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Placebo Intervention Enhances 
Reward Learning in Healthy 
Individuals
Zsolt Turi1,*, Matthias Mittner2,*, Walter Paulus1 & Andrea Antal1

According to the placebo-reward hypothesis, placebo is a reward-anticipation process that increases 
midbrain dopamine (DA) levels. Reward-based learning processes, such as reinforcement learning, 
involves a large part of the DA-ergic network that is also activated by the placebo intervention. Given 
the neurochemical overlap between placebo and reward learning, we investigated whether verbal 
instructions in conjunction with a placebo intervention are capable of enhancing reward learning 
in healthy individuals by using a monetary reward-based reinforcement-learning task. Placebo 
intervention was performed with non-invasive brain stimulation techniques. In a randomized, 
triple-blind, cross-over study we investigated this cognitive placebo effect in healthy individuals by 
manipulating the participants’ perceived uncertainty about the intervention’s efficacy. Volunteers in the 
purportedly low- and high-uncertainty conditions earned more money, responded more quickly and had 
a higher learning rate from monetary rewards relative to baseline. Participants in the purportedly high-
uncertainty conditions showed enhanced reward learning, and a model-free computational analysis 
revealed a higher learning rate from monetary rewards compared to the purportedly low-uncertainty 
and baseline conditions. Our results indicate that the placebo response is able to enhance reward 
learning in healthy individuals, opening up exciting avenues for future research in placebo effects on 
other cognitive functions.

Observational and interventional approaches are concomitantly used to study brain networks and their putative 
contributions to certain brain functions1. While the former approach is necessary to characterize the spatiotem-
poral patterns of neural activity, the interventional approach constitutes an important step towards facilitating 
causal inference2. Non-invasive brain stimulation (NIBS) interventions offer the possibility to induce transient 
perturbations in intact human brain networks by using electromagnetic induction or electrical current, while 
minimizing possible health risks, financial costs and ethical concerns3–5.

Transcranial direct current stimulation (tDCS) is the most frequently employed research tool in studies that 
use electrical current as a NIBS technique3. It passes constant, low intensity current between two or more elec-
trodes attached to the intact scalp. Depending on the polarity, the externally applied constant current can increase 
or decrease the spontaneous firing rate (i.e., cortical excitability) of the stimulated brain regions by depolarizing 
or hyperpolarizing resting membrane potentials3. Although most of the commercially available and certified 
tDCS devices are equipped with a double-blind operation mode, a large number of studies still use a single-blind 
study design, no blinding at all or inadequate blinding6. In these cases, the impact of intentional and unconscious 
preferences, bias and expectations of the participants as well as of the researchers can possibly lead to an over-
estimation of its effectiveness. While several tDCS methods have been shown to be effective in the motor and 
cognitive domains, the variability in the response rate to tDCS is relatively high and it is unclear how much of the 
observed effectiveness is solely due to a placebo effect7–9.

The placebo effect is a complex psychobiological response to the application of a simulated intervention10–13. 
A prominent conceptual framework focusing particularly on the dopamine (DA)-mediated placebo mechanisms 
suggests that the placebo response can be considered a special case of a reward anticipation process, character-
ized by a neural overlap between anticipating the putative beneficial effects of the treatment and anticipating 
rewards14,15. In line with this hypothesis, substantial placebo-induced release of DA was detected both in the 
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nigrostriatal and mesolimbic DA-ergic pathways, key regions in reward processing16–19, using positron emission 
tomography (PET)14,20–24.

Although the overwhelming majority of placebo studies focused primarily on placebo analgesia, a recent 
study of the placebo effects on reward learning indicates that there may be a common neurobiological mechanism 
of placebo effects across multiple domains24. Using pharmacological, neuroimaging and computational modeling 
measures, this study revealed that placebo medication enhances reward learning in Parkinson’s disease (PD) 
patients, and that the effects were driven by the DA-ergic system. However, due to the characteristics and the 
pharmacological treatment of PD patients, it remains elusive whether this cognitive placebo effect was mediated 
by placebo-induced expectations or also partly due to conditioning by the pharmacological treatment that the PD 
patients were receiving. Since PD patients are characterized by pathological DA-ergic network functioning25, they 
may constitute a subpopulation that is particularly responsive to the placebo intervention.

In the current study we therefore examined whether placebo interventions associated with different ver-
bal manipulations would be capable of enhancing reward learning in healthy individuals. This active placebo 
intervention was applied using sham protocols of NIBS for the following reasons. First, in the past decade the 
application of tDCS has become increasingly popular in neuroscience research investigating both healthy indi-
viduals and patient populations. Recent years have seen an enormous increase in the use of tDCS extending well 
beyond academic and clinical applications to, e.g., do-it-yourself brain stimulation communities and professional 
athletes26,27. However, the placebo-inducing potential of tDCS is under-researched, although the placebo effect 
induced by medical devices are as strong or even superior to orally administered placebos28. Second, despite 
its extensive application in the motor and cognitive domains, its precise mechanism of action remains elusive, 
and the high inter-individual variability in the response to tDCS has yet to be further investigated7–9. Third, the 
‘fade-in, short-stimulation, fade-out’ protocol is a well-characterized sham condition for tDCS, that produces a 
mild degree of cutaneous discomfort, such as itching, tingling or burning sensations on the scalp but does not 
induce physiological after-effects. Hence, for the purpose of the present study tDCS was an ideal candidate for an 
active placebo intervention (i.e., inducing mild sensations).

In addition to tDCS, we also employed another NIBS device called transcranial near infrared laser stimulation 
(tNILS) as a passive placebo (i.e. inducing no sensations). Earlier findings have shown that tNILS can alter cellu-
lar respiration processes by increasing mitochondrial adenosine triphosphate synthesis and cellular nitric oxide 
release29. Due to its effects at the molecular and cellular levels, tNILS has been shown to induce vasodilation that 
is beneficial in wound healing and in reducing inflammatory processes29. Similar to tDCS, tNILS can modulate 
cortical excitability in the human motor cortex30. Although tNILS has been applied in neurorehabilitation31, our 
knowledge about its effect on cognitive functions is limited32. The rationale for the application of tNILS was first 
to provide different treatment characteristics for the repeated-measures design both for the participants and the 
operator, and second, to avoid the possibility that participants or the operator would encounter earlier scientific 
publications on the effect of tDCS on cognitive functions that would contradict the verbal manipulation.

Earlier studies reported that placebo effects are most pronounced when the volunteers believed that they are 
certain to receive an active intervention33–36. Therefore, in the present experiment, participants were subjected to 
two active placebo conditions, in which the participants were misleadingly informed that they would receive an 
active intervention. Crucially, however, the two placebo conditions differed with regard to the declared certainty 
about the effectiveness of the intervention. In the low-uncertainty condition, the intervention (tDCS and tNILS) 
was introduced as a well-established, performance-enhancing method and was claimed to certainly improve the 
participants’ cognitive performance. In contrast, in the high-uncertainty condition, the active placebo stimulation 
was introduced as an experimental method whose effectiveness was not yet proven. In reality, all participants 
received 30 s of sham tDCS as an active placebo using a randomized, triple-blind (i.e., participant, operator and 
analyst were unaware of the conditions37), cross-over study design.

We considered two competing hypotheses regarding the possible outcomes of our study. First, it is conceivable 
that participants will show a stronger placebo effect when instructed that the effect is more certain, i.e., better 
learning will be observed in the low-uncertainty than in the high-uncertainty condition. This expectancy hypoth-
esis is based on the assumption that the verbal manipulation will differentially increase the participants’ expecta-
tions, which eventually results in stronger cognitive placebo effects in the low-uncertainty condition, similar to 
the observations in the domain of placebo analgesia33,35,38. However, the opposite hypothesis, i.e., that the placebo 
effect would be stronger in the condition where treatment efficacy is less certain, is also conceivable in the light of 
the placebo-reward theory14,15. Based on the findings in PD patients, this theory proposes that the development of 
the placebo effect is tightly coupled to the activation characteristics of the reward circuit to reward uncertainty15. 
It has been shown that the tonic activation of midbrain DA neurons and, correspondingly, reward uncertainty are 
related by an inverted U-shape function with strongest activation when uncertainty is maximized15,22. If cognitive 
placebo effects are mediated by the activation of the reward circuit, then the low-uncertainty condition (accord-
ing to the expectancy hypothesis) or the high-uncertainty condition (according to the placebo-reward hypothe-
sis) could conceivably increase endogenous midbrain DA release, which could modulate reward processing and 
eventually lead to a more pronounced placebo effect.

Therefore, we hypothesized that if the placebo intervention were indeed capable of modulating reward learn-
ing in healthy individuals similar to PD patients24, we would be able to detect its behavioral consequences in 
a monetary reward-based reinforcement-learning task. This task is a well-characterized paradigm, known to 
strongly depend on midbrain DA levels17,39–43. In order to gain further insight into the underlying mechanisms 
of how placebo affects reinforcement learning, we applied a computational, temporal-difference reinforcement 
learning technique using a hierarchical Bayesian estimation procedure. The learning rate parameter used in our 
model represents the degree to which participants were able to learn from the reward prediction error, the dif-
ference between the obtained and the predicted reward. If the active placebo intervention(s) did indeed activate 
the reward circuitry, we would expect an increased learning rate from monetary rewards (i.e., optimized learning 
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from gains), similar to the behavioral consequences of pharmacological studies in which the DA-ergic network 
was triggered by medication44,45.

Results
We monitored participants’ performance during three repetitions of a standard reinforcement-learning task using 
unrelated stimulus sets39. In this task, the participants had to choose between pairs of Chinese symbols that were 
probabilistically mapped to a reward42. To optimize their monetary outcome, participants had to learn the stimu-
lus that yielded a reward with maximum probability. Participants took part in three sessions. In each experimen-
tal session, participants had to learn three distinct stimulus pairs that had different reward contingencies (80/20%, 
70/30% and 60/40%, see Fig. 1B). The first session served as a baseline condition and the other two sessions were 
placebo conditions, in which the participants’ belief about the effectiveness of the intervention was manipu-
lated by verbal instruction (low-uncertainty vs. high-uncertainty condition, see Fig. 1A and Methods for details). 
Placebo intervention was delivered by an active sham protocol of tDCS (see Methods for details) that is insuffi-
cient to induce physiological changes in the brain, but capable of inducing substantial cutaneous sensations46,47.

For data analysis, we exclusively used Bayesian methods because of their many advantages compared to tradi-
tional null-hypothesis testing in general48,49 and in particular because they allow a hierarchical integration of the 
computational reinforcement-learning model50. We report our results in terms of posterior mean and the 95% 
highest-density intervals (HDIs), which give the range in which the estimated parameter is expected to be located 
with probability 0.95 given the model assumptions.

Placebo increases objective performance measures.  We analyzed learning performance by submit-
ting the accuracy and reaction time data from the learning part of the experiment to independent Bayesian 
hierarchical generalized regression models. We included trial number, condition (baseline; low- uncertainty, LU; 
high-uncertainty, HU) and pair number (1, 2, 3) as predictors and let the intercept vary by subject (Methods for 
details). Non-informative priors were placed on all parameters (see Table 1 for a summary of the models’ results).

Figure 1.  Flow of the volunteers through the conditions (A) and trials (B). (A) After a neurological screening, 
all participants first entered a baseline condition followed by the two randomly ordered placebo conditions 
(low- and high-uncertainty). (B) Participants performed a standard reinforcement-learning task39 where they 
had to select the better of two Chinese symbols.
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The results from this analysis clearly show substantially increased performance compared to baseline, both 
with regard to accuracy (bLU =​ 0.217, HDI =​ [0.146, 0.279] and bHU =​ 0.435, HDI =​ [0.370, 0.503]) as well as 
to reaction times (bLU =​ −​0.116, HDI =​ [−​0.124, −​0.107] and bHU =​ −​0.145, HDI =​ [−​0.153, −​0.136]). Even 
though new and randomized stimuli were used in each of the three sessions, it is possible that these effects are 
at least partly driven by a between-session practice effect from baseline to the (randomized) placebo conditions. 
Crucially, however, the performance boost was greater (evidenced by a greater increase in accuracy and a greater 
reduction in RT) in the high-uncertainty condition than in the low-uncertainty condition as indicated by the 
non-overlapping HDIs for all parameters.

We also found the expected effect of trial number on accuracy, b =​ 0.144, HDI =​ [0.127, 0.160], and RT, b =​  
−​0.043, HDI =​ [−​0.045, −​0.041], indicating learning over the course of the experiment. Finally, the effect of pair 
number, reflecting increasing difficulty due to lower reward contingencies, was in the expected directions for 
accuracy, b =​ −​0.497, HDI =​ [−​0.532, −​0.463] and reaction times, b =​ 0.023, HDI =​ [0.019, 0.027]. Descriptive 
statistics of the performance data are summarized in Fig. 2.

Uncertainty modulates learning rate parameters of the reinforcement-learning model.  To 
investigate the possible impact of our placebo manipulations on the learning rates, we fitted a computational 
reinforcement- learning model specifically designed for this task39 (see Methods). This model was designed to 
capture two independent learning-rate parameters, αG and αL, reflecting the participants’ propensity to learn 
from gains and losses, respectively39,51. It has been suggested39 that learning from losses and gains might be imple-
mented in different underlying neural mechanisms. In a data-driven model-comparison, we found that this more 
complex model clearly outperforms a model that does not separate between gains and losses, Δ​WAIC =​ 539.93. 
We fitted a hierarchical Bayesian version of this model (see Methods) and estimated the effects of the placebo 
intervention on the learning rate parameters αG and αL and the noise parameter β.

At the group level, the estimates for the learning rates and the noise parameter were in a reasonable range with 
the learning- rate for losses being lower than that for gains, µ = .α 0 07

G
, HDI =​ [0.03, 0.12], µ = .α 0 02

L
, 

HDI =​ [0.004, 0.03] and μβ =​ 0.21, HDI =​ [0.18, 0.25] (see Fig. 3). The effect of the placebo interventions was 
restricted to the learning-rate parameters (see Table 2: Learning from gains was improved in both placebo condi-
tions and substantially more so in the high-uncertainty condition (δLU =​ 0.83, HDI =​ [0.55, 1.10] and δHU =​ 1.17, 
HDI =​ [0.96, 1.39], P(δHU >​ δLU) =​ 0.99), mirroring the results from the analysis of accuracy and reaction times. 

variablea Accuracy Reaction timeb

trialc 0.144 [0.127, 0.160]d −​0.043 [−​0.045, −​0.041]

pair −​0.497 [−​0.532, −​0.463] 0.023 [0.019, 0.027]

condition LU 0.217 [0.146, 0.279] −​0.116 [−​0.124, −​0.107]

condition HU 0.435 [0.370, 0.503] −​0.145 [−​0.153, −​0.136]

intercept (group) 1.673 [1.389, 1.952] −​0.077 [−​0.139, −​0.014]

Table 1.   Estimated regression coefficients for performance data. Placebo interventions resulted in more 
rapid performance with a smaller likelihood of errors. aLU =​ low-uncertainty; HU =​ high-uncertainty. bThe 
model was fit to log-transformed reaction times. cThe effect of trial was rescaled to steps of 20 trials. dNumbers 
indicate posterior mean and 95% HDI.

Figure 2.  Descriptive statistics for accuracy (% correct, (A)) and reaction time (in s, (B)) for each condition 
and stimulus pair. Error bars show the standard error of the mean (SEM). Accuracy increases and reaction 
time decreases in both placebo conditions, but more strongly in the high-uncertainty condition. Accuracy and 
RT also depend on stimulus pair, reflecting their increasing degree of difficulty due to lower stimulus-reward 
contingencies. HU: high-uncertainty; LU: low-uncertainty placebo conditions
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In addition, both placebo manipulations induced a substantial, but small, decrement of the learning rate from 
losses, δLU =​ −​0.74, HDI =​ [−​1.11, −​0.36], δHU =​ −​0.86, HDI =​ [−​1.37, −​0.37] but the two conditions did not 
differ from one another. Finally, there was no effect on the noise-parameter β (δLU =​ −​0.02, HDI =​ [−​0.11, 0.07]; 
δHU =​ 0.05, HDI =​ [−​0.04, 0.14]). To better interpret the size of the effects, which are give on the logit/log scales, 
we transformed them to the original scale when the intercept was at the mean (Fig. 4). While the effect on αG was 
quite strong (≈​0.1), it was much weaker for the αL parameter (≈​−​0.01).

Subjective expectation and experience is unaffected by placebo intervention.  We also asked 
our participants whether they anticipated or experienced a positive, negative or no impact of the intervention on 
their performance. The results of the responses to these questions are summarized in Fig. 5. We submitted these 
data to a softmax-regression model49 using type of question (anticipated vs. experienced changes) and condition 
(low- and high-uncertainy) as well as their interaction as predictors (see section 6 for details). None of the pre-
dictors showed a substantial deviation from zero (see Table 3). There was no strong evidence of a main effect of 
question (anticipated vs. experienced changes in performance), β2,decline =​ −​1.53, HDI =​ [−​4.72, 1.50], β2,improve  
=​ −​0.92, HDI =​ [−​2.10, 0.21] (both HDIs include zero). There was no apparent effect of condition (low- vs. 
high-uncertainty), β1,decline =​ 0.50, HDI =​ [−​1.66, 2.77] and β1,improve =​ −​0.06, HDI =​ [−​1.25, 1.15] and neither 
an interaction of question and condition showed β3,decline =​ 2.02, HDI =​ [−​1.41, 5.64], β3,improve =​ −​0.51, HDI =​  
[−​2.25, 1.24]. All of the HDIs include zero and we cannot conclude with confidence that subjective anticipations 
or experiences were influenced by the placebo intervention.

To make the results of this model more interpretable, we calculated the associated probabilities p for each of 
the conditions and questions. These values indicate estimated probabilities for each condition to anticipate or 
experience a decline, no change, or an improvement in performance due to the placebo intervention. In both con-
ditions, anticipated changes in performance were similar and mainly neutral or positive, pLU =​ (0.07, 0.34, 0.59) 
and pHU =​ (0.10, 0.34, 0.56), (Fig. 6, left). Regarding the experienced performance changes, the estimated prob-
abilities show a somewhat stronger tendency to experience no change, and more “decline”, and fewer “improve” 
ratings in the HU condition pLU =​ (0.03, 0.56, 0.41), pHU =​ (0.26, 0.52, 0.22), (see Fig. 6, right). However, the 95% 
highest-density regions (HDRs) for these estimates overlap (corresponding to the inconclusive HDIs on the inter-
action parameter) and any putative difference must therefore be interpreted carefully.

Figure 3.  Individual parameter estimates for the baseline condition for the reinforcement-learning model. 
Dots indicate the posterior mean and the flankers the 95% highest-density interval (HDI). Black solid line 
indicates the mean of the group-level distribution and dashed lines the 95% HDI for that parameter.

Variable Condition Mean, 95% HDI

effect on αG LU 0.83 [0.55, 1.10]

HU 1.17 [0.96, 1.39]

effect on αL LU −​0.74 [−​1.11, −​0.36]

HU −​0.86 [−​1.37, −​0.37]

effect on β LU −​0.02 [−​0.11, 0.07]

HU 0.05 [−​0.04, 0.14]

Table 2.   Summary of the effects of the placebo intervention on the reinforcement-learning model 
parameters. Placebo intervention increases dopamine-dependent learning from gains. aαG =​ learning rate 
from gains; αL =​ learning rate from losses; β =​ softmax noise-parameter. bLU =​ low-uncertainty; HU =​ high-
uncertainty.
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Self-reported arousal was unaffected by placebo intervention.  To exclude the possibility that our 
results reflect the effect of a general arousal due to the presence of an intervention rather than a genuine placebo 
effect, we asked our participants to rate their arousal before and after each experimental session on a scale from 
one to ten. This data was subjected to a similar analysis as the one above.

In general, our participants reported being quite awake as indicated by the fact that most responses were 
located at the upper end of the scale, μ0 =​ 7.22, HDI =​ [6.56, 7.86]. Participants’ responses after an experimental 
session were generally lower than before, βafter =​ −​0.91, HDI =​ [−​1.71, −​0.11] (approximately one point on the 
ten point scale). There was no apparent effect of either condition (βLU =​ −​0.32, HDI =​ [−​1.05, 0.51], βHU =​ −​0.18, 
HDI =​ [−​0.91, 0.62]) or a modulation of the before/after effect due to condition (βLU×after =​ 0.10, HDI =​ [−​1.05, 
1.19], βHU×after =​ −​0.11, HDI =​ [−​1.23, 1.02]. We conclude that there is no apparent effect of the placebo stimula-
tion on subjectively experienced arousal.

Figure 4.  Estimates of the effects of the placebo interventions on the model parameters αG, αL and β 
(rows), on the logit (left), and original scales at the mean (right). Circles represent the posterior mean, solid 
bars show the corresponding HDI. The thin red line indicates zero effect.

Figure 5.  The anticipated and experienced impact (decline, no change or an improvement) of the 
intervention reported by the participants in the high-uncertainty (HU) and low-uncertainty (LU) placebo 
conditions. 
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Discussion
We investigated whether verbally manipulating the participants to be more or less certain about the effectiveness 
of the applied placebo NIBS would influence the performance of healthy individuals in a reinforcement-learning 
task, i.e., induce a cognitive placebo effect. We found that performance was increased in both low- and 
high-uncertainty conditions but more strongly in the high-uncertainty condition. Our Bayesian analysis revealed 
that participants in the high-uncertainty condition learned better from monetary rewards, compared to the 
low-uncertainty and training conditions. We found no difference in the subjective expectations reported in the 
two sessions.

The question of whether the placebo response is confined to placebo analgesia or patient-reported symptoms 
of various diseases has provoked a considerable debate in the placebo literature during the past years52. To date, 
only a handful of studies have investigated the placebo effect in the cognitive domain24,53,54, and even fewer stud-
ies deal with healthy persons55–58. Only one study investigated the possible biological systems involved in the 
generation of cognitive placebo effects by examining PD patients24. The study showed that placebo medication 
enhanced reward learning. The results of neuroimaging and computational measurements led to the conclu-
sion that the observed cognitive improvement was mediated by the DA-ergic system24. Nevertheless, it remained 
unclear whether verbal manipulation alone can induce a cognitive placebo effect, or whether this is mediated by 
a combination of verbal manipulation and conditioning. PD patients have typically undergone several months or 
even years of DA-ergic treatment, and prior experience with the beneficial effect of the pharmacological interven-
tion is thought to promote positive preconceived expectations from the treatment, also known as conditioning. 
Thus, PD patients with a malfunctioning DA-ergic system might constitute a special patient population that is 
particularly responsive to placebo intervention in reward learning, since the same DA-ergic system is targeted by 
the DA-restoring pharmaceuticals. We therefore only recruited healthy individuals who had no prior experience 
with DA-ergic medication.

