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Abstract

To develop accurate prognostic models is one of the biggest challenges in ”omics”-based cancer 

research. Here, we propose a novel computational method for identifying dysregulated gene 

subnetworks as biomarkers to predict cancer recurrence. Applying our method to the DNA 

methylome of endometrial cancer patients, we identified a subnetwork consisting of differentially 

methylated (DM) genes, and non-differentially methylated genes, termed Epigenetic Connectors 

(EC), that are topologically important for connecting the DM genes in a protein-protein interaction 

network. The ECs are statistically significantly enriched in well-known tumorgenensis and 

metastasis pathways, and include known epigenetic regulators. Importantly, combining the DMs 

and ECs as features using a novel random walk procedure, we constructed a support vector 

machine classifier that significantly improved the prediction accuracy of cancer recurrence and 

outperformed several alternative methods, demonstrating the effectiveness of our network-based 

approach.
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1 Introduction

High-throughput profiling techniques such as DNA microarray and next-generation DNA 

sequencing have enabled systematic screening of genomic, epigenomic, and transcriptomic 

changes associated with cancer, and rational design of more accurate and non-invasive 

cancer diagnosis and prognosis tools based on whole omics analysis (e.g. [1, 2, 3]). In 

particular, increasing evidence shows that DNA methylation plays significant roles in cancer, 

from the silencing of tumor suppressors to the activation of oncogenes and the promotion of 

metastasis, as well as the development of drug resistance [4, 5]. Though not altering DNA 

sequence itself, DNA methylation may change chromatin structure that renders the 

accessibility of promoters to transcriptional machinery and regulate gene expression [4, 5]. 

As DNA methylation changes are usually more stable than transcriptional changes, but are 

reversible (unlike DNA changes), they are promising biomarkers for accurate cancer 

diagnosis and prognosis [4, 6, 7].

Several large-scale profiling studies have revealed that the number of cancer-associated 

changes are tremendous and that very large number of patients are needed to isolate the few 

true “driver” changes from the vast number of sporadic “passenger” changes [8, 9]. In 

addition, common cancer-associated changes are often stable only on the level of functional 

pathways but not on individual loci [10, 11, 12, 13, 14, 15]. As the number of pathways is 

much smaller than the number of genes, pathway-based analysis can significantly reduce the 

number of variables and improve the stability of cancer prognostic models. Furthermore, 

most pathways have relatively well defined functions, which can possibly enable a better 

mechanistic understanding of obtained prognostic models, and provide a basis for the 

development of more effective intervention strategies.

A major hurdle of the pathway-based approach is that the majority of human genes have not 

been assigned to definitive pathways. To circumvent this limitation, one idea is to identify 

gene/protein subnetworks that are significantly altered in certain phenotypes as candidate 

pathway markers. The main rationale is that genes located closely in a gene/protein network 

are likely involved in similar functions, and that a group of genes with high connectivities 

among themselves and relatively fewer edges to the other genes are likely representing 

functional pathways. Indeed, screening of transcriptomic changes within the context of 

protein-protein interaction subnetworks has enabled systematic discovery of novel disease-

associated pathways and development of more stable classification models [16, 17, 18, 14, 

19, 20, 21, 22, 23, 24, 25].

Ideally, another advantage of the network-based approach over the pathway-based approach 

is that gene/protein networks provide an explicit wiring of genes among all genes, which can 

be utilized to characterize the “information flow” within the cell and pinpoint critical 

functional links between different pathways; in contrast, the existing pathways available in 

databases do not provide sufficient connectivity among different pathways. However, this 

theoretical advantage has not yet been fully exploited. In the existing subnetwork-based 

cancer classification models, subnetworks are usually treated as meta-genes, whose activity 

levels are defined as the mean activity levels of its member nodes [16, 21, 11, 24, 25]. This 

“averaged” view may provide statistical robustness by reducing noise; on the other hand, it 
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will likely cause loss of information. Importantly, the internal structure within and between 

subnetworks are completely ignored. In addition, these subnetworks often have a high level 

of overlap, which introduces redundancy among features and reduces classification 

performance.

In this study, we propose a novel computational method to perform subnetwork-based cancer 

classi-fication. Our algorithm includes two important steps: (1) to identify a single 

subnetwork that connects important cancer-associated genes such as genes that are 

dysregulated, genes that are in the same pathways as the dysregulated ones, as well as key 

genes connecting these pathways; and (2) to compare cancer patients based on systems-level 

similarity by considering both the activities of individual genes and their connections 

embedded in the subnetwork identified from step 1.

The method is implemented and applied to analyze whole-genome DNA methylation data 

within the context of protein-protein interaction (PPI) network to identify subnetworks as 

potential biomarkers for predicting tumor recurrence in endometrial cancer, which affects 

the internal lining of the uterus. It is estimated that about 60,000 women will be diagnosed 

with endometrial cancer in the United States in 2016, making it the third leading cancer in 

new cases in women (Cancer facts and Figures, 2016, American Cancer Society). Although 

therapeutic intervention includes the removal of the uterus, hysterectomy, about 20% of 

endometrial cancer cases recur due to regrowth of occult disease and/or metastasis [26].

Using the network-based approach, we identified differentially methylated (DM) genes and 

additionally non-differentially methylated, termed epigenetic connectors (ECs), whose 

combination can significantly improve the prediction of three-year tumor recurrence as 

compared to using the DMs alone and two competing methods. Furthermore, while the DCs 

are not enriched in any cancer-related KEGG pathways, the ECs are significantly enriched in 

pathways well-known to be involved in tumorgenesis and metastasis, and include several 

known epigenetic regulators, signifying the effectiveness of our approach.

2 Methods

2.1 Method overview

In this study, we developed a novel computational method to analyze whole-genome DNA 

methylation data within a protein-protein interaction (PPI) network, and to identify 

epigenetically regulated functional pathways / subnetworks as potential biomarkers for 

predicting recurrent cancer. Our method consists of the following steps. First, the global 

DNA methylation patterns in primary endometrial tumors and normal control samples were 

determined by methyl-CpG binding domain-based capture coupled with massively parallel 

sequencing (MBDCap-seq). Second, the so-called DM genes, whose CpG islands exhibited 

statistically significant differential DNA methylation levels between recurrent and non-

recurrent patients, were identified and mapped onto a human PPI network. Then, using the 

DM genes as seeds and an in-house graph algorithm for finding Steiner trees, we identified 

genes (termed epigenetic connectors, ECs for short) that were topologically important for 

connecting the DM genes on the PPI network. Finally, a random-walk based machine 

learning method was developed to propagate the DNA methylation scores from the DM 
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genes to ECs, and the derived scores for the EC genes were used to construct a support 

vector machine for classifying tumor recurrence.

2.2 Raw data collection and processing

Endometrial tissue specimens were obtained as part of our ongoing work on characterizing 

molecular alterations in endometrioid endometrial carcinomas and were described in a 

previous report [27]. Global DNA methylation pattern of the 60 tumors and 12 controls were 

surveyed using methyl-CpG binding domain-based capture [28] coupled with massively 

parallel sequencing (MBDCap-seq; [7]). Briefly, methylated DNA was eluted by the 

MethylMiner Methylated DNA Enrichment Kit (Invitrogen) according to the manufacturer’s 

instructions. Eluted DNA was used to generate libraries for sequencing following the 

standard protocols from Illumina. MBDCap-seq libraries were sequenced using the Illumina 

Genome Analyzer II as per manufacturer’s instructions. Image analysis and base calling 

were performed with the standard Illumina pipeline. Sequencing reads were mapped by 

ELAND algorithm. Unique reads up to 36 base pairs were mapped to the human reference 

genome (hg18), with up to two mismatches. Reads in satellite regions were excluded due to 

the large number of amplifications. Biological reproducibility, technical repeat, and 

validation analysis were conducted, and the results suggest that MBDCap-seq can reliably 

identify differentially methylated regions in the genome. The methylation level was 

normalized based on the unique read numbers for each sample by a linear method.

The tumor differential methylation (TDM) score was calculated for each of the known 

promoter CpG islands for each cancer patient by comparing the average methylation level in 

a 8-kb window covering the CpG island in the tumor relative to normal controls using one-

sample t-test. Let p be the p-value resulted from the t-test, for a CpG island significantly 

hypermethylated (over-methylated) in tumor, a positive TDM score was calculated as 

−log10(p); similarly, for a hypomethylated (under-methylated) CpG island, a negative TDM 

score was calculated as log10(p). In both cases, p-values greater than 0.01 were converted to 

1 and as a result the corresponding TDM scores became zero. These CpG island level TDM 

scores were then mapped to gene-level scores, by assigning to each gene the highest TDM 

score among the CpG islands associated with the gene. This resulted in 4214 genes that had 

non-zero TDM scores for at least one patient. A detailed description and analysis of the 

complete DNA methylome for these patients has been published elsewhere [29].

2.3 Epigenetic marker and epigenetic connector subnetwork selection

Among the 60 patients available for analysis, 16 had recurrence within 3 years and were 

designated as recurrent, and the remaining were designated as non-recurrent. Because our 

objective is to classify tumor recurrence, patients that had persistent tumors or had non-

recurrent tumor but last follow-ups were within three years after surgery were pre-excluded. 

In order to identify potential epigenetic markers for recurrence, we compared the TDM 

score of each gene between the recurrent tumors and the non-recurrent ones using two-

sample t-test. Genes with a p-value < 0.02 were termed differentially methylated (DM) 

genes. Next, we mapped the DM genes to the human protein-protein interaction network 

obtained from HPRD (Release 9) [30]. We used the largest connected component of the 
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network, which contained 9,205 unique genes (official gene symbols) and 36,720 

interactions.

We then used these DM genes as seeds to identify the connector genes to link the seed genes 

into a singly connected subnetwork of the PPI. The rationale is that, if the seed genes are in 

the same pathway, the connectors should also have a high chance of being in the same 

pathway. On the other hand, if the seed genes belong to multiple pathways, the identified 

genes should contain both the in-pathway connectors and between-pathway connectors, and 

the latter can possibly contain the critical genes for cross-talks between pathways. By the 

Occam’s razor principle, we are interested in the most parsimonious solution, i.e., a 

spanning tree that connected the seed genes with the fewest additional genes. In graph 

theory, this mapped to the well-known Steiner tree problem. Formally, the Steiner tree for an 

edge-weighted graph G = (V, E, w) and a subset of vertices S⊆V is a minimum-weight 

connected tree T, with vertices U⊆V and edges D⊆E that spans all vertices in S. Here the 

vertices in S were known as terminal vertices and U-S as Steiner vertices. For an unweighted 

graph G, the problem then became finding the minimum number of vertices to connect all 

the vertices in S through a tree in G. The Steiner tree problem is NP-hard [31]. We 

implemented a polynomial-time shortest path heuristic algorithm of the Steiner tree problem 

[32].

To deal with noise and to increase the chance of covering all core members in the pathways 

and alternative functional links between pathways, we designed a simple randomized 

algorithm to obtain multiple Steiner trees with similar quality. To achieve this, we assigned 

to each edge of the PPI network a random weight between 0.99 and 1, and run the Steiner 

tree algorithm. These random weights effectively broke ties, so that if there were two paths 

with the same weight in the original network, one path would be chosen randomly. This 

procedure was repeated multiple times with different random weights, until the total number 

of unique Steiner vertices converged approximately. In this work, the rate of new coming 

Steiner vertices reduced significantly after 200–300 iterations. We pooled the Steiner 

vertices in the 300 Steiner trees to obtain a set of unique genes, which we termed epigenetic 

connectors (ECs), as they had important roles in forming connections among the 

differentially methylated epigenetic markers.

2.4 Using EC genes to predict recurrent tumors

As the ECs are not differentially methylated between recurrent and non-recurrent tumors, 

they are not expected to be very useful in predicting tumor recurrence when used alone. As a 

reminder, the ECs are either neighbors of many DMs or bottleneck nodes that are 

topologically important for connecting the DMs in different subregions of the PPI network, 

they may be functionally important for the integrity of the DM subnetwork.

To utilize the ECs as biomarkers, we propose a novel machine learning algorithm to derive a 

score for each EC gene from the methylation changes of its neighbors, while taking into 

consideration its topological property in the network. The method is adapted from the 

random walk with restart (RWR) algorithm [33] popular in machine learning and works as 

follows.
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We first retrieved the PPI subnetwork consisting of the DM and EC genes, and then made it 

a directed network by adding arrows from the DM genes to EC genes. Therefore, the DM 

genes can only “pump” their TDM scores into the subnetwork but do not receive any scores. 

The ECs on the other hand have edges in both directions so they can act as both a donor and 

a receiver of TDM scores. We then used random walk to calculate the influence of each node 

on other nodes.

Formally, let A be the adjacency matrix of an unweighted, directed graph, where Aij = 1 if 

there is an edge from node i to node j and 0 otherwise, and P be the row normalized 

adjacency matrix (i.e. the transition probability matrix) defined on the graph, where 

pi j =
Ai j

∑ j Ai j
 is the transition probability from node i to node j. Assume that a random walker 

starts from a node v, with a uniform probability to visit each of its neighboring nodes, and 

with a fixed probability c to revisit the starting node v at any time point during the walk. The 

probability for the random walker started at node v to be present at any node j, at a discrete 

time point k, is f v j
k = (1 − c)∑i f vi

k − 1pi j + cδ jv , where δjv = 1 if j = v, and 0 otherwise. In our 

experiment c is set to 0.5 by default, while the performance of the algorithm is almost 

invariant with c between 0.3 and 0.7. This random walk procedure is guaranteed to converge, 

as shown previously [33]. The stationary probability vector Fv
inf, or simply denoted as Fv, is 

the influence of node v on any node in the network. Evidently, if v has no incoming edges, 

then fvv = c and Fjv = 0 for any j ≠ v. The vector Fv is pre-computed for every v, using the 

matrix form F = (1 − c)FP + cI, where F is a square matrix and I is an identity matrix.

Finally, we derived a score for each gene based on its own TDM score and the influence it 

received from other nodes. Let si(t) be the TDM score of the i-th gene on the DM-EC 

subnetwork for patient t. The network-based methylation (NBM) score of gene i for t is 

calculated as: ri(t) = Σv sv(t)Fi(v). It can be seen that for nodes with no incoming edges, ri(t) 
= csi(t). In other words, the effect of this random walk procedure to the DM genes is simply 

multiplying their TDM scores by a constant factor c. Therefore at the end we multiply all the 

NBM scores by 1/c so that the TDM scores and NBM scores for the DM genes are 

equivalent.

2.5 Classification methods and performance evaluation

Support vector machine (SVM) classifiers were built using the SMO implementation in 

WEKA 3.6.6 [34]. Default settings were used for all parameters, with a linear kernel, and 

complexity parameter C = 1. Classification performance was estimated 100 times using 10-

fold cross-validation. Classification accuracy is defined as the percent of patients classified 

correctly. As the dataset has much more non-recurrent patients than recurrent patients, 

“accuracy” can be misleading (for example, if a dataset has 90% negative and 10% positive 

instances simply predicting all cases to be negative would result in 90% accuracy.). 

Therefore, we also computed kappa statistic, κ, which measures the agreement between the 

class labels and the predictions made by the classifier, corrected by the amount of agreement 

that may be achieved by chance [35]. Formally, let TP, TN, FP, and FN be the numbers of 

true positive, true negative, false positive and false negative predictions made by a binary 
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classifier, respectively, and N = TP + TN + FP + FN. The kappa statistic κ of the classifier is 

defined as κ = A − C
1 − C , where A = TP + TN

N  is the fraction of correctly predicted instances and 

C is the expected percentage of instances that a classifier can predict correctly by chance, 

defined as C = TP + FP
N × TP + FN

N + TN + FN
N × TN + FP

N . Conventionally a kappa value over 

0.75 is considered as excellent, 0.40 to 0.75 as good, and below 0.40 as poor. Additional 

evaluation metrics include the Area Under ROC Curve (AUC), sensitivity, as well as 

specificity. Sensitivity is defined as TP
TP + FN  and specificity is defined as TP

TP + FP .

3 Results and Discussion

3.1 EC-subnetwork is enriched in cancer-related pathways

We identified 135 DM genes (p < 0.02, see Methods) connected by 474 EC genes (Figure 1). 

Interestingly, most of the DM genes are hyper-methylated in non-recurrent tumors, while 

only a small number of DM genes are hypo-methylated in recurrent cancers (Figure 2a). 

Unlike the DM genes, the EC genes are not differentially methylated between recurrent and 

non-recurrent tumors. Furthermore, many of the ECs have no non-zero TDM scores or have 

scores in only a few patients (Figure 2b), suggesting that DNA methylation change is not a 

main regulatory mechanism for them. For example, among the 474 EC genes, only 115 have 

a non-zero TDM score for at least one patient, and a mere of 8 have non-zero TMD scores 

for at least half of the patients (Figure 2c). In contrast, 68 of the 135 DM genes have TDM 

scores for at least half of the patients.

The DM and EC genes were then used for KEGG pathway enrichment analysis by the 

Fisher’s exact test, using the size of the PPI network as background for the ECs and the 

number of genes with nonzero TDM scores for the DMs. Remarkably, while the DM genes 

are not significantly enriched with any known KEGG pathways, the EC genes are 

significantly enriched with many KEGG pathways that are well known to be involved in 

tumorgenesis and metastasis, such as GnRH signaling pathway (p < 1E-14), ErbB signaling 

pathway (p < 1E-12), gap junction (p < 1E-12), Wnt signaling pathway (p < 1E-8) and TGF-

β (p < 1E-6), among others (Table 1). Many of these pathways are interrelated. For example, 

ErbB tyrosine kinase receptor family activates many MAPK factors during transmission of 

extracellular signals to induce cancer cell growth and invasion [36]. Induction of ErbB 

signaling has been associated with poor prognosis in several malignancies including 

gynecologic cancers [37]. Cellular proliferation is mediated by cell cycle factors, which are 

downstream of MAPK and VEGF. VEGF pathway is involved in angiogenesis, which is a 

hallmark of cancer progression due to generation of new vasculature, giving tumor cells a 

growth advantage [38]. The enrichment of these pathways is consistent with aggressive 

growth and metastasis associated with endometrial cancer recurrence.

3.2 Classification results

3.2.1 EC genes significantly improve classification accuracy—The ECs alone are 

not able to predict recurrence (Table 2, AUC ≈ 0.5, Kappa ≈ 0). This is understandable as 

they are not differentially methylated, and many ECs have TDM scores only for a few 

patients (Figure 2d). Nevertheless, the combination of ECs and DMs (DM+EC, Table 2) 
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improved the classification accuracy significantly compared to that of DMs alone (0.453 vs. 

0.300, kappa statistic, corresponding to 81.2% and 73.4% accuracy, respectively). Note that 

this improvement cannot be explained by the increased number of features, since expanding 

the DM feature set size to 609 (=135+474) by using a less stringent p-value cutoff for 

differential methylation (DM+), or by combining DMs with 474 randomly selected genes 

(DM+rand) only resulted in small improvement of classification performance (Table 2). 

Therefore, the improvement of classification accuracy is likely due to the combinatorial 

effect of DM and EC genes. One possible explanation is that while the methylation changes 

for some ECs are patient specific and have weaker statistical significance in terms of 

differential methylation, the combination of multiple weakly differentiated methylated ECs 

within the same pathway as the DMs can be complement to the DM genes and improve 

classification performance.

3.2.2 Network based methylation (NBM) score of EC gene further improves 
classification accuracy—Since many ECs do not show methylation changes between the 

recurrent and non-recurrent tumors, they may have played a role through their interactions 

with the DMs, for example, DNA methylation changes of the DM genes may affect the 

functions of the ECs via protein-protein interactions. To measure the relevance between the 

DMs and ECs based on the network topology, we used a well-established random walk 

procedure to compute the probability for a random walker starting at a DM gene to reach 

any EC genes. The TDM score of a DM gene is then distributed to the EC genes according 

to these probabilities. As some of the ECs may also have TDM scores, probabilities were 

also calculated for a random walker starting at an EC gene to reach other EC genes and the 

ECs may both distribute its TDM scores to other ECs and receive distributions from other 

DMs and ECs. These are combined together to derive the NBM scores for all the ECs (see 

Methods).

Figure 2(d) shows the NBM scores for the ECs. Interestingly, while none of the ECs were 

differentially methylated at p-value < 0.02 according to the TDM scores, 203 (43%) of the 

474 ECs show statistically significant difference between recurrent and non-recurrent tumors 

(p < 0.02, student’s t-test) according to the NBM scores, confirming that the ECs may 

indeed have functions related to the DMs in cancer metastasis.

These NBM scores of ECs are then used, either alone or in combination with the TDM 

scores of the DM genes, to construct a support vector machine (SVM) classifier to separate 

recurrent and non-recurrent tumors. As shown in Table 2, the performance of the classifier 

constructed with the NBM scores of the ECs (EC*) is significantly higher than that with the 

original TDM scores of the ECs, and even slightly better than that of the DM genes. This is 

to some extent not surprising, as the NBM scores of the ECs are derived from the TDM 

scores of the DMs. To see if indeed the ECs provide any additional information other than 

approximating the DM genes, we combined the TDM scores of the DMs and the NBM 

scores of the ECs (DM+EC*, Table 2). As shown, this resulted in the highest classification 

accuracy (kappa statistic 0.513 and accuracy 82.9%), suggesting that the topologically 

derived scores for the ECs provide non-redundant, orthogonal information than the TDM 

scores of the DM genes. In addition, when the PPI network is randomly rewired, the benefit 

of the EC genes vanishes1 (Table 2, EC# and DM+EC#). Finally, it is worth noting that the 
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performance of the algorithm is relatively robust with respect to the parameter (restart 

probability) of the random walk procedure (Figure 3).

3.2.3 Comparison with existing methods—We compared the performance of our 

algorithm with two alternative methods. First, we implemented a simple pathway-based 

approach by using each KEGG pathway as a metagene. Briefly, for each KEGG pathway 

and each patient, we counted the number of genes in that pathway that had a positive TDM 

score, as well as the number of genes that had a negative score. Therefore, each pathway will 

result in two features: one for positive scores and one for negative scores. (This strategy has 

the best clas-sification performance among multiple variations of pathway-based models.) 

We used all 208 KEGG pathways, resulting in 516 features for each patient. Second, we 

downloaded the program from [25] for identifying discriminative subnetworks, i.e., 

subnetworks whose average node activity can discriminate the two classes of samples. 

Following the suggestions from the authors, we limited the subnetwork size to five, and 

obtained the top 100 subnetworks with the highest discriminative power. These 

discriminative subnetworks (DS) are then used in two ways (denoted DS and DS*, 

respectively): (1) the genes in the subnetworks were pooled, and these individual genes were 

used as features, either independently or combined with the DMs; (2) each subnetwork is 

used as a metagene by averaging the TDM scores for genes in the same subnetwork.

As shown in Table 2, our network topology-based classifier, DM+EC*, resulted in the 

highest AUC, kappa, specificity, and accuracy. Although DM+DS* has higher sensitivity, 

that was achieved with the price of a much lower specificity. In addition, DS genes alone 

resulted in very low accuracy, similar to the EC genes. Furthermore, DS*, by treating each 

subnetwork as a metagene, had an accuracy similar to EC*. KEGG pathways resulted in 

much lower accuracy than DS*, which shows the advantage of using subnetworks rather 

than known pathways as metagenes. Finally, while combining the DM and DS genes only 

resulted in marginal improvement over DM alone, combining DM and DS* significantly 

improved the performance. Further analysis showed that our EC and DM genes contain 77 

and 38 of 252 DS genes, respectively. This supports our notion that the ECs contain not only 

genes in differentially methylated pathways (hence the overlap with DS genes), where 

individual genes are only weakly differentially methylated, but also genes that are not part of 

differentially methylated pathways but are important for cross-talks between the pathways. 

The method by [25] directly targets the first type of genes, while ignoring the second type of 

genes. As a result, their method may identify more genes of the first type than our method. 

As both types of genes may be important for classification, it may be beneficial to combine 

the two methods for a better model in future work.

3.3 Analysis and literature validation of significant DM and EC markers

To further investigate the role of DM and EC genes as potential biomarkers, we analyzed the 

normalized feature weights (z-scores) for each of the genes used by the four SVM classifiers 

based on DM, DM + EC, EC*, and DM + EC*, respectively, where EC* means that the 

1DM+EC# can still perform better than DM for two reasons: (1) when an EC already has a TDM score, the random walk can only 
change its value slightly. (2) Some of the ECs are highly connected hub nodes in the PPI and therefore many of their connections 
remain unchanged after rewiring.
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NBM scores rather than the TDM scores are used for the ECs. A larger feature weight 

indicates that the gene is more important for classifying recurrence. For genes with positive 

weights, their hyper-methylation is contributing towards recurrence, and for genes with 

negative weights their hyper-methylation is contributing towards non-recurrence.

Figure 4 shows the weights for the genes with a normalized weight ≥ 1.5 or ≤ −1.5 in at least 

one classifier. Region I contains DM genes, which may represent universal epigenetic 

markers. Region II contains EC genes that had non-zero TDM scores in some patients and 

contributed to the DM + EC classifier; these are EC markers that are epigenetically 

reprogrammed in specific patients. Finally, region III contains EC genes that were not used 

by the DM+EC classifier but had important contributions in the EC* or DM+EC* classifiers. 

These EC genes themselves are not epigenetically affected; however they are either 

regulating or regulated by the universal or patient-specific epigenetic markers. As shown in 

Figure 4, whenever a feature appears in multiple classifiers, the weights in different 

classifiers usually have similar sign and magnitude, confirming that the feature weight in 

support vector machine is a robust measure for the importance of the feature.

Table 3 lists the top ten positively weighted or negatively weighted genes from each of the 

three regions described above, and validation of their relevance to recurrence using literature 

mining. While the role of the DM genes in metastasis is unclear, many of the ECs in regions 

II and III are well known to have important functions in cancer progression and metastasis, 

such as BRCA1, EPHB2, ID2, ID3, SSTR2, SSTR3, SST, MYOD1, PAX3, HOXD10, and 

SCT, as shown by the results of literature mining. Interestingly, two genes in region III(a), 

TLE1 and PARP1, are known as epigenetic regulators [39, 40, 41].

