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“Prediction is difficult, especially about the future.” - Anonymous

Cardiovascular disease (CVD) is a leading cause of death worldwide and continues to 

increase in prevalence compared to previous decades, in part because of the aging of the 

world population (1). Atherosclerotic CVD starts at a very young age and progresses over 

time allowing sufficient time for screening and early detection of the condition (2). 

Advances in biomarker research and developments related to CVD over the past 30 years 

have led to more sensitive screening methods, a greater emphasis on its early detection and 

diagnosis, and improved treatments resulting in more favorable clinical outcomes in the 

community (3, 4). However, the use of biomarkers for different purposes in CVD remains an 

important area of research that has been explored by scientists over the years and many new 

developments are still underway. Therefore, a detailed description of all CVD biomarkers 

that are currently being used or investigated for future use in the field of cardiovascular 

medicine is out of scope for any review article. In the present review, we do not intend to 

replicate the information from previous exhaustive reviews on biomarkers (5) but highlight 

key statistical and clinical issues with an emphasis on methods to evaluate the incremental 

yield of biomarkers, including their clinical utility, a pre-requisite before any putative novel 

biomarker is utilized in clinical practice. In addition, we will summarize information 

regarding recent novel heart failure biomarkers in current practice, which are undergoing 

scrutiny before they can be available for clinical use, and their impact on clinical outcomes.

Biomarker Definition

The National Institute of Health Consortium in 2001 defined a biomarker as a “characteristic 

that is objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” (6). 

Subsequently, in 2009 the American Heart Association outlined the extensive criteria for 

how newer biomarkers should be evaluated in a standardized fashion before their clinical use 

can be recommended (7). The characteristics of an ideal biomarker to be used for a given 
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purpose in any disease condition with a special emphasis on CVD are detailed in previous 

reviews (5, 8).

Biomarker Types

Biomarkers play an important role in the evaluation of disease as well as in the development 

of drug treatments for disease conditions. In the late phases of drug development, 

biomarkers can even be helpful in determining the accurate doses for any given drug. In 

more recent times, biomarkers are being considered as surrogate end points for clinical trials 

as well. Biomarkers are traditionally classified on the basis of their intended use as 

screening, diagnostic or prognostic. Desired characteristics of a novel biomarker according 

to their intended use are also displayed in Figure 1. More recently, there has been a national 

shift toward development of precision medicine, especially with a focus on development of 

new cancer drugs. On January 30th 2015, US President Barack Obama introduced in his 

State of Union address the Precision Medicine Initiative (9) that takes into account 

individual differences in genes, environment and lifestyle factors, emphasizing more 

effective and targeted treatment goals (10).

From a precision medicine perspective, biomarkers can be classified as prognostic, 

pharmacodynamic or predictive biomarkers. A prognostic biomarker is one that provides 

information on the likely course of a disease condition in an untreated individual or in an 

individual treated with conventional therapies. In contrast, a predictive biomarker is one that 

can be used to identify individuals who are most likely to respond to a given therapy or that 

distinguishes candidates who can be considered for specific targeted therapies (11, 12). 

Thus, predictive biomarkers help to tailor therapy according to the patient’s needs. So far 

these clinical trial designs based on evaluating a biomarker for prognostic or predictive 

utility have been limited to the field of oncology; however, other fields of medicine 

including cardiovascular medicine and infectious diseases have now started adopting these 

designs as well (13). Lastly, pharmacodynamic biomarkers measure the effect of a drug on 

the disease state itself. In other words, they represent the change in a target organism in 

response to the disease and its treatment. For example, changes in circulating natriuretic 

peptide levels are reflective of heart failure severity and, therefore, blood natriuretic peptide 

levels are now being proposed as a surrogate endpoint to test the efficacy of drug treatment 

(14). Similarly, use of statins to reduce serum cholesterol levels is another example where 

changes in concentration of a biomarker (low density lipoprotein [LDL] cholesterol) is used 

to guide therapy to reduce the risk of CVD in future. But first, it is imperative to confirm that 

biomarker levels (natriuretic peptide or LDL cholesterol as examples above) should correlate 

well with a clinical outcome at individual and population levels.

Biomarker Characteristics- General Principles

Accuracy, precision, high sensitivity and specificity are important characteristics of an ideal 

biomarker. Before clinical utilization, if a biomarker is to be used for screening or for 

prognostic purposes, a high specificity (which is expressed as likelihood ratio [LR]) is 

required (“rule in”). (15) The desirable likelihood ratio for a screening test is typically >10. 

Whereas, if a biomarker is evaluated for diagnostic purposes, a high sensitivity (LR <0.10) is 
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recommended. Second, it is important to establish reference limits (16) with the 

understanding that reference limits are influenced by the characteristic of an assay in the 

group analyzed to derive those limits (17). For instance, blood troponin assays made by 

several manufacturers are different and have varying reference limits for detection of 

clinically important vascular events such as an acute myocardial infarction (18). Third, 

higher discrimination capabilities are necessary for an assay before it can be used clinically 

(19). Discrimination limits allow separation of abnormal levels from normal levels of a 

biomarker according to the disease condition studied. More importantly, differentiating 

between ‘undesirable’ or ‘abnormal’ levels from the ‘levels that require treatment’ is also 

critical before a biomarker is considered ‘fit’ to be used in clinical practice for a ‘given 

purpose’. Lastly, calibration is a test to assess the ability of a biomarker to predict risk in a 

given sample compared to the actual observed risk in the same sample of individuals or in a 

different population all together. For example, the risk of CVD based on cutoff values of 

waist circumference or of body mass index among US residents or white individuals is 

generally higher compared to other ethnicities (especially South Asians) (20–22). Hence, a 

risk score that includes BMI or waist circumference based on American cohort would 

require recalibration before it can be applied to individuals with other ethnicities with 

appropriate adjustment for BMI or waist circumference values which predict higher CVD 

risk (23). Recalibration is also important to account for differences in baseline absolute risk 

across different samples (24). Hosmer-Lemeshow goodness-of-fit statistic is a statistical test 

that is frequently used to examine the model calibration (25).

Assessment of Biomarker Association with Disease

Biomarkers generally represent a biochemical change at a tissue or a body organ level. 

Therefore, they are associated with a biologic or pathologic process. However, the clinical 

outcomes from these processes in terms of biomarkers as disease indicators could be 

different. For example, troponin elevation up to a certain degree can be present in congestive 

heart failure, pulmonary embolism and more conventionally and classically in acute 

myocardial ischemia/infarction. Moreover, biomarkers that are intended to be used in 

clinical practice can be useful if changes in their levels adequately mirror improvement in 

the disease process itself when the disease is being treated (predictive biomarkers), thereby 

reflecting an improvement in patient outcome. For example, blood B-type natriuretic peptide 

(BNP) concentrations increase with worsening heart failure status. Additionally, a clinically 

useful biomarker should be able to provide meaningful information about prognosis and/or 

guide clinical decision making and not simply duplicate information that is already available 

clinically. Derivation and validation to associate a biomarker to a disease process should also 

be carried out in different subsets of population (26). In general, biomarkers predicting 

disease risk perform much better in the derivation cohort compared to a validation cohort. 

Universal biomarker standards have also been proposed according to their intended use for 

disease diagnosis (27) and prognosis (28).

Added advantage over available biomarkers or risk factors

It is largely believed that no single statistical method can be used alone to test a novel 

biomarker in an optimal manner for assessing its incremental clinical use. In this context, it 
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is noteworthy that CVD is a disease process that progresses over years from a subclinical 

state to clinical symptoms, often due to presence of CVD risk factors. Therefore, the 

prediction of an individual’s CVD risk over a 1–10 year period traditionally involves 

assessment of CVD risk factors such as individual’s age, gender, baseline levels of systolic 

and diastolic blood pressure, serum cholesterol, smoking status and history of diabetes. 

However there are some limitations to using these risk factors alone in a model as prognostic 

tools for CVD risk prediction (29). Traditionally, any novel CVD biomarker is first 

examined in a multivariable model that includes all standard risk factors, and the measure of 

effect size for estimating CVD risk is assessed as hazard ratio or odds ratio. It is important to 

remember that simply a higher hazard ratio for CVD is not sufficient to confer higher risk 

associated with a given biomarker. The new biomarker should be able to provide added 

information about individual’s risk, above and beyond the traditional risk factors at baseline. 

Appropriate assessment of the incremental yield of a new biomarker for predicting CVD risk 

requires appropriate evaluation of its discrimination and calibration potential, as explained 

above. In general, individual circulating biomarkers have thus far failed to improve CVD 

risk prediction substantially over standard risk factors with higher sensitivity and specificity 

and major gains in discrimination and calibration (30). Hence, investigators have also 

explored the possibility of using multiple biomarkers in addition to traditional risk factors to 

examine individual’s CVD risk. However, using multiple biomarkers to assess individuals’ 

CVD risk has only shown to modestly improve prediction beyond standard risk factors (31). 

Multimarker methodology also has some important limitations before implementation. Some 

of the important considerations before a multimarker risk model is implemented clinically 

include proper accounting for the inherent correlation among measured biomarkers, 

evaluating the reproducibility of the model (with bootstrapping techniques or external 

validation), assessing transportability and applicability to different populations or ethnicities 

with metrics such as model calibration (as described above). Of note, a multimarker 

technique has been successfully implemented in some areas in clinical practice such as the 

MELD (model for end-stage liver disease) score (32).

Statistical assessment of CVD risk related to a new Biomarker

First, it is important to assess the association of biomarker with the disease as explained 

above. In this respect, biomarker has to be related to the outcome of interest in a statistically 

significant manner. This is performed by regression models [logistic or Cox(33)]. 

Unfortunately, statistical significance alone does not imply clinical significance because 

several weak biomarkers could still be associated with the outcome of interest if examined 

within larger samples. Therefore, several metrics are used in the context of risk prediction 

models such as the ability to separate those who will develop the disease from those who 

will not. Hence, the receiver operating curve (ROC) or the area under the curve (AUC; C-

statistic) (34–36) are most widely accepted tool for model discrimination, though with few 

exceptions when individuals are classified into risk categories (37). Newer statistical 

methods have been developed to define newer metrics that can help us evaluate the clinical 

utility of new markers beyond traditional measures such as an increase in the area under the 

ROC curve or the association of the biomarker with outcomes above and beyond the 

available standard risk factors. Consequently, reclassification tables or the NRI (net 
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reclassification index) has now been proposed and are being widely used (38). Quantifying 

improvement of models by NRI analyses requires an objective way to classify risk by 

categories, therefore meaningful risk categories are needed a priori. Hence, the NRI 

reclassification tables constructed separately for participants with and without disease events 

identify the correct movements in categories – upwards for events and downwards for non-

events. In other words, it is possible to show how many individuals actually would change 

categories based on using information from new biomarker after reclassification. Figure 2 

displays an example of calculating NRI by using categorical data and reclassifying based on 

information from new biomarker. However, there are some limitations to these analyses as 

well. First and by far the most important limitation is that biomarker data have to be 

analyzed in categories (instead of in a continuous fashion). This requires risk classification 

examination by categories based on prior studies to guide such risk classification by new 

biomarkers. Moreover, once the reclassification is performed, relying solely on number or 

percentage of reclassified subjects could be misleading when examining a new biomarker. 

Therefore a new method of reclassification has been proposed that includes examining the 

risk based on discrimination slopes. Each upward movement above the midline from the 

slope happens for an additional reclassified event and a downward movement for each 

additional reclassified non-event. By this means, any need for evaluating the disease risk by 

categories is mitigated. This method is referred to as integrated discrimination improvement 

or IDI that is a graphical and easily understandable way to reclassify the risk (39, 40).

Genetic Biomarkers

Recent genetic studies have shown some consistent loci or genes that are independently 

associated with higher risk of CVD and with CVD risk factors. A key difference in 

examining genetic biomarkers compared to other circulating or imaging biomarkers is that 

genetic markers are present at birth and can be ascertained even prior to birth. Although they 

are not influenced by environmental factors, gene-environment interactions can sometimes 

be responsible for development of disease states. Genetic information is also being evaluated 

to guide drug therapy based on the presence or absence of those markers and their 

association with outcomes. Several pharmacogenomic assays are now approved by the FDA 

(41) for clinical use to assess risk of adverse events, mode of drug action and to predict the 

effect of drug on the disease (42). Changes in the DNA sequence and epigenetic changes 

resulting in changes to gene expressions and phenotypes have also been associated with 

CVD traits and disease risk (43). Gene expression studies have been very useful in 

identifying patterns of cardiac hypertrophy, (44, 45) myocardial infarction, (46) different 

forms of heart failure (47–50) and even for surveillance of cellular rejection in heart 

transplant recipients (51).

