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Abstract
Cell therapy has the potential to improve healing of 
ischemic heart, repopulate injured myocardium and 
restore cardiac function. The tremendous hope and 
potential of stem cell therapy is well understood, yet 
recent trials involving cell therapy for cardiovascular 
diseases have yielded mixed results with inconsistent 
data thereby readdressing controversies and unresolved 
questions regarding stem cell efficacy for ischemic 
cardiac disease treatment. These controversies are 
believed to arise by the lack of uniformity of the 
clinical trial methodologies, uncertainty regarding the 
underlying reparative mechanisms of stem cells, ques-
tions concerning the most appropriate cell population to 
use, the proper delivery method and timing in relation 
to the moment of infarction, as well as the poor stem 
cell survival and engraftment especially in a diseased 
microenvironment which is collectively acknowledged as 
a major hindrance to any form of cell therapy. Indeed, 
the microenvironment of the failing heart exhibits 
pathological hypoxic, oxidative and inflammatory 
stressors impairing the survival of transplanted cells. 
Therefore, in order to observe any significant therapeutic 
benefit there is a need to increase resilience of stem 
cells to death in the transplant microenvironment while 
preserving or better yet improving their reparative 
functionality. Although stem cell differentiation into 
cardiomyocytes has been observed in some instance, 
the prevailing reparative benefits are afforded through 
paracrine mechanisms that promote angiogenesis, 
cell survival, transdifferentiate host cells and modulate 
immune responses. Therefore, to maximize their repara-
tive functionality, ex vivo  manipulation of stem cells 
through physical, genetic and pharmacological means 
have shown promise to enable cells to thrive in the post-
ischemic transplant microenvironment. In the present 
work, we will overview the current status of stem cell 
therapy for ischemic heart disease, discuss the most 
recurring cell populations employed, the mechanisms 
by which stem cells deliver a therapeutic benefit and 
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strategies that have been used to optimize and increase 
survival and functionality of stem cells including ex vivo 
preconditioning with drugs and a novel “pharmaco-
optimizer” as well as genetic modifications.
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Core tip: Cell therapy has the potential to improve 
healing of the ischemic heart, to repopulate injured 
myocardium and restore cardiac function in ischemic 
and non-ischemic cardiomyopathy. However, one of the 
biggest impediments lessening clinical effectiveness 
of cell therapy is the poor viability, retention and 
functionality of transplanted cells. This review looks as 
various stem cell ex vivo preconditioning and reprogram-
ming methods aimed at enhancing the therapeutic 
potential of stem cells for heart failure treatment.
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STEM CELL THERAPY FOR ISCHEMIC 
HEART DISEASE
Considering the elevated morbidity and mortality of 
ischemic heart diseases, there is a pressing need to 
develop new therapeutic solutions to reduce ventricular 
remodeling, improve cardiac function and prevent 
development of heart failure (HF) following myo
cardial infarction (MI). For many of the patients, heart 
transplantation is a last resort option and its use is 
limited due to the scarcity of available donors. Therefore, 
myocardial stem cell therapy or cellular cardiomyoplasty 
is an approach that aims at inducing neoangiogenesis 
and even generating new functional myocardium. Many 
preclinical studies have involved transplanting cells in the 
border region of the infarcted myocardium to improve 
vascular supply, increase or preserve cardiomyocytes 
and repair damaged ones, and based on many positive 
findings, cell therapy has long been proposed as a 
potential treatment for HF[13]. However, recent clinical 
trials have reported much less remarkable results with 
metaanalyses indicating a mean increase in ejection 
fraction (EF) of approximately 3% to < 6%, with 
better results in patients with low EF, or if cell infusion 
is delayed at least 5 d after MI[47]. Randomized trials 
have also shown that the composite end point of death, 
infarction, revascularization, is significantly decreased at 

12 mo, others have reported sustained benefits up to 
5 years with reduced death and infarct size, improved 
myocardial perfusion and global cardiac function, 
whereas some have not found any profound longterm 
clinical benefit thereby advocating for cautious optimism 
in regards to cell therapy[5,810].

Clearly evidence shows there is much room for 
improvement that can only be achieved through the 
fundamental understanding of the stem cell biology 
and mechanisms for the therapeutic benefit afforded 
by these cells. We now understand that only a small 
portion of cells are retained in the myocardium and 
that their paracrine activity will promote cardiac repair 
through production of antiinflammatory, prosurvival 
and angiogenic factors[11]. Indeed studies have shown 
that injection of stem cell conditioned media rich in 
these factors improve cardiac repair in HF models[12]. 
These factors are able to attenuate tissue injury, 
inhibit fibrotic remodeling, stimulate recruitment of 
endogenous stem cells and reduce oxidative stress[13]. 
Therefore, cell therapy can be viewed as providing 
cellular units releasing paracrine mediators to promote 
a beneficial effect[14]. This is true of course only if the 
cells are retained long enough and remain viable in the 
transplant environment for this to occur.

STEM CELLS USED IN REGENERATIVE 

MEDICINE 
Stem cells possess the capacity for prolonged pro
liferation, multilineage differentiation as well as trophic 
functions which enables tissue and organ repair[1517]. 
Cell types used for cardiac repair include unfractionated 
bone marrow cells (BMCs) and mononuclear cells, 
mesenchymal stem cells (MSCs), hematopoietic stem 
cells (HSCs), endothelial progenitor cells (EPCs), skeletal 
myoblasts (SkMbs), cardiac progenitor cells (CPCs), fetal 
cardiomyocytes, and embryonic stem cells (ESCs)[1820]. 
Each cell type has its advantages and disadvantages for 
cell therapy applications. Therapeutic injection of stem 
cells into a host requires accurate cell selection based 
on differentiation potential, relative ease of isolation, 
availability in large quantities, in vitro expansion[21,22]. 
These cells are isolated from various sources. For 
instance, SkMbs are isolated by skeletal muscle biopsies 
and expanded in vitro. EPCs have shown the greatest 
potential for angiogenesis[23], can be isolated from the 
blood. Resident cardiac stem cells or cardiospheres 
could be isolated from biopsies, clonally expanded in 
vitro and differentiated into cardiomyocytes[24]. Bone 
marrow contains a heterogeneous cell population 
that includes differentiated cells and stem cells, such 
as HSCs, MSCs and EPCs. Due to its relative ease of 
accessibility and processing, as well as its ability to 
transdifferentiate into myocardial or vascular cells, 
BMCs have been readily used in clinical trials. However, 
contradictory benefits have been reported mainly since 
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either unfractionated or subpopulations of BMCs with 
or without in vitro culture steps have been employed in 
various studies[25,26]. 

MSC 
MSCs are one of the best candidates for heart disease 
cell therapy due to their easy isolation, rapid expansion 
and safety[27]. MSCs retain their growth potential over 
several passages[28,29] and have the ability to differ
entiate into osteoblasts, chondrocytes, myocytes, 
fibroblasts, adipocytes and other mesenchymal pheno
types in vitro and in vivo[28,3032]. In addition, MSCs 
are also immuneprivileged because they express low 
levels of MHC II compared with MHC I[33]. They display 
immunosuppressive effects allowing successful allogenic 
transplantation. Many reports have shown improved 
recovery of ventricular function following MI with trans
plantation of MSCs in animal models[34] as well as an 
improvement in cardiac function and infarct size in 
human trials[29,3538]. 

The safety and feasibility of intracoronary MSC 
infusion and intramyocardial delivery during coronary 
bypass grafting in postMI patients has been demon
strated[33,39]. However, MSCbased therapy has the 
fatal limitation of poor viability of MSCs after cell 
transplantation[31]. Only approximately 5% of trans
planted MSCs survive for 14 d in the infarcted porcine 
heart[40], whereas survival rate of human MSCs trans
planted in an uninjured mouse heart is less than 
0.5% at 4 d[31]. Similar results were obtained from 
studies using different cell types. For instance, about 
7% of SkMb, 15% of smooth muscle cells, and 6% of 
unfractionated BMCs survived at 3 d to 1 wk in infarcted 
animal hearts[4143]. Consequently, cell viability is likely a 
common barrier for any cell therapy approach for MI.

HEMATOPOIETIC AND ENDOTHELIAL 
PRECURSOR STEM CELLS
HSCs count for perhaps as few as 1:10000 bone
marrow cells and are known for their positivity for the 
CD34 cell surface marker. EPCs also residing in the bone 
marrow, have originally been defined by their expression 
of the CD133, CD34, and the vascular endothelial 
growth factor receptor2 (VEGFR2) markers. CD133 or 
prominin1 is a highly conserved stem cell glycoprotein 
antigen described as marker for identification of early 
immature EPCs[44]. CD133+ cells migrate upon gradients 
of vascular endothelial growth factor (VEGF) and 
stromalderived factor (SDF) in vitro and in vivo[4547]. 
CD133+ cells in vitro differentiate into endothelial cells 
and release paracrine angiogenic cytokines. Differ
entiated CD133+ are capable of inducing capillary 
tubes in vitro[46,4851] and several clinical trials have 
reported promising effects following infusion or direct 
intramyocardial injection of autologous CD133+ cells into 

ischemic hearts[5256]. 

TRANSPLANT CELL DEATH IN THE 
INFARCTED HEART
One of the prime challenges of stem cell therapy consists 
in the survival, retention and differentiation of cells 
delivered in the harsh microenvironment of diseased 
tissues or organs[31,5759]. Poor retention and survival 
of transplanted cells in the heart which can decrease 
to 39% at 1 h following injection as seen in human 
studies[6064] or reach at most 21% in animal models 
following intramyocardial injection[65,66], further decrease 
exponentially thereafter due to apoptosis[31,57,67,68]. The 
increased cell death is swayed by various inflammatory 
response mediators, mechanical injury, hypoxia and 
ischemiareperfusion stressors, and influenced as well 
by the donor cell source and quality[69]. Indeed, the 
cause of death of implanted cells may begin during the 
preparation step where MSCs for example, which are 
normally grown attached, are prepared in suspension 
in order to be injected. The loss of matrix attachments 
causes programmed cell death called “anoikis”[6973]. 
Adhesion of cells to the matrix predominantly via integ
rin molecules represses apoptotic signaling, whereas 
detachment has the opposite effect. This effect is com
pounded by the hostile microenvironment of diseased 
myocardium which includes deprivation of nutrients 
and oxygen, upregulation of inflammatory mediators 
and low pH leading to poor transplant survival[70,74,75]. 
Moreover, myocardial injury generates an inflammatory 
response involving neutrophils and macrophages[76] 
which themselves produce inflammatory cytokines and 
reactive oxygen species (ROS) that may intensify the 
inflammatory response and anoikis signals and lead to 
cell death as well[7779]. Indeed, coinjection of SkMbs 
with the ROS scavenger superoxide dismutase (CuZn
SOD) increases graft survival[43]. 

MECHANISMS OF INFARCT REPAIR BY 
STEM CELLS: PARACRINE MODULATION 
OF ISCHEMIC ENVIRONMENT
Several studies have shown that recruitment of endo
genous stem cells or their delivery to injury sites 
results in structural regeneration and functional impro
vement[80]. While the original thesis regarding the 
beneficial mechanism pointed to stem cells and their 
differentiation within the host myocardium, we now 
understand that few if no exogenously administered 
cells engraft and differentiate[8184]. It is rather the 
paracrine biomolecules produced by stem cells which 
account for the bulk of observed functional repair 
and these molecules also reduce cell death in cardio
myocytes and other populations thereby benefiting 
the diseased host tissue[8589]. Stem cells secrete an 
array of cytokines, growth factors and extracellular 
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matrix (ECM) components that act in an autocrine or 
paracrine manner. Cytokines are signaling and immune
modulating agents involved in cellular communication, 
whereas chemokines also produced by stem cells are 
involved in chemotaxis, while growth factors stimulate 
cell growth, proliferation and differentiation. Moreover, 
antioxidants, antiapoptotic, antiinflammatory or im
munosuppressive molecules also secreted by stem 
cells can protect the cellular niche and transplant micro
environment from damaging mediators such as ROS. 
Finally, angiogenic and antifibrotic factors secreted by 
stem cells are responsible for tissue repair. In view of the 
numerous bioactive molecules produced and secreted 
by stem cells, current research using transcriptomic 
and proteomic technologies is poised at identifying the 
precise beneficial mediators and developing ways to 
harness these powerful pathways and mechanisms of 
repair[80,9094]. 

The cardioprotective panel of stem cell secreted 
factors include bFGF/FGF2, IL1β, IL10, PDGF, VEGF, 
HGF, IGF1, SDF1, thymosinβ4, Wnt5a, Ang1 and 
Ang2, MIP1, EPO and PDGF[21,8589,95]. FGF2 reduces 
ischemiainduced myocardial apoptosis, cell death and 
arrhythmias, and stimulates increased expression of anti
apoptotic Bcl2[96,97]. HGF, bFGF, Ang1 and 2, and VEGF 
secreted by BMMSCs lead to augmented vascular density 
and blood flow in the ischemic heart[91,98,99], whereas 
SDF1, IGF1, HGF facilitate circulating progenitor cell 
recruitment to injury sites thereby promoting repair 
and regeneration[100103]. Stem cells also secrete ECM 
components including collagens, TGFβ, matrix metallo
proteinases (MMPs) and tissuederived inhibitors (TIMPs) 
that inhibit fibrosis[104106] and may thereby benefit 
cardiac tissue remodeling postMI. 

STRATEGIES TO ENHANCE STEM CELL 
SURVIVAL 
It is clear that the injected stem cells must survive and 
thrive in the injured or diseased transplant environ
ment for any significant repair to occur. Acute cardiac 
ischemia results in a hypoxic and inflammatory 
microenvironment which makes it extremely difficult 
for the injured area to be functionally repaired[107109]. 
Consequently the injected cells will need to be tolerant 
of these deleterious conditions[110113]. For this, ex 
vivo manipulation of cells has been used to overcome 
cell survival issues as well as to enhance metabolic 
characteristics in order to confer cells with a powerful 
advantage in the critical early days after transplantation. 
Preconditioning, or pretreating and reprograming cells 
by physical/environmental, pharmacological, genetic 
manipulations or with cytokine and growth factor 
treatments has shown great potential to prime cells to 
withstand the rigors of the transplant microenvironment 
postischemia and maximize the cells’ biological and 
functional properties. In addition, there are strategies 
to modify the transplant environment through immune 

modulation and even by increasing cell retention with 
bioscaffolds. 

PRECONDITIONING STEM CELLS 
USING PHYSICAL/ENVIRONMENTAL 
CHALLENGES 
Beneficial effect of preconditioning was first demon
strated by treating healthy heart with intermittent 
cycles of nonlethal ischemia followed by reperfusion. 
This manipulation protected the myocardium from 
a subsequent important ischemic episode[114]. Subse
quently, various strategies including hypoxic, oxidative 
and thermal conditioning challenges have been studied 
in an attempt to improve stem cell survival[115118]. Low 
oxygen culture conditions (0.5% O2 for 24 h) have been 
shown to trigger survival pathways in MSCs before their 
engraftment in vivo[119]. MSCs exposed to hypoxia in 
vitro showed upregulation of Bcl2 and BclXL survival 
genes, promoting reduced infarct size and enhanced 
cardiac function[119]. Hypoxia preconditioning also 
increases in vitro expression of antiapoptotic genes such 
as Akt and eNOS[81,88,116]. Hypoxia treated cells show 
significantly improved survival postengraftment in the 
infarcted heart[119]. Also, during ischemic preconditioning, 
hypoxia inducible factor1α (HIF1α), a master regu
lator of genes responsible for low oxygen survival 
signaling[119121], stimulates the transcription of VEGF and 
erythrogenin that increase cellular oxygen availability 
by promoting angiogenesis and erythropoiesis[122,123]. 
In addition to VEGF, temporary exposure to hypoxia 
increases expression of many growth factors including 
bFGF, HGF, IGF1, and thymosinβ4[124,125] which are 
implicated in cell mobilisation and apoptosis. 

In addition to promoting prosurvival and cytopro
tective effects, hypoxic preconditioning supports 
cells to preserve their stemness and promote their 
differentiation and proliferation potential postengraft
ment[116,126129]. Furthermore, BMMSCs exposed to anoxic 
conditions and transplanted into infarcted myocardium 
have been shown to exert increased protective effects 
on cardiomyocytes[130]. Thus, hypoxic treatment may 
lead to enhanced donor and host cell survival in ischemic 
environments and provide functional benefits.

Burst exposure to low levels of oxidative stress 
in vitro also increases stem cell viability as seen for 
example by the exposure of CPCs in vitro to low con
centration of H2O2 prior to implantation in ischemic rat 
hearts[131]. Similarly, NPCs exposed to noncytotoxic 
low dose treatment of H2O2 demonstrated improved 
resistance to lethal oxidative stress[132], and MSCs 
preconditioned with H2O2 and transplanted in the 
ischemic heart display increased viability and functional 
improvement[133]. 

Heat shock treatment is also an interesting appro
ach to enhance cell survival. Heat shock protein (HSP) 
generation can be achieved by exposing cells to ele
vated temperatures (39 ℃ to 45 ℃). Thermal shock 
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of primary cardiomyocytes has been shown to result 
in increased expression of HSP70 thereby protecting 
the cells from in vitro and in vivo oxidant stress[134,135]. 
Transplantation of human ESCderived cardiomyocytes 
treated by 30 to 60 min of 43 ℃ heat upregulates 
HSPs such as HSP60, 70, and 90 has been shown 
to improve graft functionality in a rat model of MI 
injury[136,137]. Exposing MSCs to elevated temperature 
(43 ℃) also induces secretion of HSPs, including HSP27 
and HSP70[138] which may contribute to increased cell 
survival. Similarly, culture of CPCs at 42 ℃ has been 
shown to reduce apoptosis, increase functionality, and 
reduce fibrosis of mouse ischemic myocardium[139]. 
Considering the role of HSPs in cell protection and 
immune modulation, thermal conditioning represents 
an easy and effective means of increasing cell viability, 
retention and consequently improving stem cell graft 
function.

PRECONDITIONING STEM CELLS WITH 
DRUGS
The effectiveness of preconditioning on cell viability 
and function can also be achieved by pharmacological 
treatments[118]. Other than the initiation of survival 
signaling, treating cells with conditioning mimetics 
causes release of growth factors and cytokines that exert 
protective and angiomyogenic effects. Preconditioned 
cells show greater release of growth factors including 
VEGF, Ang1, SDF1α, HGF, and IGF[118]. Several drugs 
including mitochondrial potassium channel openers that 
promote influx of K+ through ATPsensitive K+ channels 
(mitoKATP) are useful agents altering the apoptotic 
cascade by preventing cytochrome c release[140143]. 
Pinacidil or Diazoxide, wellknown nonselective mito
KATP channel openers have been demonstrated to 
suppress apoptosis[144146]. SkMbs and BMMSCs treated 
with Diazoxide demonstrated increased cell survival 
in ischemic environment, and increased secretion of 
Ang1, bFGF, HGF and VEGF by preconditioning was 
proposed to augment angiomyogenesis[146,147]. 

HMG CoA reductase inhibitors (Statins) appear 
promising in blocking apoptosis, prolonging stem cell 
survival and improving organ repair. Treatment with 
atorvastatin for example enhances cell survival and 
differentiation into cardiomyocytes, decreases the 
infarcted area, promotes angiogenesis, and reverses 
the ventricular remodeling processes[148]. Also, ex 
vivo statin treatment has been shown to prevent 
impairment of the functionality of EPCs in vitro as well 
as the loss of telomere repeatbinding factor 2, whose 
expression is reduced in endstage human HF, and 
functions to prevent cells from entering in apoptosis or 
senescence[149,150]. A recent review provides encouraging 
basis for the use of statins to increase the number and/
or function of MSCs and EPCs for cell therapy[151].

Preconditioning cells with naturally occurring 
hormones such as Oxytocin (OT) or its synthetic analog 

drug (Pitocin) is another means for stem cell optimi
zation. Indeed, OT preconditioning of various cell types 
makes them resistant to oxidative stress[152], and 
primes stem cell differentiation into cardiomyocytes[153] 
and vascular cells[154]. MSC express a functional OT 
receptor which mediates glucose uptake[155] and cell 
differentiation[156] it has been shown that OT modulates 
gene expression for adhesion molecules and MMPs 
involved in cellular migration[154,157,158]. Our group 
showed that OT treated MSC respond with rapid 
calcium mobilization and upregulation of the protective 
pAkt and pErk1/2 proteins. Functional analyses 
revealed the involvement of these kinase pathways 
in cell proliferation, migration, and protection against 
apoptotic effects of hypoxia and serum starvation. OT 
preconditioning increased upregulation of genes with 
angiogenic, antiapoptotic and cardiac antiremodeling 
properties such as HSP27, HSP32, HSP70, VEGF, 
thrombospondin, TIMPs and MMPs, and coculture of 
cardiomyocytes with OTpreconditioned MSC reduced 
apoptosis[159].

Various other classes of drugs and chemicals have 
also shown potential for use as stem cell ex vivo 
conditioning agents. Treatment of BMMSCs with trime
tazidine (1[2,3,4trimethoxybenzyl] piperazine), an 
antiischemic drug for angina treatment has been 
shown to increase cell viability in response to oxida
tive stress[160]. Also, treatment of rat BMMSCs with 
βmercaptoethanol was shown to upregulate HSP72 
resulting in improved resistance to oxidative injury[161] 
Also, the pan caspase inhibitor ZVADfmk has been 
shown to increase engraftment of HSC during intra
bone marrow transplantation procedure in allogeneic 
mice[162]. This said, one has to be mindful of the 
balance between enhancing stem cell survival and 
enabling unintended carcinogenic effects when selecting 
compounds in the development of stem cell conditioning 
agents.

Finally, a means to favor stem cell differentiation 
would constitute an interesting pharmacological condi
tioning method for improving graft function. Small 
molecules such as 5Azacytidine, a DNA demethylating 
agent[32], have been shown to prime cardiac differ
entiation in MSCs. Other molecules including the HSP90 
inhibitor Geldanamycin[163], the kinase inhibitor Imatinib 
Mesylate[164] and the proteasome inhibitor Bortezomid[165] 
have been shown to instruct stem cell commitment to 
various lineages. 

A NOVEL STEM CELL 
PHARMACO-OPTIMIZER
Stem cell “pharmacooptimization” as we term it, is the 
process of contacting stem cells ex vivo with drugs in 
order to enhance their innate therapeutic qualities and 
develop a desirable phenotypic profile with enhanced 
cellular functions and viability favored in the context of 
stem cell therapy.
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Celastrol is an antioxidant molecule extracted from 
the root of a vine (Tripterygium wilfordii) which has 
showed beneficial effects in the treatment of various 
diseases including cancer, neurodegenerative disea
ses, autoimmune diseases, and inflammatory condi
tions[166171]. We are the first to report Celastrol’s efficacy 
as a potent infarct sparing agent[172] and we propose 
its use as a stem cell pharmacooptimizer  considering 
in part Celastrol’s targeting and activation of two very 
potent cellular defence mechanisms: The heat shock 
response (HSR) and the antioxidant response (AR). 
HSR leads to cell protection against various physiological 
stresses[173,174] via activation of HSP. HSR is regulated at 
the transcriptional level by the activation of heat shock 
factors with heat shock factor 1 (HSF1) being the master 
switch for HSP expression[174]. The AR is mediated 
by the transcription factor nuclear factor (erythroid
derived 2)like 2 (NRF2). NRF2 is a key controller 
of the redox homeostatic gene regulatory network 
including antioxidant proteins and phase II enzymes 
such as glutathione Stransferase, heme oxygenase 1 
(HO1), NADPHquinone oxidoreductase 1, superoxide 
dismutase 13 (SOD13), catalase (CAT), thioredoxin, 
glutathione peroxidase (GPx), and nonenzymatic 
antioxidants such as glutathione which exert protective, 
antioxidant, and antiinflammatory effects[173176]. Under 
homeostatic conditions, HSF1 is bound and silenced by 
its natural repressor HSP90 chaperone, and NRF2 is 
similarly repressed by KEAP1 (Kelchlike ECHassociated 
protein1). During oxidative and electrophilic stress (ROS 
increase), NRF2 is liberated from KEAP1 and binds to 
antioxidant response elements in the promoter region 
of genes including HO1. Similarly, during cellular stress, 
HSF1 translocates to the nucleus where it binds to heat 
shock elements as a phosphorylatedtrimer and drives 
the transcriptional activity of HSPs[177].

Briefly, Celastrol targets the interaction between 
HSP90 and its essential cofactors (i.e., Cdc37)[178], and 
through HSP90 functional inhibition, Celastrol promotes 
HSF1 release and HSR activation. Similarly, through 
a ROS/KEAP1/NRF2 pathway Celastrol activates the 
AR[179]. Together, Celastrol activates the two evolutionary 
conserved cellular protective mechanisms as detailed 
above and is able to stimulate a powerful endogenous 
protective effect that could be harnessed to increase 
viability and therapeutic efficiency of stem cells.

PRECONDITIONING STEM CELLS WITH 
GROWTH FACTORS AND CYTOKINES
Pretreating stem cells with growth factor (GF) is a 
simple and safe strategy to improve cellular survival, 
proliferation and differentiation. For example, precon
ditioning EPCs by culturing them in medium supple
mented with VEGF, activates Akt and significantly 
reduces apoptosis in a dosedependent manner[180]. 
Also, by exploiting the SDF1/CXCR4 ligand/receptor 
interaction which modulates cell growth, proliferation, 

survival, migration and transcriptional activation[21,181184], 
SDF1 can be used as a preconditioning chemokine[185]. 
Indeed, treatment with recombinant SDF1 enhanced 
vascular density and survival of cells under anoxic 
condition in vitro and following engraftment in the 
infarcted heart[185]. Also, it has been shown that IGF1 
preconditioning of bone marrowderived Sca1+ cells 
upregulates connexin 43 which improves survival and 
integration of cells with host myocytes[186]. The anti
apoptotic effects of IGF1 are mediated by IGF1/IGF
1R ligand/receptor interaction which involves PI3K/Akt 
and MAPK/Erk1/2 activation, whereas knockdown of 
connexin 43 rescinds cell viability to hypoxia in vitro and 
in vivo in the infarcted heart.

An additional strategy may consist of preconditioning 
cells with antiinflammatory cytokines such as 
interleukin10 (IL10) which promotes multiple effects 
including downregulation of Th1 cytokines such as 
IL2, IFNγ, TNFα, and increase expression of the 
cell survival gene Bcl2 thereby increasing stem cell 
survival[187]. It also has been demonstrated in vitro and 
in vivo that in the presence of IFNγ, MSCs suppress 
Tcells and graft vs host disease[188190]. 

