsson et al., 2013).

It has been reported that MatSep lowers the renal excretory capacity, or glomerular filtration 

rate (GFR) (Loria et al, 2013a). One of the mechanisms suggested involves an increased 

sympathetic outflow to the kidneys, since renal denervation normalized GFR in MatSep rats. 

Taken together, there is substantial evidence in the literature to support a profound effect of 

MatSep in the autonomic function. Thus, leading to exacerbated acute and chronic reactions 

to a wide range of environmental stressors, particularly the ones triggering blood pressure 

responsiveness. There is no proof of a direct sympathetic nerve activation involving baseline 

changes in HR and increased blood pressure due to exacerbated renal sodium retention. 

Murphy et al. Page 11

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, MatSep seems to impair the blood pressure regulation required to face the adaptive 

response to stimuli when a secondary stressor challenges the cardiovascular system.

6. Perspectives for the study of ELS-induced cardiovascular dysfunction

6.1. The Renin-angiotensin-aldosterone system (RAAS)

Many investigations have shown that alterations in normal vasculature development are 

associated with changes in renal structure/function with a subsequent impact on blood 

pressure levels (Gomez and Norwood, 1995; Sequeira Lopez and Gomez, 2004). However, 

there is a gap in knowledge regarding the impact of behavioral stress early in life and the 

mechanisms underlying the programming of the adult vascular phenotype.

The RAAS plays an important role in the vasculogenesis and angiogenesis processes 

(Gomez and Norwood, 1995; Sequeira Lopez and Gomez, 2004; Shi and Clegg, 2009; Tufro 

et al., 1999). The literature has not directly addressed the effect of stress in modulating these 

mechanisms; however, several studies have shown that models with increased GC levels 

during perinatal life are frequently associated with increases in Ang II sensitivity later in 

life. For instance, maternal GC exposure in sheep (Moritz et al., 2003) and low protein 

exposure in rats (McMullen and Langley-Evans, 2005; Woods et al., 2004) have been shown 

to induce marked changes in the renal renin–angiotensin system (RAAS) in the fetus and the 

offspring, suggesting that this system is of importance in many species and models of fetal 

programming.

In addition to the effects in the vasculature, the RAAS has been described as a required 

factor for a normal renal structural and functional development (Guron and Friberg, 2000; 

Lasaitiene et al., 2003; Saez et al., 2007). It is well-known that AT1 receptor blockade 

impairs the nephron endowment and induces structural damage leading to the development 

of hypertension later in life. However, the effects of chronic stress during the late 

nephrogenic period have not been investigated. In Wistar Kyoto rats, MatSep lowers GFR in 

baseline conditions, although the histopathology of these animals is normal (Loria et al., 

2013a, 2013b). However, chronic AngII administration exaggerates hypertension. In these 

conditions, the kidney but not the conductance vessels from the MatSep animals show 

vascular damage, suggesting that exposure to AngII most likely induces a renal-dependent 

hypertension. Thus, reduced renal filtration capacity is a potential mechanism by which 

MatSep impairs chronic blood pressure control. Since the vascular development is an event 

highly associated with the circulating and local levels of AngII and the expression of AT1 

and AT2 receptors as well, further investigations to address the connections between stress 

and cardiovascular sensitivity to AngII are required.

6.2. The Inflammatory system

Humans exposed to ELS display a heightened inflammatory status that parallels what is 

observed in rodent models of ELS (Clarke et al., 2009; Danese et al., 2007; Slopen et al., 

2012). Adults who reported experiences of childhood maltreatment demonstrated an 

attenuated HPA axis sensitivity in response to a psychosocial stress test (Heim et al., 2000). 

Since glucocorticoids exert an inhibitory influence on inflammation, it is possible that 
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maltreated children display increased levels of inflammation in adulthood through this 

mechanism. Furthermore, adults reporting ELS or ACEs have been shown to be at an 

increased risk of disease associated with an inflammatory origin (Dong et al., 2004; Felitti et 

al., 1998). The persistent activation of inflammatory pathways is proposed as one of the 

mechanisms by which ELSalter long-term cardiovascular status since inflammation is a 

central part of the stress response (Glaser and Kiecolt-Glaser, 2013). In the context of the 

“fight or flight” reaction, acute psychosocial stress can induce activation of the transcription 

nuclear factor κB (NFkB) and secretion of proinflammatory cytokines (Bierhaus et al., 

2003; Maes et al., 1998). As such, through the production of proinflammatory cytokines, 

immune activation progressively stimulates the secretion of glucocorticoids (Flier, 1995). 

These events have been shown to induce hypertension and promote cardiovascular disease. 

Thus, ELS may disrupt the potentially adaptive response to stress. Animal models suggest 

that maternal care influences the development of the stress response (Caldji et al., 1998; 

Weaver et al., 2004) and may alter the long-term susceptibility to inflammation (Bailey and 

Coe, 1999).

The Dunedin Multidisciplinary Health and Development Study, one of the few prospective 

studies in a birth cohort followed to age 32 years revealed that maltreated children display a 

significant and graded increase in the risk for clinically relevant C-reactive protein levels 20 

years later (Danese et al., 2007). This investigation also shows that more than 10% of cases 

of low-grade inflammation in the population may be secondary to adverse childhood 

experiences. The association between childhood adversity and adult inflammation also 

generalizes to fibrinogen and white blood cell count (Raposa et al., 2014).

Likewise, adult animals subjected to chronic stress show an inflammatory response in the 

hippocampus; which has been related to cognitive dysfunction and psychopathology. 

MatSep activates microglial cells and decreases astrocyte density in the hippocampus. A 

differential cytokine expression was observed in the hippocampus and the hypothalamus 

after MatSep and in response to an acute stressor. Also, MatSep induced an independent 

response of peripheral cytokines, where peripheral concentrations of IL-1β were decreased 

and IL-6 concentrations were increased after a single acute stress event in MatSep pups at 

postnatal day 15 (Roque et al., 2015). Taken together, this studies reveals that ELS is 

associated with persistent elevations in proinflammatory cytokines; however, future studies 

are needed to elucidate the molecular mechanisms.

6.3. Epigenetics

Developmental and behavioral neuroscience research continues to provide evidence that the 

epigenome remains sensitive to environmental influences. Epigenetics is the study of 

heritable, but modifiable, changes in gene expression, and permits an individual’s biological 

systems to adapt to its environment by changing the methylation patterns (Berger et al., 

2009). Epigenetic mechanisms mediate gene-environment interplay during the lifespan. 

Post-translational modifications of histones and DNA methylation have been intensely 

studied and the growing body of evidence indicates that changes in gene activity are a result 

of a variety of environmental factors including, toxins, stress, diet and behaviorally relevant 

stimuli (Gershon and High, 2015a; Vaiserman, 2014b; Yang et al., 2013).
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Among the mechanisms that change the normal function of genes and/or neurons, changes 

in DNA methylation have been shown to play a critical role in the development of chronic 

disease in response to stress (Gershon and High, 2015; Murgatroyd and Spengler, 2011; 

Weder et al., 2014). Specifically, challenges during early neonatal life alter the gene 

promoter methylation and therefore directly or indirectly effect gene expression in a range of 

physiological processes (Gluckman et al., 2008). In rats, several models of fetal 

programming have extensively described these effects. Altered promoter methylation and 

gene expression have been shown in the hepatic GR and the peroxisome proliferator-

activated receptor (PPAR-α), influencing carbohydrate and lipid metabolism (Burdge et al., 

2008; Lillycrop et al., 2005). Other epigenetic changes have been observed in p53 of the 

kidney (Pham et al., 2003) and the angiotensin II type 1b receptor in the adrenal gland 

(Bogdarina et al., 2007) influencing renal apoptosis and pressor responses, respectively. 

These phenotypic effects may not manifest until later in life in response to inadequate 

nutritional factors such as a high fat diet (Gluckman et al., 2008).

Also, a significant attenuation of methylation at several CpG sites in the paraventricular 

nucleus (PVN) has been found even one year after exposure to MatSep in male mice 

(Kember et al., 2012). To test the hypothesis of correlation between rodent versus human 

ELS-induced epigenetic changes, a study of male suicide victims’ hippocampi exhibited 

decreased levels of GR, which correlated with increased methylation in the Nr3c1 promoter, 

the human GR (McGowan et al., 2009) (Murgatroyd and Spengler, 2011). Taken together, 

these data indicate that ELS modify the epigenetic landscape at multiple levels, including the 

modification of key regulators of the stress and cardiovascular responses.

7. Summary

Among the numerous environmental factors that affect the programming of the 

cardiovascular system, chronic behavioral stress during early life emerges as an independent 

risk factor. A multi-organic response in adaptation to this first exposure to stress early in life 

induces long lasting effects on the responsiveness to secondary stimuli, increasing the risk to 

develop chronic disease (Figure 1). Focusing on the psychological and cardiovascular 

comorbidity, a compelling number of mechanisms triggered by stress have been shown to 

have a major impact in the neuroendocrine plasticity associated with the regulation of 

cardiovascular function. This review also reveals that there is a need for further investigation 

in the ELS-induced mechanisms underlying future risk of premature morbidity and 

mortality. In the quest to understand the systems and mechanisms involved with organ and 

tissue plasticity, it is important to consider these pathways to develop a more personalized 

pharmacotherapy to alleviate the long-term effects of ELS, including ACEs.

Benefits of early intervention, efforts to curb child psycho-emotional and physical abuse, 

could reduce hypertension and heart disease in the adult population (Alastalo et al., 2013; 

Gluckman et al., 2008; Lehman et al., 2009; Parrish et al., 2013). Yet, sensitivity of the 

developing brain provides an opportunity for improving outcomes, and this is leading to 

efforts to improve consistency of supportive parental care.
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Highlights

• Early life stress (ELS) can overwhelm an individual’s capacity to adapt to a 

stressor, thus leading to harmful effects on the cardiovascular system in 

adulthood. Cohort studies have demonstrated a strong link between ELS 

experiences and cardiovascular disease.

• Toxic stress defined as “the excessive or prolonged activation of physiologic 

stress response systems in the absence of buffering protection afforded by 

stable responsive relationships” includes poverty, physical and sexual abuse, 

neglect, neighborhood violence, or the substance abuse or mental illness of a 

caregiver.

• Maternal separation (MatSep) is a well-established animal model of ELS and 

provides a paradigm to test the correlation between ELS and cardiovascular 

disease

• Among the mechanisms contributing to ELS-induced cardiovascular 

dysfunction, this review outlines the central nervous system (CNS); the 

Hypothalamic-Pituitary-Adrenal (HPA) axis; and the sympathetic nervous 

system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the 

immune system.

• We conclude that ELS emerges as an independent risk factor for 

cardiovascular disease. This review reveals the need for further investigation 

in the ELS-induced mechanisms underlying future risk of premature CVD 

morbidity and mortality.
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Figure 1. 
Impact of ELS on the normal development of tissues and organs. During postnatal life, the 

exposure to a “first hit” influences the future sensitivity to a “second hit”. As a result, several 

components of the cardiovascular system display an enhanced reactivity, leading to a greater 

risk to develop cardiovascular disease.

SNS=sympathetic nervous system; SAM=sympathomedullary pathway; HPA: 

Hypothalamic- Pituitary-Adrenal Axis; NF-KB: nuclear factor kappa-light-chain-enhancer 

of activated B cells BDNF:Brain-derived neurotrophic factor NGF 1-A: Nerve growth 

factor-induced protein A; NT3: neurotrophin-3 NT4/5: neurotrophin-4, neurotrophin-5, GC: 

glucocorticoid; AngII: angiotensin II; ET-1: endothelin-1; CRP: C-reactive protein; IL-6: 

interleukin-6
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