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Abstract

Cannabis use has been associated with an increased risk to develop schizophrenia as well as 

symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse 

relationship between the CSF levels of the endocannabinoid anandamide and symptom severity, 

suggesting a therapeutic potential for endocannabinoid enhancing drugs. Indeed, preclinical 

studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of 

schizophrenia. The mechanisms underlying the differences between exogenous and endogenous 

cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of 

schizophrenia, we compared the effects on neuronal activity of systematic administration of 

delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. 

Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration 

was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid 

upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential 

effects were also observed at the neuronal population level, as endocannabinoid upregulation 

induced opposite effects on coordinated activity when compared to THC. Such information is 

important for understanding why marijuana and synthetic cannabinoid use may be contraindicated 

in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic 

approach.
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Introduction

Schizophrenia is a debilitating disorder affecting over 1% of the population and 

characterized by distinct symptoms including hallucinations, delusions, emotional and social 

withdrawal, as well as cognitive disruptions [Feldman et al., 1997, Association., 2000]. 

Antipsychotics are usually prescribed to alleviate these symptoms, but given their side 
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effects such as weight gain, dyskinesia, and sexual dysfunction many patients often stop 

taking their medications [Lieberman et al., 2005]. For these reasons, alternatives to 

conventional antipsychotics are being pursued.

Endocannabinoid upregulation may be a potential treatment for schizophrenia due to 

promising clinical and preclinical observations [Leweke et al., 1999, Giuffrida et al., 2004, 

Seillier et al., 2010, Seillier et al., 2013, Aguilar et al., 2015]. The endocannabinoid system 

is comprised of lipid messengers, including the prototypic endocannabinoid anandamide 

(AEA), that are found throughout the brain and activate the cannabinoid type 1 receptor 

(CB1r). Drug-naïve schizophrenic patients show increased levels of AEA in the 

cerebrospinal fluid (CSF) [Leweke et al., 1999], and blood levels of AEA are higher in 

patients experiencing acute schizophrenia than when these same patients are in remission, 

leading some to hypothesize increased AEA levels contribute to the symptoms of 

schizophrenia [De Marchi et al., 2003]. Interestingly, across schizophrenia patients, higher 

CSF levels of AEA have been correlated to less severe psychotic symptoms [Giuffrida et al., 
2004], suggesting that AEA upregulation may be a beneficial compensatory response. These 

findings have inspired research to explore the therapeutic potential of endocannabinoids in 

animal models of schizophrenia [Seillier et al., 2010, Seillier et al., 2013, Aguilar et al., 
2015]. Indeed, recent preclinical studies have shown that AEA upregulation (following 

blockade of its catabolic enzyme, fatty acid amide hydrolase or FAAH) reverses social 

withdrawal in the phencyclidine (PCP) rat model of schizophrenia [Seillier et al., 2010] in a 

CB1 dependent manner [Seillier et al., 2013]. AEA upregulation can also alleviate aberrant 

dopamine neuron activity in the same model [Aguilar et al., 2015]. However, the clinical 

literature reveals mixed results for AEA upregulation through FAAH inhibition. Some have 

found FAAH inhibitors can alleviate positive and negative symptoms in schizophrenia 

patients [Leweke et al., 2012], while others suggest they have little to no efficacy in these 

populations [Zuardi et al., 2006, Hallak et al., 2011]. In any case, the neuronal mechanisms 

underlying the potential therapeutic utility of endocannabinoids are not well understood. 

Furthermore, disruptions in neuronal activity have been well characterized following acute 

PCP administration [Suzuki et al., 2002, Jodo et al., 2010], but less so after subchronic PCP 

treatment [Young et al., 2015] which induces a model of schizophrenia without the 

confounds associated with acute NMDA receptor blockade [Mouri et al., 2007].

Interestingly, the use of endocannabinoid upregulation as a therapy may appear to be at odds 

with epidemiological studies on marijuana exposure in schizophrenics. The cannabinoid 

hypothesis of schizophrenia correlates marijuana use with an increasing risk of psychosis, 

but causation is not necessarily implied [Moore et al., 2007]. On the other hand, 

schizophrenia patients who ‘self-medicate’ with cannabis may show superior cognitive 

functioning compared to their nonsmoking peers [Yucel et al., 2012]. Furthermore, 

cannabinoids may alleviate some PCP-induced schizophrenia-like symptoms in rodents 

[Spano et al., 2010, Spano et al., 2013]. Nonetheless, clinical studies of psychotic prone 

patients revealed that delta-9-tetrahydrocannabinol (THC) can transiently exacerbate 

positive and negative symptoms of schizophrenia as well as increase learning deficits 

[D'souza et al., 2005, D'souza et al., 2009, Mason et al., 2009]. Similarly, numerous studies 

have reported the exacerbation of psychosis in schizophrenia patients [Negrete et al., 1986, 

Linszen et al., 1994, Degenhardt et al., 2007].
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In response to these observations, CB1r antagonists were investigated as a potential 

antipsychotic therapy [for review see [Roser et al., 2010]]. Preclinical studies had mixed 

results with CB1r antagonists sometimes alleviating schizophrenia-like positive symptoms 

[Martin et al., 2003, Tzavara et al., 2003, Madsen et al., 2006, Ferrer et al., 2007, Parolaro et 
al., 2010], although they were generally more effective at alleviating cannabinoid induced 

gating deficits [Mansbach et al., 1996, Martin et al., 2003, Dissanayake et al., 2008, Hajos et 
al., 2008, Parolaro et al., 2010]. Unfortunately, clinical trials failed to demonstrate beneficial 

effects of these drugs [Meltzer et al., 2004].

Here we compare the effects of the endocannabinoid enhancing drug (FAAH inhibitor) 

URB597 with exogenous THC administration in the subchronic PCP model of 

schizophrenia. Specifically, we examined their effects on neuronal activity in brain regions 

relevant to schizophrenia: the medial prefrontal cortex (mPFC) and ventral hippocampus 

(vHipp). Given that endocannabinoids are synthesized on demand de novo, we recorded 

neuronal activity in conscious, freely moving animals [Piomelli, 2003].

Methods and Materials

Animals

All experiments were conducted in accordance with the guidelines outlined by the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved 

by the Institutional Animal Care and Use Committee of the University of Texas Health 

Science Center.

Chronic Electrode Implantation

Adult male Sprague-Dawley rats (300-400g) were anesthetized with pentobarbital (60mg/kg, 

i.p.) and treated with atropine (0.1mg/kg, i.p.) to reduce mucus secretion. Rats were placed 

in a stereotaxic apparatus using blunt atraumatic ear bars and body temperature was 

maintained at 37°C. Anesthesia was maintained throughout by supplemental administration 

of pentobarbital as required to maintain suppression of limb compression withdrawal reflex. 

The surgery was completed under semi-sterile conditions. Microwire polyimide coated 

stainless steel electrode arrays (Eight wires in a 2x4 array, separated by 0.25mm) were 

lowered into both the mPFC (A/P +3.0, M/L −0.5, D/V −4.0mm from bregma) and vHipp 

(A/P −5.6, M/L +5.3, D/V −7.0mm from bregma) in the right hemisphere, and fixed to the 

skull by dental cement. Stainless steel screws were inserted into the skull and connected to 

the reference wire of the electrodes. Ketoprofen (5mg/kg) was administered as an analgesic. 

All rats were singly housed and allowed two weeks to recover with access to food and water 

ad libitum.

Sub-chronic PCP Treatment

Once recovered from surgery, the rats received an intraperitoneal injection of either PCP 

(5mg/kg, i.p.) or vehicle (isotonic saline 1ml/kg i.p.) twice daily for 7 days (8 AM and 8 

PM), followed by 7 days drug free. This sub-chronic PCP injection schedule induces a well 

characterized pharmacological model of schizophrenia [Mouri et al., 2007, Neill et al., 
2010].
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Procedure

A schematic of the procedure is provided in Figure 1. Animals were moved to the testing 

room and acclimated for at least one hour. An animal was then given 30 minutes to 

equilibrate to the testing environment, a Med Associates activity box (17.5” by 17.5”), while 

connected to recording equipment (Omniplex). Following this period a 5 minute baseline 

recording was taken. After the baseline an i.p. injection of either vehicle (10% Tween-80, 

10% Polyethylene Glycerol, 80% Saline at 65°C), 0.3mg/kg URB597 [fatty acid amide 

hydrolase (FAAH) inhibitor], or delta-9-tetrahydrocannabinol (THC, 1mg/kg) was given. 

Next, 5 minute recordings were taken at intervals 30, 60, 90, or 120 minutes after drug 

injection. Each rat was tested with vehicle, URB597 and THC with at least 6 days between 

experiments to allow time for the drugs to be completely eliminated. Vehicle and URB597 

experiments were given in a counterbalanced order, with the THC experiment always 

performed last to avoid THC-dependent CB1 receptor tolerance [Breivogel et al., 1999]. 

Rats were administered URB597 two times in an attempt to examine CB1 and TRPV1 

antagonists (antagonists were administered after the 120 minute recording period). However, 

the results from this approach were inconclusive and a more appropriate paradigm would 

have been to administer the antagonists prior to the cannabinoids to block their effects. 

Therefore, these data are not included in the analysis. An experimenter was present 

throughout all of the recordings and a light tap on the activity box 30 seconds prior to 

recording was performed to ensure that rats remained awake during the recording session.

Histology

At the cessation of the experiment, rats were deeply anesthetized and decapitated. Their 

brains were removed and fixed for at least 48 hours (8% w/v paraformaldehyde in phosphate 

buffered saline) and cryoprotected (25% w/v sucrose in PBS) until saturated. Brains were 

sectioned (25 micrometer coronal sections), mounted onto gelatin-chrom alum coated slides 

and processed with a Nissl stain for histochemical verification of electrode sites (Figure 2). 

All histology was performed with reference to a stereotaxic atlas (Paxinos and Watson, 

1986).

Analysis

Data were recorded using Omniplex software (Plexon Inc, Dallas, TX, USA). Wideband 

data were recorded in 5 minute intervals via a Plexon Headstage and PBX Preamplifier 

(HST 8o50-G20, 20x gain, Plexon Inc, Dallas, TX, USA) routing through an Omniplex D 

system at a 40 KHz sample rate. The recording template was as follows: Gain 6000, pre-

threshold time 600 μsec, waveform length 1400 μsec. After the live recording, putative 

neurons were identified in OfflineSorter V3. First, signals were filtered using a 4th order 

low-cut Butterworth filter, and the voltage threshold for spike detection was set at −10 to 

−15% relative to the mean baseline signal. Next, waveforms were aligned by first local 

extremum after sort start. Cross channel artifacts (i.e. signals that appeared across multiple 

electrodes simultaneously) were identified by the Offline Sorter software and invalidated. 

Finally, putative neurons were identified in each electrode channel based on action potential 

shape. The average neurons recorded per animal are as follows: in SAL animals the PFC had 

10.6 ± 2.3 cells while the vHipp had 8.6 ± 1.8 cells; for PCP animals the PFC had 9.75 ± 2.3 
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cells while the vHipp had 7.9 ± 1.7 cells. Electrophysiological analysis of single unit activity 

and local field potential activity was performed using commercial computer software 

(NeuroExplorer 4). All data are represented as the mean ± S.E.M. unless otherwise stated, 

with n-values representing the number of animals per experimental group. Statistics were 

calculated and graphs were created using SigmaPlot, Graphpad Prism, and MATLAB.

The firing rates of neurons across the five minute recoding period were averaged into one 

“animal mean” value per brain region. These averaged firing rates were analyzed by a two-

way repeated measure (RM) ANOVA (between variable = subchronic saline / PCP, within 

variable = baseline / 120mins after acute treatment) for each acute treatment (vehicle, 

URB597, THC). The Holm-Sidak multiple comparison test was used to examine statistical 

differences between treatment groups.

In addition, firing rate distributions were fit by Gaussian models while graphical 

representation of each individual neurons response was plotted in Matlab using Z scores:

(1)

where χ represents the average firing rate (calculated in 1 min bins), μ represents the 5 

minute baseline firing average, and σ represents the 5 minute baseline standard deviation.

Local field potential (LFP) activity is an electrophysiological measure of the activity of 

populations of neurons [Pesaran, 2009]. Power spectral density measures the strength of the 

LFP in a specific frequency band [Einevoll et al., 2013], whereas coherence measures the 

degree of coordinated LFP activity between the two regions being recorded (vHipp and 

mPFC) [Robbe et al., 2006]. One LFP measurement was examined per brain region. 

Coherence value was calculated by comparing the amplitudes of a rodent’s mPFC LFP and 

its vHipp LFP across various frequency divisions, then summed within each division. LFPs 

were broken down into the following frequency divisions: Delta (0.3-4 Hz), Theta (4-8 Hz), 

Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz) waves. The power spectral 

density settings were: maximum frequency 100Hz, 1024 frequency values, normalized to the 

raw PSD. Power spectral density and coherence were analyzed separately for each frequency 

division (delta, theta, etc) using two way repeated measure ANOVAs (between = subchronic 

saline / PCP, within = acute treatment of URB597 or THC against respective baselines). The 

Holm-Sidak multiple comparison test was used to examine statistical differences between 

treatment groups.

Materials

Delta-9-tetrahydrocannabinol was obtained from the National Institute for Drug Abuse. 

URB597 was purchased from Cayman Chemical Company. Phencyclidine, chloral hydrate, 

atropine, ketoprofen, pentobarbital sodium, and Dulbecco’s phosphate buffered saline were 

all purchased from Sigma (USA).
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Results

The majority of electrode tracks were identified within the mPFC or vHipp. Figure 2 shows 

representative electrodes in the mPFC and vHipp from each rat used in the analysis. The 

mPFC electrode array from one rat was outside of the target area and these data were not 

included for analysis.

Effects of URB597 and THC on Single Unit Activity

The acute effects of URB597 and THC were studied in 7 saline treated animals and 8 PCP 

treated animals. Each animal had an array of eight electrodes in the mPFC and another array 

in the vHipp. The vehicle experiment sample sizes were: saline treated animals (n=6 PFC, 

n=7 vHipp), PCP-treated animals (n=8 PFC, n=7 vHipp). The URB597 experiment sample 

sizes were: saline treated animals (n=6 PFC, n=7 vHipp), PCP-treated animals (n=8 PFC, 

n=8 vHipp). The THC experiment sample sizes were: saline treated animals (n=6 PFC, n=6 

vHipp), PCP-treated animals (n=5 PFC, n=5 vHipp).

Medial Prefrontal Cortex

Two-way repeated measures ANOVA were conducted to examine the effects of cannabinoids 

on mPFC neuronal firing rate in rats treated with subchronic saline or PCP. Rats treated with 

vehicle were not significantly different from baseline for either saline [Basal 11.5 ± 1.5 Hz –

Vehicle 11.5 ± 1.9 Hz; two-way RM ANOVA] or PCP [Basal 10.0 ± 1.7 Hz – Vehicle 10.3 

± 2.1 Hz; two-way RM ANOVA] treated animals (Fig 3A). Endocannabinoid upregulation 

by URB597 increased mPFC firing rates in PCP [Basal 12.4 ± 1.5 Hz – URB 16.5 ± 2.8 Hz; 

two-way RM ANOVA; Holm-Sidak; t=2.836; p=0.0298] but not saline [Basal 13.3 ± 2.8 Hz 

- URB 12.3 ± 2.2 Hz; two-way RM ANOVA; Holm-Sidak; t=0.5782, p=0.57] treated 

animals (Fig 3B). In contrast, acute THC administration reduced the firing rate of saline 

treated animals [Basal 9.5 ± 1.0 Hz – THC 5.4 ± 1.0 Hz; two-way RM ANOVA; Holm-

Sidak; t=3.068; p=0.0266] without affecting PCP treated animals [Basal 4.7 ± 1.6 Hz – THC 

4.9 ± 2.3 Hz; two-way RM ANOVA; Holm-Sidak; t=0.1488; p=0.8850] (Fig 3C).