The classical approach of examining the link between genetic markers and disease outcome 

has been the linkage approach and association studies. The linkage approach is a family-

based approach that utilizes identifying large segments of genome containing millions of 

DNA bases that are similar among patients with disease of interest within families. 

Thereafter, further fine mapping identifies a single-gene in those large segments of genome 

to link with disease. Linkage strategies have been quite effective in mapping single gene 

disorders with large genetic effects; however they are limited by their design to identify links 
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for polygenic diseases of multifactorial etiology (52). Association strategies differ from 

linkage strategy because they can be utilized in studying more complex diseases with modest 

genetic effects. Thus, genome-wide association studies (GWAS), a more recent and popular 

design that surveys the whole genome to create single nucleotide polymorphism (SNP) maps 

and databases, have now made it possible to identify clear genetic markers associated with 

CVD (53–56). The process of examining the strength of genetic markers to assess CVD risk 

is similarly rigorous as for circulating biomarkers (as above). So far, addition of genetic 

markers to traditional CVD risk factors marginally improves CVD risk stratification for 

prognostication (57–59).

Lastly, differences in protein expression from a variety of biological samples such as blood, 

urine or tissues and the association of such proteins with CVD, (i.e. proteomics) has been 

explored enormously in the last 2 decades to develop biomarkers (60–62). Large scale 

databases of cardiac proteins have been created (63) that allow exploration with 

experimental studies to characterize changes in protein expression and associate them with 

phenotypes and identify exact physiologic pathways that may help in better assessment of 

CVD risk (64) and allow further progress in drug discovery and therapeutic approaches in 

CVD (65–67).

Novel cardiovascular biomarkers under evaluation

There are numerous CVD biomarkers under evaluation and a detailed review is beyond the 

scope of this review. Several classifications exist currently to classify CVD biomarkers. 

Most commonly, biomarkers can be grouped based on disease specificity such as biomarkers 

of heart failure (BNP, N-terminal prohormone of brain natriuretic peptide [NT-proBNP], 

atrial natriuretic peptide [ANP], ST-2 etc), of atherosclerotic coronary disease (troponin T or 

I, creatinine phosphokinase-MB etc.), or they can be grouped according to their use such as 

in acute changes (copeptin, high sensitivity Troponin, galectin-3, ST2) versus in the chronic 

stage of CVD to estimate prognosis (coronary calcium by CT). Alternatively, CVD 

biomarkers can be grouped according to the pathologic process they represent, such as 

inflammation (e.g., C-reactive protein, interleukin 6, Fibrinogen, monocyte chemotactic 

protein-1, tumor necrosis factor alpha etc) oxidative stress (e.g., isoprostanes), and metabolic 

(e.g., lipoprotein (a), low-density lipoproteins, high density lipoprotein, ApoB 100, 

Lipoprotein-associated phospholipase A2, Homocysteine, vitamin D, fibroblast growth 

factor 23, adiponectin, glycated hemoglobin, haptoglobin etc). In the next section we present 

some examples of novel biomarkers which are currently being investigated for heart failure 

and emphasize some of the key concepts influencing their use in clinical practice.

Key Novel Heart Failure Biomarkers

Individual investigators have proposed classification of heart failure biomarkers according to 

the pathologic process they indicate (68). Previous reviews have described relevant 

limitations of novel heart failure biomarkers for use as treatment guidance (69) and sex 

differences when using these biomarkers for clinical use (70). Further consensus statements 

have recommended establishing a consortium to allow novel biomarkers to be concomitantly 
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analyzed in a pooled sample of randomized clinical trials and hypotheses to be generated for 

testing each biomarker in biomarker-guided trials (71).

Figure 3 is an attempt to differentiate these heart failure biomarkers according to the 

pathophysiologic process they are most associated with.