Our findings constitute the first behavioral evidence of a cognitive placebo effect in a reinforcement-learning 
task in healthy individuals induced by the combined application of verbal manipulation and sham protocols of 
NIBS interventions. Furthermore, the pattern of our behavioral and computational modeling results are con-
ceptually compatible with the findings in the reward learning in PD patients reviewed above, as both studies 
observed behavioral improvement in reward learning and optimized learning rate parameters for rewards. We 

Parameter
Expected/Experienced 

effect

Posterior distribution

Meana sdb 95% HDIc

intercept negative −​1.72 0.87 [−​3.49, −​0.11]

positive 0.60 0.43 [−​0.23, 1.45]

condition negative 0.50 1.13 [−​1.66, 2.77]

positive −​0.06 0.61 [−​1.25, 1.15]

question negative −​1.53 1.57 [−​4.72, 1.50]

positive −​0.92 0.59 [−​2.10, 0.21]

condition ×​ question negative 2.02 1.79 [−​1.41, 5.64]

positive −​0.51 0.89 [−​2.25, 1.24]

Table 3.   Results of the Bayesian softmax-regression model for subjective expectation/experience. 
Coefficients denote changes in log-odds relative to “neutral”. There is no apparent effect of the placebo 
intervention on anticipated or experienced performance. aMean of the posterior distribution marginalized for 
each variable. bStandard deviation of the marginal posterior distribution cHDI =​ highest density interval.

Figure 6.  Ternary plots of the participants’ probability (in %) to respond that they anticipated or 
experienced a decline, no change, or an improvement due to the placebo intervention. Dots show the 
posterior mean, outlines show the 50%, 80% and 95% Highest-density regions (HDRs).
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extended earlier findings on cognitive placebo effects to include healthy adults and to NIBS interventions. This is 
of particular importance given that our results can potentially be applied to a wide range of laboratory situations.

In order to induce physiological or behavioral after-effects, tDCS needs to be applied at least for three minutes 
at 1 mA, because shorter stimulation protocols only induce immediate effects59. Beyond the primary physiological 
effects that constitute the main focus of most of the NIBS studies, the application of tDCS even at relatively low 
intensities (starting from about 0.4 mA) induces intensity- and electrode size-dependent cutaneous sensations, 
also known as the secondary induced effect of tDCS, which requires the use of an active sham control47,60,61. The 
most frequently applied sham protocol for tDCS is the so called ‘fade-in, short stimulation, fade-out’ protocol46, 
which is thought to lack any physiological or behavioral after-effects due to the low stimulation intensity and 
short stimulation duration59. Still, the present experiment has demonstrated that even an active sham protocol 
of tDCS is able to modify cognitive performance in healthy individuals when it is combined with verbal manip-
ulation. Although tDCS is the most popular electrical NIBS intervention, its placebo-inducing potential in the 
cognitive domain was unknown until now. This is an important knowledge gap given that its precise mechanism 
of action is not fully understood, and that there is a relatively high response variability7–9. We therefore posit that, 
in addition to other variance-inflating factors such as individual brain anatomy and brain state before and during 
stimulation, individual differences in the susceptibility to the placebo intervention are important factors to con-
sider when elucidating for which individuals tDCS would be effective.

Our results highlight the importance of careful study designs and data acquisition in NIBS studies. We argue 
that uncertainties regarding the expected efficacy of tDCS can be conveyed to the participants via the consent 
forms or during the interactions between participants and researchers in a manner similar to our verbal manip-
ulations, and can induce cognitive placebo effects and increase effectiveness of the treatment. As most of the ISO 
certified stimulators are capable of operating in double-blind study mode, performing randomized double-blind 
placebo-controlled tDCS studies does not require additional investments, and double-blind designs should be 
required. Further, tDCS studies may consider assessing preconceptions, expectancy and former knowledge on 
the part of the participants about the expected efficacy of tDCS as our results indicate that these preconceptions 
might shape the resulting effect of the intervention. In spite of best efforts, blinding efficacy cannot always be 
maintained throughout the stimulation6. We therefore further recommend collecting information on the blinding 
efficacy and the perceived treatment if blinding is inadequate.

