Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8500–8504. doi: 10.1073/pnas.88.19.8500

Isolation of a murine osteoclast colony-stimulating factor.

M Y Lee 1, D R Eyre 1, W R Osborne 1
PMCID: PMC52536  PMID: 1924309

Abstract

Cultures of a cell line derived from a murine mammary carcinoma that induces hypercalcemia were examined for soluble products that could induce osteoclasts to differentiate from murine bone marrow cells. The serum-free culture supernatant of this cell line stimulated growth of colonies from bone marrow cells that exhibited tartrate-resistant acid phosphatase (TRAPase) activity. These TRAPase-positive cells demonstrated essential features of osteoclasts when cultured with mineralized bone or dentin. The culture period required for colony development and the frequency of colony-forming cells indicated that relatively primitive marrow progenitors were stimulated by a tumor-derived factor(s) to form immature osteoclasts. Other colony-stimulating factors (CSFs), including granulocyte CSF, macrophage CSF, granulocyte-macrophage CSF and interleukin 3, were ruled out as the source of the activity produced by the tumor cells. The biological activity was successfully purified by gel filtration chromatography and reverse-phase HPLC. By SDS/PAGE, the activity was traced to a protein of approximately 17 kDa. Functional and biochemical studies of the purified factor suggest that it is distinct from any known CSF of myeloid cells. This protein appears to be a CSF for the osteoclast lineage, osteoclast CSF (O-CSF).

Full text

PDF
8500

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams J. S., Pearce M. K. Development of rat anti-mouse interleukin 3 monoclonal antibodies which neutralize bioactivity in vitro. J Immunol. 1988 Jan 1;140(1):131–137. [PubMed] [Google Scholar]
  2. Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
  3. Chambers T. J. The pathobiology of the osteoclast. J Clin Pathol. 1985 Mar;38(3):241–252. doi: 10.1136/jcp.38.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hattersley G., Chambers T. J. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue. J Cell Physiol. 1990 Jan;142(1):201–209. doi: 10.1002/jcp.1041420125. [DOI] [PubMed] [Google Scholar]
  5. Hattersley G., Chambers T. J. Generation of osteoclasts from hemopoietic cells and a multipotential cell line in vitro. J Cell Physiol. 1989 Sep;140(3):478–482. doi: 10.1002/jcp.1041400311. [DOI] [PubMed] [Google Scholar]
  6. Kurihara N., Chenu C., Miller M., Civin C., Roodman G. D. Identification of committed mononuclear precursors for osteoclast-like cells formed in long term human marrow cultures. Endocrinology. 1990 May;126(5):2733–2741. doi: 10.1210/endo-126-5-2733. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lau K. H., Lee M. Y., Linkhart T. A., Mohan S., Vermeiden J., Liu C. C., Baylink D. J. A mouse tumor-derived osteolytic factor stimulates bone resorption by a mechanism involving local prostaglandins production in bone. Biochim Biophys Acta. 1985 May 29;840(1):56–68. doi: 10.1016/0304-4165(85)90162-x. [DOI] [PubMed] [Google Scholar]
  9. Lee M. Y., Baylink D. J. Hypercalcemia, excessive bone resorption, and neutrophilia in mice bearing a mammary carcinoma. Proc Soc Exp Biol Med. 1983 Apr;172(4):424–429. doi: 10.3181/00379727-172-41582. [DOI] [PubMed] [Google Scholar]
  10. Lee M. Y., Kaushansky K., Judkins S. A., Lottsfeldt J. L., Waheed A., Shadduck R. K. Mechanisms of tumor-induced neutrophilia: constitutive production of colony-stimulating factors and their synergistic actions. Blood. 1989 Jul;74(1):115–122. [PubMed] [Google Scholar]
  11. Lee M. Y., Liu C. C., Lottsfeldt J. L., Judkins S. A., Howard G. A. Production of granulocyte-stimulating and bone cell-modulating activities from a neutrophilia hypercalcemia-inducing murine mammary cancer cell line. Cancer Res. 1987 Aug 1;47(15):4059–4065. [PubMed] [Google Scholar]
  12. Lee M. Y., Lottsfeldt J. L. Augmentation of neutrophilic granulocyte progenitors in the bone marrow of mice with tumor-induced neutrophilia: cytochemical study of in vitro colonies. Blood. 1984 Aug;64(2):499–506. [PubMed] [Google Scholar]
  13. Liu C., Sanghvi R., Burnell J. M., Howard G. A. Simultaneous demonstration of bone alkaline and acid phosphatase activities in plastic-embedded sections and differential inhibition of the activities. Histochemistry. 1987;86(6):559–565. doi: 10.1007/BF00489547. [DOI] [PubMed] [Google Scholar]
  14. MacDonald B. R., Mundy G. R., Clark S., Wang E. A., Kuehl T. J., Stanley E. R., Roodman G. D. Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. J Bone Miner Res. 1986 Apr;1(2):227–233. doi: 10.1002/jbmr.5650010210. [DOI] [PubMed] [Google Scholar]
  15. Mochizuki D. Y., Eisenman J. R., Conlon P. J., Park L. S., Urdal D. L. Development and characterization of antiserum to murine granulocyte-macrophage colony-stimulating factor. J Immunol. 1986 May 15;136(10):3706–3709. [PubMed] [Google Scholar]
  16. Sakai N., Shikita M., Tsuneoka K., Bessho M., Hirashima K. Macrophage colony-stimulating factor and granulocyte colony-stimulating factor separated from fibrosarcoma tissue in mice. Gan. 1984 Apr;75(4):355–361. [PubMed] [Google Scholar]
  17. Scheven B. A., Visser J. W., Nijweide P. J. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature. 1986 May 1;321(6065):79–81. doi: 10.1038/321079a0. [DOI] [PubMed] [Google Scholar]
  18. Shinar D. M., Sato M., Rodan G. A. The effect of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology. 1990 Mar;126(3):1728–1735. doi: 10.1210/endo-126-3-1728. [DOI] [PubMed] [Google Scholar]
  19. Thomas E., Smith D. C., Lee M. Y., Rosse C. Induction of granulocytic hyperplasia, thymic atrophy, and hypercalcemia by a selected subpopulation of a murine mammary adenocarcinoma. Cancer Res. 1985 Nov;45(11 Pt 2):5840–5844. [PubMed] [Google Scholar]
  20. Walker D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975 Sep 1;142(3):651–663. doi: 10.1084/jem.142.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wiktor-Jedrzejczak W., Bartocci A., Ferrante A. W., Jr, Ahmed-Ansari A., Sell K. W., Pollard J. W., Stanley E. R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4828–4832. doi: 10.1073/pnas.87.12.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):442–444. doi: 10.1038/345442a0. [DOI] [PubMed] [Google Scholar]
  23. Zsebo K. M., Wypych J., McNiece I. K., Lu H. S., Smith K. A., Karkare S. B., Sachdev R. K., Yuschenkoff V. N., Birkett N. C., Williams L. R. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Cell. 1990 Oct 5;63(1):195–201. doi: 10.1016/0092-8674(90)90300-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES