Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8455–8459. doi: 10.1073/pnas.88.19.8455

Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch".

M Kochoyan 1, H T Keutmann 1, M A Weiss 1
PMCID: PMC52527  PMID: 1924304

Abstract

The Zn-finger motif, encoding a globular minidomain with characteristic structure, provides a striking example of a sequence template for protein folding. Insight into architectural rules relating the amino acid sequence of a protein to its structure and stability may be obtained by comparative study of analogues. As our first step toward defining such rules for the Zn finger, we have recently described the design of an "aromatic-swap" analogue based on the ZFY two-finger repeat: a conserved alternation in sequence pattern observed among odd- and even-numbered domains in a family of sex-related vertebrate transcription factors. Consensus and "swapped" aromatic residues, introduced as revertants of less stable "aromaticless" analogues, were observed to provide equivalent contributions to the thermodynamic stability of the Zn finger. Here we describe and compare the solution structures of a wild-type domain and an aromatic-swap analogue, as determined by two-dimensional NMR and distance-geometry/restrained molecular dynamics calculations. The wild-type and aromatic-swap analogue each contain an N-terminal beta-sheet and a C-terminal alpha-helix (beta beta alpha motif), as observed in other systems, and exhibit a highly ordered hydrophobic core in which the native or swapped aromatic ring is closely packed. Remarkably, however, the two structures are stabilized by alternative aromatic-aromatic interactions, which in turn alter the respective DNA-binding surfaces. Our results suggest that native and swapped Zn-finger sequences encode a "weakly polar switch" between thermodynamically equivalent but functionally distinct architectures for DNA recognition.

Full text

PDF
8455

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg J. M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc Natl Acad Sci U S A. 1988 Jan;85(1):99–102. doi: 10.1073/pnas.85.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
  3. Burley S. K., Petsko G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985 Jul 5;229(4708):23–28. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
  4. Burley S. K., Petsko G. A. Weakly polar interactions in proteins. Adv Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
  5. Churchill M. E., Tullius T. D., Klug A. Mode of interaction of the zinc finger protein TFIIIA with a 5S RNA gene of Xenopus. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5528–5532. doi: 10.1073/pnas.87.14.5528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clore G. M., Gronenborn A. M., Brünger A. T., Karplus M. Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined use of 1H nuclear magnetic resonance and restrained molecular dynamics. J Mol Biol. 1985 Nov 20;186(2):435–455. doi: 10.1016/0022-2836(85)90116-0. [DOI] [PubMed] [Google Scholar]
  7. DiLella A. G., Page D. C., Smith R. G. A bird zinc-finger protein closely related to ZFY. New Biol. 1990 Jan;2(1):49–56. [PubMed] [Google Scholar]
  8. Gibson T. J., Postma J. P., Brown R. S., Argos P. A model for the tertiary structure of the 28 residue DNA-binding motif ('zinc finger') common to many eukaryotic transcriptional regulatory proteins. Protein Eng. 1988 Sep;2(3):209–218. doi: 10.1093/protein/2.3.209. [DOI] [PubMed] [Google Scholar]
  9. Havel T. F. The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers. 1990 Oct-Nov;29(12-13):1565–1585. doi: 10.1002/bip.360291207. [DOI] [PubMed] [Google Scholar]
  10. Klevit R. E., Herriott J. R., Horvath S. J. Solution structure of a zinc finger domain of yeast ADR1. Proteins. 1990;7(3):215–226. doi: 10.1002/prot.340070303. [DOI] [PubMed] [Google Scholar]
  11. Kochoyan M., Havel T. F., Nguyen D. T., Dahl C. E., Keutmann H. T., Weiss M. A. Alternating zinc fingers in the human male associated protein ZFY: 2D NMR structure of an even finger and implications for "jumping-linker" DNA recognition. Biochemistry. 1991 Apr 9;30(14):3371–3386. doi: 10.1021/bi00228a004. [DOI] [PubMed] [Google Scholar]
  12. Kochoyan M., Keutmann H. T., Weiss M. A. Alternating zinc fingers in the human male associated protein ZFY: refinement of the NMR structure of an even finger by selective deuterium labeling and implications for DNA recognition. Biochemistry. 1991 Jul 23;30(29):7063–7072. doi: 10.1021/bi00243a005. [DOI] [PubMed] [Google Scholar]
  13. Lee M. S., Gippert G. P., Soman K. V., Case D. A., Wright P. E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science. 1989 Aug 11;245(4918):635–637. doi: 10.1126/science.2503871. [DOI] [PubMed] [Google Scholar]
  14. Nardelli J., Gibson T. J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991 Jan 10;349(6305):175–178. doi: 10.1038/349175a0. [DOI] [PubMed] [Google Scholar]
  15. Nietfeld W., el-Baradi T., Mentzel H., Pieler T., Köster M., Pöting A., Knöchel W. Second-order repeats in Xenopus laevis finger proteins. J Mol Biol. 1989 Aug 20;208(4):639–659. doi: 10.1016/0022-2836(89)90155-1. [DOI] [PubMed] [Google Scholar]
  16. Omichinski J. G., Clore G. M., Appella E., Sakaguchi K., Gronenborn A. M. High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution. Biochemistry. 1990 Oct 9;29(40):9324–9334. doi: 10.1021/bi00492a004. [DOI] [PubMed] [Google Scholar]
  17. Page D. C., Mosher R., Simpson E. M., Fisher E. M., Mardon G., Pollack J., McGillivray B., de la Chapelle A., Brown L. G. The sex-determining region of the human Y chromosome encodes a finger protein. Cell. 1987 Dec 24;51(6):1091–1104. doi: 10.1016/0092-8674(87)90595-2. [DOI] [PubMed] [Google Scholar]
  18. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  19. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  20. Párraga G., Horvath S. J., Eisen A., Taylor W. E., Hood L., Young E. T., Klevit R. E. Zinc-dependent structure of a single-finger domain of yeast ADR1. Science. 1988 Sep 16;241(4872):1489–1492. doi: 10.1126/science.3047872. [DOI] [PubMed] [Google Scholar]
  21. Párraga G., Horvath S., Hood L., Young E. T., Klevit R. E. Spectroscopic studies of wild-type and mutant "zinc finger" peptides: determinants of domain folding and structure. Proc Natl Acad Sci U S A. 1990 Jan;87(1):137–141. doi: 10.1073/pnas.87.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiss M. A., Keutmann H. T. Alternating zinc finger motifs in the male-associated protein ZFY: defining architectural rules by mutagenesis and design of an "aromatic swap" second-site revertant. Biochemistry. 1990 Oct 23;29(42):9808–9813. doi: 10.1021/bi00494a008. [DOI] [PubMed] [Google Scholar]
  23. Weiss M. A., Mason K. A., Dahl C. E., Keutmann H. T. Alternating zinc-finger motifs in the human male-associated protein ZFY. Biochemistry. 1990 Jun 19;29(24):5660–5664. doi: 10.1021/bi00476a002. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES