Abstract
31P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the gamma-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the gamma-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alger J. R., Shulman R. G. NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer. Q Rev Biophys. 1984 Feb;17(1):83–124. doi: 10.1017/s0033583500005266. [DOI] [PubMed] [Google Scholar]
- Bottomley P. A., Foster T. H., Leue W. M. In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6856–6860. doi: 10.1073/pnas.81.21.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. R., Kincaid B. M., Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3523–3526. doi: 10.1073/pnas.79.11.3523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. R., Ugurbil K., Shulman R. G. 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5551–5553. doi: 10.1073/pnas.74.12.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- Cadoux-Hudson T. A., Blackledge M. J., Radda G. K. Imaging of human brain creatine kinase activity in vivo. FASEB J. 1989 Dec;3(14):2660–2666. doi: 10.1096/fasebj.3.14.2629743. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Blackledge M. J., Radda G. K. Spatial heterogeneity of metabolism in skeletal muscle in vivo studied by 31P-NMR spectroscopy. Am J Physiol. 1988 Mar;254(3 Pt 1):C417–C422. doi: 10.1152/ajpcell.1988.254.3.C417. [DOI] [PubMed] [Google Scholar]
- Fox P. T., Mintun M. A., Raichle M. E., Miezin F. M., Allman J. M., Van Essen D. C. Mapping human visual cortex with positron emission tomography. 1986 Oct 30-Nov 5Nature. 323(6091):806–809. doi: 10.1038/323806a0. [DOI] [PubMed] [Google Scholar]
- Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox P. T., Raichle M. E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol. 1984 May;51(5):1109–1120. doi: 10.1152/jn.1984.51.5.1109. [DOI] [PubMed] [Google Scholar]
- Haase A., Frahm J., Hänicke W., Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985 Apr;30(4):341–344. doi: 10.1088/0031-9155/30/4/008. [DOI] [PubMed] [Google Scholar]
- Haselgrove J. C., Subramanian V. H., Leigh J. S., Jr, Gyulai L., Chance B. In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Science. 1983 Jun 10;220(4602):1170–1173. doi: 10.1126/science.6857240. [DOI] [PubMed] [Google Scholar]
- Krebs H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972;8:1–34. [PubMed] [Google Scholar]
- Kushner M. J., Rosenquist A., Alavi A., Rosen M., Dann R., Fazekas F., Bosley T., Greenberg J., Reivich M. Cerebral metabolism and patterned visual stimulation: a positron emission tomographic study of the human visual cortex. Neurology. 1988 Jan;38(1):89–95. doi: 10.1212/wnl.38.1.89. [DOI] [PubMed] [Google Scholar]
- Nakada T., Kwee I. L., Card P. J., Matwiyoff N. A., Griffey B. V., Griffey R. H. Fluorine-19 NMR imaging of glucose metabolism. Magn Reson Med. 1988 Mar;6(3):307–313. doi: 10.1002/mrm.1910060309. [DOI] [PubMed] [Google Scholar]
- Pykett I. L., Rosen B. R. Nuclear magnetic resonance: in vivo proton chemical shift imaging. Work in progress. Radiology. 1983 Oct;149(1):197–201. doi: 10.1148/radiology.149.1.6310682. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]