4 Conclusions

In this paper we have presented a novel network-based algorithm for identifying biomarkers 

to predict tumor recurrence from high-throughput DNA methylation data. Our network-

based algorithm goes beyond the conventional differential analysis and finds (1) genes with 

insufficient statistical significance of differential methylation but are within the local 

neighborhood of the significantly differentially methylated genes, and (2) genes that are not 

differentially methylated but play important topological roles in connecting the epigenetic 

markers in the protein-protein interaction networks and therefore are assumed to have 

functional significance in epigenetic regulations. Our results show that the network-based 

markers are significantly enriched in many KEGG pathways well-known to be involved in 

tumorgenesis and metastasis, and can be used to significantly improve the accuracy in 

predicting recurrence. A unique contribution of this work is that we showed even for the 

genes without any DNA methylation changes, which therefore cannot be considered as 

biomarkers in conventional analysis, can be utilized to improve the classification 

performance, suggesting that their functions may have been functionally disturbed by the 

epigenetic changes of their protein-protein interaction partners.

Our method can be extended in several directions. First, for the EC genes, currently we do 

not differentiate whether they are regulated by the DM genes or are regulating the 

methylation changes of the DMs. This may be partially addressed by including protein-DNA 
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interaction networks where the directions between some nodes can be determined. Second, it 

is known that markers selected from different datasets for the same cancer are usually not 

comparable. Although our recent results on gene expression data showed that the connectors 

selected based on Steiner trees are much more stable than the genes selected based on 

differentially expression [42], it seems that the classification accuracy based on the 

connectors alone can be further improved. We therefore would like to develop a general 

classification method that does not depend on the DM genes. For example, after obtaining 

the EC subnetwork, we may extend the subnetwork to include all genes that are within a 

certain distance to the ECs or satisfy some additional topological requirements. Finally, it 

may be interesting to combine computationally derived subnetworks with curated pathways 

that are known to play important roles in cancer.
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Highlights

• An algorithm to identify and utilize protein-protein interaction subnetworks as 

biomarkers for cancer prognosis

• Application of our algorithm to endometrial cancer DNA methylation data 

identified many cancer-related genes an pathways that were otherwise not 

identifiable

• Significantly outperformed existing methods in predicting endometrial cancer 

recurrence
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Figure 1. 
A PPI subnetwork of DM and EC genes.
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Figure 2. 
Comparison between DM and EC genes.
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Figure 3. 
AUC for DM+EC* and EC*-based classifiers as a function of RWR restart probability.
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Figure 4. 
Feature weights in four SVM-based classifiers for selected genes. Colors depict the classifier 

from which the weight is obtained. Genes in Region I are DM genes and are sorted by their 

weights in DM-based SVM classifier; genes in Region II are ECs and are sorted by their 

weights in DM+EC based classifier; genes in Region III are ECs and are sorted by their 

weights in EC* based classifier.
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Table 1

Enriched KEGG pathways in EC genes. Enrichment score is calculated as −log10(p-value).

KEGG Pathway Score

hsa05200 Pathways in cancer 19.5

hsa04722 Neurotrophin signaling pathway 14.8

hsa04912 GnRH signaling pathway 14.0

hsa04020 Calcium signaling pathway 13.6

hsa04080 Neuroactive ligand-receptor interaction 13.1

hsa04012 ErbB signaling pathway 12.8

hsa04540 Gap junction 12.8

hsa04520 Adherens junction 12.4

hsa04062 Chemokine signaling pathway 11.3

hsa04510 Focal adhesion 10.5

hsa04010 MAPK signaling pathway 10.4

hsa04360 Axon guidance 10.1

hsa04144 Endocytosis 9.0

hsa04310 Wnt signaling pathway 8.6

hsa04530 Tight junction 8.1

hsa04110 Cell cycle 8.0

hsa04350 TGF-beta signaling pathway 6.4

hsa04270 Vascular smooth muscle contraction 6.2

hsa04920 Adipocytokine signaling pathway 6.2

hsa04620 Toll-like receptor signaling pathway 5.0

hsa04370 VEGF signaling pathway 4.8

hsa04810 Regulation of actin cytoskeleton 4.3

hsa04630 Jak-STAT signaling pathway 3.9

hsa04910 Insulin signaling pathway 3.4

hsa04621 NOD-like receptor signaling pathway 3.0

hsa04115 p53 signaling pathway 2.4
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