EX VIVO GENETIC OPTIMIZATION OF 
STEM CELLS
Survival, differentiation and angiogenesis as targets
Stem cells are excellent vehicles for therapeutic gene 
delivery and can be genetically engineered for gene 
overexpression. Transgenes can encode for a myriad 
of beneficial factors including angiogenic and chemoat
tractant factors, antiapoptotic proteins and growth 
factor(s) of interest[181,191193] and serve as a continuous 
source for these to mediate sustained intracrine, 
autocrine, and paracrine effects. Indeed, molecules 
secreted by transgenemodified MSCs may have different 
therapeutic profiles compared with normal MSCs. For 
example, transformation of stem cells to overexpress 
IGF1 promotes donor cell survival, engraftment, and 
differentiation in cardiac cell therapy[194196]. IGF1 
induces expression of the prosurvival genes PI3kinase, 
Akt, BclxL and SDF1 which is a potent chemoattractant 
of stem cells. Indeed, IGF1 transformed MSC improve 
EF and fractional shortening in an infarct model[197]. Cells 
have also been manipulated to overexpress Ang1, HGF, 
VEGF and MyoD for postMI myocardial repair. Results 
show increased cell engraftment, angiogenesis and 
commitment to the myogenic lineage in the ischemic 
region[100,198205]. Indeed, any therapeutic approach 
aimed at increasing vascularization within the ischaemic 
heart tissue will improve functional repair and recovery 
of the infarcted myocardium. One of the key proteins is 
VEGF whose overexpression will promote a strong pro
angiogenic signal. VEGF has been shown to promote 
endothelial cell survival[206,207], and myocardial transfer 
of VEGFtransfected MSCs lead to better improvement 
of myocardial perfusion and heart function following 
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ischemia[192,208]. Studies evaluating other angiogenic 
and myogenic genes with various VEGF isoforms, 
PDGF and TGFβ1, have also suggested enhancement 
of cell therapy efficacy[209]. VEGF is itself regulated by 
the transcription factor HIF1α which plays a critical 
role in the stabilization of VEGF transcription during 
hypoxia[210,211]. Therefore, HIF1α overexpression has 
also been evaluated as an means to optimize BMMSCs 
for increased VEGF expression[212]. 

Stem and progenitor cells have also been engi
neered to survive and engraft more effectively in hostile 
environments[213,214]. Transfection of MSCs with growth 
factors such as bFGF shows increased survival in hypoxic 
conditions. These transformed cells also improve neovas
cularization compared to nontransformed MSCs[215]. 
Interestingly, Aktmodified BMMSCs exhibit resilience to 
apoptosis through secretion of growth factors such as 
bFGF, HGF, IGF1 and VEGF, as well as secreted frizzled
related protein 2 (Sfrp2) which exerts a beneficial effect 
on the infarcted heart postengraftment by antagonizing 
proapoptotic properties of Wnt3a. Together, secretion 
of these factors known to exert proangiogenetic, 
cardioprotective and inotropic actions[125] is increased 
under hypoxic conditions[81,125,216]. Transplantation of 
Aktmodified BMMSCs in the infarcted myocardium 
safeguards surviving myocardium for up to 2 wk post
MI at least in part through paracrine actions[217]. In 
another study, MSCs overexpressing Akt with Ang1 
provide longterm therapeutic benefits for preventing 
apoptosis in an ischemic heart up to three months after 
initial transplantation[218]. This said, it is interesting to 
note that medium from BMMSCs overexpressing Akt 
cultured under hypoxic conditions show an increase 
of many beneficial molecules including VEGF, FGF2, 
HGF, IGF1, and TB4, and trigger an increase in 
contractile response of cultured rat cardiomyocytes as 
well as improves ventricular function in a rat infarction 
model[125]. In addition to Akt overexpression, BMMSCs 
have been engineered with antiapoptotic genes such 
as Bcl2 and HO1. Bcl2 overexpression in BMMSC 
decrease apoptosis of BMMSCs and increases VEGF 
secretion and capillary density in the infarct border 
zone thereby increasing functional recovery in ischemic 
myocardium[124]. HO1 exerts potent antioxidant and 
cytoprotective activity in the ischemic environment[219,220]. 
HO1 transfected MSCs are resistant to apoptosis and 
inflammatory injury and display improved tolerance 
to ischemiareoxygenation injury harsh transplant 
microenvironments[221]. Another opportunity to enhance 
transplanted cell survival in the damaged heart is to 
transfect them with recombinant HSPs, that represents 
a family of inducible and constitutively expressed 
proteins responsible for potent increase in cell tolerance 
to environmental stress including ischemia, hypoxia, 
oxidative injury, heat stress, and ischemiareperfusion 
injury[222]. Indeed, cells transfected with HSP encoding 
genes, namely HSP70, are protected from ischemic 
injury in vitro and in vivo[223226].

In order to procure a holistic coverage of survival 
and growth effects, combination treatment of stem 
and progenitor cells can be achieved prior to their 
transplantation. As mentioned, combined overexpression 
of Akt and Ang1 has been attempted in MSC. Ang1, 
a potent modulator of vascular development activates 
survival signaling[227229], and coexpression with Akt 
was shown to be more effective for cytoprotection in 
the context of lethal anoxia[230]. Simultaneous over
expression of Akt and Ang1 in MSC transplanted in 
infarcted rat heart conferred better engraftment, and 
cells were able to adopt myogenic and endothelial 
phenotypes. Combination treatments may also be more 
ambitious by including various components such as a 
collagen matrix (matrigel) to increase retention and 
prevent anoikis, BclxL and Cyclosporine A to block 
mitochondrial death pathways, an inducer of mitoKATP 
channel opening such as Pinacidil or Diazoxide to mimic 
ischemic conditioning, a caspase inhibitor such as zVAD
fmk and IGF1 to activate Akt pathways as previously 
described[136]. 

Adhesion as a target
Adhesion is necessary for cell survival and is a key 
factor for MSC differentiation. Disruption of cellECM 
contact with trypsinization may facilitate apoptosis once 
cells are transplanted. Therefore, overexpression of 
adhesion molecules may enhance cell retention and 
improve viability. For example, tissue transglutaminase 
(tTG) overexpression in MSC leads to increased survival 
via an integrindependent mechanism[231]. tTG also acts 
as a coreceptor for fibronectin (Fn)[232,233] and enhances 
adhesion by bridging integrins and Fn or by mediating 
formation of ternary complexes[234]. Compared to simple 
MSC transplantation, tTG transformed MSCs have been 
shown to better restore cardiac function of infarcted 
myocardium[231]. Also, transfection of the integrinlinked 
kinase (ILK), a 59kDa Ser/Thr kinase that binds to the 
cytoplasmic domain of βintegrin and participates in cell 
adhesion, growth, and ECM assembly, activates Erk and 
Akt phosphorylation which play important roles in cell 
survival during hypoxia[77,235238]. Transplantation of ILK
MSCs has been shown to further reduce infarct size, 
improve left ventricle function and increase microvessel 
density[239]. 

Stem cell rejuvenation as a target
Increasing evidence supports the concept of senescence 
affecting tissue resident stem cells and diminishing 
regenerative capacity of organs[240242]. Cellular sene
scence is induced by multitude of stressors including 
hypoxia and oxidative conditions[243245] which reduces 
the cell’s proliferative, differentiation and metabolic 
potential, and upregulates apoptotic markers[246255]. 
At the genomic level, aging appears associated 
with increase in p53associated genes in addition to 
modulation of telomere, mitochondrial and apoptotic 
process[255,256]. These age related changes limit the 
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ability of stem cells to secrete angiogenic factors thereby 
reducing their regenerative potential. It has been 
shown that MSCs from old patients are less effective in 
preventing ventricular remodelling and inducing new 
vessel formation postMI[248]. Old donors exhibit reduced 
tolerance to ischemia and decreased transplant survival 
within ischemic muscle[251]. Similarly, older recipients 
have a diminished therapeutic response to receiving 
stem cells from donors of any age[251,254]. To overcome 
these effects related to cellular senescence, many 
strategies are being developed as recently reviewed[257]. 
In this regard, modifications to improve regenerative 
capacity have been sought[30,81,258,259] and include genetic 
modification of human CPCs with Pim1, a prosurvival 
downstream effector of cytokine signalling pathways[260] 
including Akt[261], in order to improve cellular metabolic 
activity[262]. The WNT/βcatenin pathway has also been 
studied as a potential target for MSC rejuvenation[263]. 
While increasing age is associated with reduced MSC 
proliferation, differentiation capacity and WNT/βcatenin 
signalling, lithium treatment which increases βcatenin 
bioavailability restores the impaired function of these 
cells[257].

CONCLUSION 
The use of stem cells to regenerate heart muscle has 
revolutionized the clinical practice for ischemic heart 
disease treatment. While safety and feasibility of 
cell therapy has been demonstrated in experimental 
and clinical studies, and the technology is making its 
way from bench to bedside, in order to reap the full 
regenerative potential afforded by stem cells, there is 
a necessity to develop the tools and the understanding 
required to ameliorate clinical efficacy. Most importantly, 
in order to harness the full therapeutic potential of 
these cells for cell therapy or any regenerative medicine 
application, optimization of cell viability, retention and 
functionality are of utmost importance. As summarized 
here, many groups are currently investigating various 
avenues of stem cell optimization. These methods 
include cell preconditioning using environmental stres
sors, genetic manipulations to enhance survival path
ways, increase angiogenesis and cell adhesion, as 
well as preconditioning methodologies involving ex 
vivo stimulation of stem cells with growth hormones, 
cytokines and pharmacological agents such as statins 
and conditioning mimetics. The latter pharmacological 
method may be one of the safest, quickest, most 
reproducible, reliable and readily transferable method to 
the clinic used for producing optimized cell populations 
for patients. It is also foreseeable that in order to further 
enhance the therapeutic quality of these cells, multiple 
cellular pathways and effectors may be targeted, 
drug cocktails may be developed, or even conditioned 
cells may be combined with hydrogel technologies to 
encapsulate cells in a favorable environment to further 
promote retention, limit anoikis and facilitate cellcell 

and cellmatrix interactions. All of these upcoming 
advances in stem cell optimization will greatly benefit 
patients and the promising field of regenerative 
medicine in the coming years.
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