Ventral Hippocampus

Two-way repeated measures ANOVA were conducted to examine the effects of cannabinoids 

on vHipp neuronal firing rate in rats treated with subchronic saline or PCP. Rats treated with 

vehicle were not significantly different than baseline for either saline [Basal 10.0 ± 0.8 Hz – 

Vehicle 8.8 ± 1.2 Hz; two-way RM ANOVA] or PCP [Basal 8.2 ± 2.1 Hz – Vehicle 8.2 ± 1.9 

Hz; two-way RM ANOVA] treated animals (Fig 4A). In contrast to the data obtained in the 

mPFC, URB597 treatment produced a trend [F(1,13) = 4.307; p=0.0584] for an increase in 

firing rate in both saline [Basal 8.0 ± 1.9 Hz – URB 9.8 ± 2.3 Hz] and PCP [Basal 8.9 ± 2.6 

Hz - URB 12.7 ± 3.1 Hz] treated animals (Fig 4B). THC treatment appeared to produce the 

opposite response in saline and PCP-treated rats [Fstrain × treatment (1,9) = 6.353; p=0.0327]. 

However, a Holm-Sidak post hoc test revealed no significant differences in saline [Basal 

6.98 ±1.2 Hz – THC 3.1 ± 0.5 Hz; two-way RM ANOVA; Holm-Sidak; t= 2.169; p=0.1130] 

or PCP [Basal 3.5 ± 0.9 – THC 6.3 ± 3.2 Hz; two-way RM ANOVA; Holm-Sidak; t=1.432; 

p=0.1858] treated rats (Fig 4C).
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Changes in the distribution of firing frequency induced by acute drug treatment can be 

visualized with the firing rate histograms which include data from all cells recorded (Figures 

3D-G and 4D-G). In addition, single unit changes in neuronal activity are depicted in 

Supplementary Figures S1 and S2, which permits a more complete visualization of the data 

presented here.

Effects of URB597 and THC on Coordinated Oscillatory Activity

Subchronic PCP treatment had no effect on spontaneous oscillatory activity in either the 

mPFC or vHipp; however, differences in LFP data were observed following acute URB597 

and THC treatment. Specifically, URB597 administration induced a selective increase 

[F(1,13) = 5.974; p=0.03] in gamma oscillatory activity in the mPFC in both saline [Basal 

2.96×10−4 ± 5.59×10−5 dB/Hz – URB 3.23×10−4 ± 5.59×10−5 dB/Hz] and PCP [Basal 

4.07×10−4 ± 5.23×10−5 dB/Hz – URB 4.62×10−4 ± 5.23×10−5 dB/Hz] treated rats (Figure 

5C). Furthermore, URB597 produced a decrease in vHipp delta band activity [F(1,13) = 

10.104; p=0.007] in both saline [Basal 4.96×10−3 ± 1.16×10−3 dB/Hz – URB 4.33×10−3 

± 1.16×10−3 dB/Hz] and PCP [Basal 4.54×10−3 ± 1.09×10−3 dB/Hz – URB 3.79×10−3 

± 1.09×10−3 dB/Hz] treated rats (Figure 6A). Interestingly, THC administration failed to 

significantly alter oscillatory activity in any group (Figures 5 & 6). Synchrony between the 

vHipp and mPFC was also measured as the degree of coherence between the LFP’s in these 

regions (Figure 7). Baseline synchrony between the vHipp and mPFC was unchanged by 

subchronic PCP treatment; however, URB597 and THC produced opposite effects on low 

frequency delta synchrony. Specifically, URB597 decreased vHipp-mPFC delta synchrony 

[F(1,13) = 5.084; p=0.042] in saline [Basal 5.159 ± 0.624 – URB 4.452 ± 0.624] and PCP 

[Basal 5.246 ± 0.584– URB 3.914 ± 0.584] treated rats while THC increased vHipp-mPFC 

delta synchrony [F(1,8) = 6.236; p=0.037] in both saline [Basal 4.65 ± 1.134– THC 6.153 

± 1.134] and PCP [Basal 4.9 ± 1.389– THC 5.859 ± 1.389] treated cohorts (Figure 7).

Discussion

In this study we report on neurophysiological differences between endogenous (induced by 

FAAH blockade with URB597) and exogenous (via THC) cannabinoid receptor stimulation 

in saline and PCP-treated rats. PCP-induced schizophrenia-like symptoms in rats can be 

rescued by anandamide upregulation [Seillier et al., 2010, Seillier et al., 2013, Aguilar et al., 
2015]. However, given the purported differences between the behavioral effects of 

endogenous and exogenous cannabinoids in human patients [Giuffrida et al., 2004, D'souza 

et al., 2005, D'souza et al., 2009, Leweke et al., 2012] and rodent models of schizophrenia 

[Vigano et al., 2009, Seillier et al., 2010], we examined the regulation of neuronal activity in 

the sub-chronic PCP rat model of schizophrenia. This was recently explored in anesthetized 

animals [Young et al., 2015], but conscious and freely moving animals are more relevant for 

studies involving endocannabinoid production, as these lipid messengers are produced on 

demand.

THC is considered the main psychoactive component in marijuana and is known to induce 

general decreases in cognitive function [Pope et al., 1996, Morrison et al., 2011, Meijer et 
al., 2012]. Here we demonstrate that the administration of THC significantly reduced 
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neuronal activity in the mPFC of control rats without significantly affecting mPFC activity 

in PCP-treated rats. In the vHipp a significant interaction was present such that THC tended 

to decrease neuron activity in controls and increase neuron activity in PCP-treated rats. 

Decreases in activity following THC administration are in line with imaging data from 

clinical observations [Mathew et al., 1999, O'leary et al., 2002, O'leary et al., 2003, Crippa et 
al., 2004] although these types of studies have yielded inconsistencies ([Mathew et al., 1989, 

Mathew et al., 1992, Borgwardt et al., 2008, Fusar-Poli et al., 2009], for review see [Martin-

Santos et al., 2010]. The results in control animals are also consistent with preclinical data 

examining the effects of CP55940, a synthetic CB1r agonist that depresses hippocampal and 

mPFC pyramidal firing rates in vivo [Robbe et al., 2006, Kucewicz et al., 2011]. 

Interestingly, we observed a dramatically different response in the sub-chronic PCP model. 

THC increased the activity of a subset of cortical neurons in PCP-treated rats, in contrast to 

decreases in multiple neurons of saline-treated controls (see Supplementary figures S1 and 

S2). Offsetting increases and decreases in activity among subsets of neurons likely 

contributed to this discrepancy. The exact reason for this contrast remains to be elucidated, 

but is likely associated with the neuropathological alterations (i.e. alterations in 

dopaminergic, GABAergic or endocannabinoid transmission) induced by the sub-chronic 

PCP treatment. This altered response to THC may be related to the exacerbation of 

psychosis that patients with schizophrenia experience when exposed to THC [D'souza et al., 
2005]. It is important to note that the baseline firing rate of PCP-treated rats appears to be 

lower in the THC experiments (Figs 3C, 4C) than in the vehicle (Figs 3A, 4A) and URB597 

(Figs 3B, 4B) experiments, so the possibility of a floor effect does exist. However, these 

baseline data were not significantly different from any other baseline group [two-way RM 

ANOVA; PCP/saline vs Veh/URB/THC baselines; mPFC data - interaction F(2,18) = 

0.3803, p >0.05; vHipp data – interaction F(2,18) = 0.9736, p >0.05].

URB597 is a selective blocker of FAAH and results in region specific increases in AEA and 

other non-cannabinoid fatty-acid ethanolamides [Desarnaud et al., 1995, Cravatt et al., 2001, 

Kathuria et al., 2003]. URB597 administration, at a dose previously demonstrated to produce 

CB1 mediated behavioral effects [Seillier et al., 2010, Seillier et al., 2011, Seillier et al., 
2013], failed to alter neuronal activity in either brain region of control rats. We do not 

believe this to be due to the dose selected, as 0.3mg/kg has been reported to maximally 

inhibit FAAH enzyme activity in vivo up to six hours following its administration, 

significantly elevate brain AEA, and induce CB1-dependent behavioral effects in rats 

[Kathuria et al., 2003]. It is important to note that while THC and AEA induce responses by 

acting at the same, CB1, receptor, differences in regional specificity of these compounds are 

likely responsible for the disparate results with these two compounds. Thus, THC activates 

CB1 receptors throughout the entire neuraxis [Harkany et al., 2003] whereas URB597 only 

acts in regions with appreciable FAAH activity and will only augment AEA levels in regions 

where this lipid messenger is being produced on demand de novo (Egertova et al. 1998; 

Egertova et al. 2003). For this reason, it is not surprising that THC and URB597 produced 

dramatically different results in control animals and the absence of tonic AEA signaling is 

one explanation behind the modest effects of URB597. Indeed, previous studies have 

demonstrated that even at a threefold higher dose URB597 fails to alter hippocampal firing 

in rats [Coomber et al., 2008]. Another possible explanation arises from the different lipid 
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messengers elevated upon FAAH pharmacological blockade, including molecules that signal 

at the peroxisome proliferator-activated receptor (PPAR) or transient receptor potential 

(TRP) families of receptors which might influence neuronal activity [Cravatt et al., 2001, 

Kathuria et al., 2003]. At high concentrations, AEA can also act as an agonist at the 

vanilloid receptor 1 (TRPV1) [Zygmunt et al., 1999, Di Marzo et al., 2002] and PPAR 

receptors [Sun et al., 2007] which further complicates this issue. Although URB597 had no 

significant effects in control animals, PCP-treated rats receiving URB597 showed a 

significant increase in mPFC neuronal firing rates. This likely reflects neuropathological 

alterations induced by the subchronic PCP treatment. Acute PCP treatment can evoke 

excitation or inhibition in subpopulations of thalamic neurons that project directly to the 

mPFC [Jodo et al., 2010]. After subchronic PCP treatment these same subpopulations of 

thalamic neurons might be primed to respond differently to drugs such as cannabinoids, and 

might have led to the above observation. Taken together, our data indicate differences not 

only between the actions of exogenous and endogenous cannabinoids, but also dramatically 

altered responses in PCP-treated vs control rats.

In addition to single-unit activity we also examined the synchronous activity of LFPs to 

understand neuronal activity from a broader perspective. LFPs were broken down into the 

following frequency divisions: Delta (0.3-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta 

(13-30 Hz), and Gamma (30-100 Hz) waves. We analyzed delta activity which represents 

pyramidal cell noise or restful behavior [Anderson et al., 2003, Kiss et al., 2011], theta 

activity which is present during cognitive tasks [Hyman et al., 2011], and gamma activity 

which is associated with interneuron activity [Bartos et al., 2002] and working memory tasks 

[Howard et al., 2003]. We split the gamma activity into low (30-55 Hz) and high (65-99 Hz) 

before analysis to avoid including electrical noise at 60 Hz. In studies of anesthetized PCP 

rats, subchronic PCP treatment decreased theta oscillatory power in the mPFC [Young et al., 
2015]. In our conscious animals, we observed no differences in baseline oscillatory power at 

any frequency in saline or PCP treated rats. It is possible that differences in strain (Wistar vs 

Sprague Dawley), PCP dose (2.0mg/kg vs 5.0mg/kg), or the presence of anesthesia may 

have contributed to these differences [Young et al., 2015]. In contrast to the divergent results 

between control and PCP-treated rats observed when examining single unit activity, 

coordinated activity in the mPFC and vHipp were similarly affected by URB597 

administration. Specifically, AEA upregulation by URB597 produced a decrease in 

hippocampal delta activity and an increase in mPFC gamma in both cohorts. No significant 

effects on oscillatory activity were observed with 1mg/kg THC which is in contrast to a 

conscious recording study demonstrating CB1 dependent decreases in hippocampal theta 

and gamma oscillations following 5mg/kg THC and 0.1mg/kg CP55940 [Robbe et al., 
2006]. This discrepancy is likely due to the higher concentration used in previous studies 

and may be associated with the sedative effects of THC at these high doses.

Using chronically implanted electrodes we found subchronic PCP administration had no 

effect on baseline single unit or baseline population activity of neurons in the mPFC or 

vHipp of conscious rats. NMDA receptor antagonists have been consistently reported to 

increase mPFC activity following acute administration [Suzuki et al., 2002, Jackson et al., 
2004]. Subchronic PCP treatment better emulates behavioral symptoms of schizophrenia 

[Mouri et al., 2007], yet neuronal effects on this time scale are not well known. In agreement 
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with our data, Young et al. [2015] found subchronic PCP treatment did not significantly alter 

firing rates of single-unit mPFC neurons in anesthetized rats. To our knowledge, this is the 

first conscious neurophysiological study of the subchronic PCP model. Exposing functional 

differences between acute and subchronic PCP administration may help future experimental 

design. Neurophysiological responses to AEA upregulation must be better understood, as 

FAAH inhibitors are currently being explored as an alternative therapy for patients suffering 

from schizophrenia [Leweke et al., 2012, Zuardi et al., 2012, Schubart et al., 2014]. These 

drugs appear to alleviate symptoms of schizophrenia without the side effect profile of 

antipsychotics [Leweke et al., 2012]. However, conflicting evidence within the clinical 

literature [Zuardi et al., 2006, Hallak et al., 2011] and details of their mechanism of action 

must be resolved before moving forward. Local changes in neuronal activity following AEA 

upregulation cannot be accurately measured in these patients, which emphasize the 

importance of preclinical studies. Previous preclinical studies in control and PCP-treated rats 

revealed the degree of AEA upregulation seems to depend on the brain region, 

pharmacological dose of FAAH inhibitor, and activity the animals are engaged in [Gobbi et 
al., 2005, Seillier et al., 2010, Seillier et al., 2013, Seillier et al., 2014]. Furthermore, with 

frequent inconsistencies in human imaging data [Martin-Santos et al., 2010] more invasive 

and controlled approaches in animal models may finally resolve what these local and global 

changes may be.

In conclusion, we demonstrate qualitative and quantitative differences between AEA 

upregulation and exogenous THC administration. Moreover, we demonstrate that the PCP 

model of schizophrenia displays altered responses to cannabinoids at the single unit levels, 

while the coordinated activity of the neuronal population within and between regions appear 

unchanged. These differences provide information relevant to the dichotomy between the 

effects of THC and endocannabinoid upregulation observed clinically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental timeline for surgery, subchronic injections, and recordings (A) as well as the 

timeline of each experimental recording session (B). The vehicle and URB597 experiments 

were performed in a counterbalanced order, with the THC experiment always occurring last 

to minimize potential confounds associated with THC-induced CB1 receptor desensitization.
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Figure 2. 
Schematic demonstrating the electrode track placements throughout the medial prefrontal 

cortex (A) and ventral hippocampus (B). Target areas are outlined in grey. Histology was 

performed with reference to a stereotaxic atlas (Paxinos and Watson, 1986).
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Figure 3. Single unit activity in the PFC
Before-after plots of the average mPFC firing rate per animal at baseline and 120 minutes 

after acute treatment of vehicle (A), URB597 (B), or THC (C). Group means are in 

foreground (black) while individual animal means are in the background (grey). URB597 

increases the average firing rate of mPFC cells in PCP but not saline treated animals (B). 

THC decreases the average firing rate of mPFC cells in saline but not PCP treated animals 

(C). Frequency histograms (D-G) were fit by Gaussian models and effects of URB597 or 

THC can be seen as shifts in the distribution. * represents significant difference from 

baseline (two-way RM ANOVA p<0.05)
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Figure 4. Single unit activity in the vHipp
Before-after plots of the average vHipp firing rate per animal at baseline and 120 minutes 

after acute treatment of vehicle (A), URB597 (B), or THC (C). Group means are in 

foreground (black) while individual animal means are in the background (grey). No 

significant changes in firing rate were evoked by vehicle, URB597, or THC. Nevertheless, 

URB597 appeared to increase firing rate in both groups (main effect of URB – p<0.06) 

while THC evokes a significant interaction that suggests a decreased firing rate in saline rats 

and the opposite response in PCP treated rats. Frequency histograms (D-G) were fit by 

Gaussian models and effects of URB597 or THC can be seen as shifts in the distribution.
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Figure 5. Coordinated activity in the mPFC
Analysis of power spectral density within the mPFC demonstrates a significant increase in 

low gamma power (30-55 Hz) in response to URB597 whereas no effects of THC were 

observed. † depicts main effect of URB597 (two-way RM ANOVA).
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Figure 6. Coordinated activity in the vHipp
Analysis of power spectral density within the vHipp demonstrates a significant decrease in 

delta rhythms in response to URB597 whereas no effects of THC were observed. † depicts 

main effect of URB597 (two-way RM ANOVA).
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Figure 7. Hippocampal – prefrontal coherence
Coherence between the vHipp and mPFC is differentially altered by URB597 and THC. 

Specifically, delta coherence is decreased by URB597 but increased by THC administration. 

No other effects were observed for either URB597 in THC in any other frequency band. † 

depicts main effect of drug (two-way RM ANOVA).
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