Myocardial stretch leads to production of pro BNP compound that is later broken down into 

BNP and NT proBNP (inert form). Higher concentration of BNP in the blood of a patient 

who presents to an emergency room is associated with greater probability of a diagnosis of 

heart failure. Moreover, higher BNP concentration on admission to the hospital is also 

associated with greater in-hospital mortality (72). NT proBNP, which is a more stable form 

of BNP, is also predictive of a diagnosis of heart failure. Medications and other therapies 

utilized currently to treat heart failure are also known to reduce BNP levels effectively; 

however with some exceptions (73). It is important to understand, however, that BNP levels 

are inversely associated with obesity (74, 75), and may also be influenced by presence of 

kidney disease (76). Circulating ANP on the other hand is overall more unstable in blood 

compared to BNP or NT proBNP and therefore has a limited use in diagnosis or prognosis. 

However, a mid-regional ANP, a prohormone isolated from mid region of the molecule 

(MR-proANP) has shown promise in diagnosis of heart failure in a multinational biomarker 

study (BACH trial) (77) in acute heart failure patients although its added incremental utility 

over BNP for diagnostic purposes is yet to be fully proven. So far, the research shows that 

MR-proANP could be of added advantage for the diagnosis of heart failure in obese, elderly 

and patients with renal disease when compared to BNP (78). MR-proANP is also being 

evaluated for prognosis of heart failure as well.

Cardiomyocyte necrosis releases Troponin I or T (cardiac isomers of proteins from troponin-

tropomyosin complex) in circulation of an individual and they are typically useful in 

detection of myocardial ischemia. High sensitive assays of Troponin T and I, however, are 

also elevated in the blood of patients with severe heart failure and therefore have been 

appropriately studied for the prediction of heart failure (79, 80) and for prognostication (81–

84) in those with established heart failure. Another biomarker that is associated with both 

ischemic and heart failure is Copeptin, a precursor protein of arginine vasopressin (ADH). 

Copeptin levels are elevated in the immediate post ischemic period (85) and also correlate 

with higher risk of death(86) and new-onset heart failure.(87) Some investigators have 

reported the superiority of copeptin over BNP and NT-proBNP concentrations for predicting 

death, although the caveat is that these biomarkers are often closely related (88).

Neutrophil gelatinase-associated lipocalin (NGAL) (89), another glycoprotein covalently 

bound to matrix metaloproteinase-9, is released by renal tubular cells in response to renal 

inflammation and injury, and it has also shown to offer added prognostic and diagnostic 

value along with BNP in the GALLANT trial (90). However, subsequent studies with 

corresponding biomarker data from other heart failure trials did not replicate these findings 

(91). Therefore, the clinical utility of this biomarker above and beyond other commonly used 

biomarkers in chronic heart failure patients with renal injury is questionable (92).
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Galectin-3 is an exciting biomarker with an important role in development and regulation of 

cardiac fibrosis and remodeling (93). In patients diagnosed with acute decompensated heart 

failure, blood Galectin-3 level has shown to be predictive of mortality on short-term follow 

up. In fact, investigators have also suggested the superiority of galectin-3 (94) or enhanced 

predictive power for mortality when used along with BNP (95) levels in patients with both 

preserved and reduced left ventricular ejection fraction (96, 97). Overall, researchers 

currently underscore the added advantage of using a multimarker approach in heart failure; 

however, the independent use of Galectin-3 alone in heart failure patients is not as well 

supported by literature for the prediction of prognosis (93). Other markers of extracellular 

matrix such as metalloproteins which degrade collagen (MMPs), specific tissue inhibitors of 

metalloproteins (TIMPs), procollagen type III amino-terminal propeptide (PIIINP), or 

procollagen type I carboxy terminal peptide (PICP) that have been traditionally related to 

hypertensive heart disease(98) are currently explored as biomarkers with implications for 

assessing disease severity, prognosis and response to treatment among patients with heart 

failure with preserved ejection fraction (HFpEF) (99).

Additionally, higher levels of blood Procalcitonin, an acute phase reactant, have been 

associated with a greater likelihood of the presence of infection in patients with heart failure. 

Therefore, procalcitonin can sometimes be useful for excluding infections or pneumonia in 

patients seen in the emergency room with shortness of breath who are suspected to have a 

diagnosis of acute on chronic heart failure.

ST-2 is a receptor from interleukin family (IL-33) with two gene forms – soluble (sST2) and 

transmembrane form (100). Like other biomarkers, blood ST-2 levels are also shown to 

predict mortality and new onset heart failure (101). Researchers have also examined the 

predictive ability of ST-2 levels complementary to other traditional risk factors and NT-

proBNP levels in ST-elevation myocardial infarction patients (102). It also has a role over 

traditional heart failure risk factors for determining prognosis (103, 104). These findings 

have led researchers to explore the use of ST-2 as part of a multimarker approach for 

assessing the prognosis of patients with heart failure (105).

Mid-regional pro-adernomedullin (MR-proADM) is a stable prohormone fragment of 

adernomedullin, a vasodilatory peptide, and elevated circulating levels are strongly 

associated with the presence of chronic heart failure (106–108). MR-proADM has been 

shown to be superior to both BNP and NT-proBNP in predicting 90-day mortality among 

patients with dyspnea and heart failure (77).

Growth differentiation factor – 15 – is classified as a biomarker with anti-hypertrophic 

effects (apoptosis) (109, 110) and investigators have linked the elevated levels of this 

biomarker to assess prognosis in chronic heart failure patients (111, 112) and among 

community dwelling adults as a predictor of all-cause mortality, including non-

cardiovascular mortality above and beyond the information provided by blood NT-proBNP 

and C-reactive protein levels (113).

Lastly, small non coding RNAs i.e. micro RNAs(114) are known to play a significant role in 

regulation of cardiac hypertrophy (e.g. microRNA-133)(115), fibrosis [e.g. microRNA-21 
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(116) microRNA-29 (117)] and heart failure (118, 119). These associations of microRNA to 

cardiac hypertrophy and cardiac fibrosis in several studies also makes them an attractive 

biomarker to guide future heart failure therapy (120–124). One study has even found that 

various combinations of these microRNAs can potentially be used to differentiate heart 

failure with preserved ejection fraction from reduced ejection fraction (125). In addition, 

long non coding RNA (126) which were first detected in blood in 2008, have since also been 

evaluated by several investigators in relation to heart failure prognosis (127). However, at the 

present time, concerns regarding variability in measurement of microRNA, added value of 

both microRNAs and long noncoding RNAs to established heart failure biomarkers, and 

unclear pathophysiologic role in heart failure or specificity for development of heart failure 

are undermining their utility to be of clinical use.

Several other novel biomarkers are also being explored as potential heart failure biomarkers, 

such as osteoprotegerin (128), osteopontin (129), adiponectin (130), neopterin (131), 

cardiotrophin-1 (132), glycoprotein 130 (133) and red cell width (RDW) (134); however, 

some of these are yet to be fully investigated in larger, non-selected samples for their 

association with incident heart failure.

Conclusion

In summary, there are numerous CVD biomarkers that are currently available and that have 

clinical use as diagnostic, prognostic or predictive biomarkers. Several of these biomarkers 

have to be vigorously tested to assess their clinical utility across a varying spectrum of 

patients with atherosclerotic CVD and who have with different comorbidities. The 

demonstration of the validity and clinical utility of any given biomarker across different sets 

of patients is essential prior to its routine use in clinical practice. Desirable characteristics of 

any CVD biomarker include that its measurement should be easy, preferably at point-of-care 

over a short time period with adequate precision and accuracy, and the demonstration of low 

intra-individual variability. Biomarker may be able to reflect pathophysiologic process of 

heart disease, and also may be able to provide meaningful information about prognosis and 

assist guide clinical decision making without duplicating any information that is already 

available clinically. Biomarkers evaluating prognostic outcomes should report 

discrimination, calibration and reclassification in patients by evaluating statistical models 

with and without the biomarker in order to demonstrate their added value over traditional 

and other commonly used biomarkers. Genetic biomarkers are at the forefront of being 

evaluated for added utility and they too need rigorous assessments to evaluate their relations 

with the CVD and for their added advantage over traditional risk factors. Utilizing 

biomarkers as surrogate end points for predictive and prognostic values in clinical trials will 

likely dictate our future of CVD treatment, and will also open up avenues to evaluate 

biomarkers as possible targets for drug delivery and development.
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Figure 1. 
Ideal characteristics of a biomarker according to their intended use.
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Figure 2. 
Net reclassification index (NRI) calculation
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Figure 3. 
Classification of heart failure biomarkers according to pathophysiologic processes. (Adapted 

from Ahmad et al. Nat. Rev. Cardiol. 2012; 9:347–359)
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