Our behavioral and computational data showed greater learning enhancement in the high-uncertainty con-
dition compared to the low-uncertainty condition. It may be that the perceived improvement relative to baseline, 
or the less notable difference relative to the low-uncertainty condition led the participants to believe that the 
stimulation was, in fact, effective. In the domain of placebo analgesia, Rief and colleagues35 compared the effect 
of passive placebo (i.e., causing no sensations) and active placebo (i.e., causing minor sensations, such as in the 
present study) when the probability of receiving a drug was 0, 0.5 and 1. The authors found that active placebo, 
which is conceptually equivalent to our low- and high-uncertainty conditions substantially increased the pla-
cebo effect compared to the passive placebo in the 0.5 probability condition. It is assumed that the participants 
attributed the minor side-effects associated with the active placebo treatment to having received an active treat-
ment. Thus, in the context of the present study the improvement in the high-uncertainty condition relative to 
the training session together with the cutaneous sensations may have implicitly biased the participants toward 
believing that the behavioral improvement was due to the applied intervention. The experience of improvement 
in the high-uncertainty condition may further reinforce the participants’ belief while performing the cognitive 
task that the intervention was effective and actually enhanced their performance. This hypothesized effect may be 
analogous to observations in the pain domain, where the relief from pain is rewarding in itself62.

Our main finding of enhanced learning in the high- relative to the low-uncertainty condition is based solely on 
behavioral data and computational modeling results, and we did not measure brain activity directly. Nevertheless, 
we can speculate that a biologically plausible explanation for our results is that the placebo stimulation together 
with the verbal instructions, triggered DA release in the midbrain as observed earlier in PD patients24. Because 
the placebo responses access the DA-ergic network which neurophysiologically overlaps with the neural network 
involved in reinforcement-learning, the increased DA levels would hypothetically be able to induce enhanced task 
performance and optimize learning rate from monetary rewards. This effect has been observed in earlier stud-
ies in which DA-ergic signaling was enhanced pharmacologically44,45. Since the tonic response of the midbrain 
DA-ergic neurons is maximized when reward uncertainty is high, we posit that the higher uncertainty triggered 
endogenous midbrain DA release that could have in turn improved the learning performance. As our study lacks 
physiological or neuroimaging data to support our assumptions, future research concentrating on the biological 
mechanisms of cognitive placebo effects in healthy participants will provide more insight into the role of DA-level 
dynamics in this phenomenon.

Reducing performance in the reinforcement learning task to the model-free learning system might be an 
oversimplification, since there are different neurobiological systems that support performance in the this task. We 
showed that placebo influenced the model-free learning system, but our results do not exclude the possibility that 
the cognitive placebo effect might be modulated by more explicit decision strategies (model-based system) that 
are not captured by the model used here, or by attentional influences that might be modulated by uncertainty63. 
In addition, DA is only one of the neurotransmitters involved in generating the placebo response, as opioid, 
endocannabinoid and serotonergic systems have also been shown to be contributing factors although in different 
domains of interest13,64–67. Moreover, although we found no difference in the subjectively reported arousal level 
between any of the applied conditions, differences in the stress level induced by the different stimulation setups 
could have influenced the observed placebo effect68. Future studies are needed to address the impact of arousal 
and stress on the cognitive placebo effect.

The fact that we observed no difference between the two placebo conditions in terms of subjectively reported 
expectations is somewhat surprising, given the explicit differences in the instructions. Together with the clear 
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behavioral differences between the conditions, this intriguing pattern of results needs to be investigated in future 
studies using more in-depth measures of subjective expectations. Our experiment assessed explicit expectations 
with a single question: “What do you think? Will the stimulation change your performance?” posed immediately 
after the instruction and before the stimulation. This simple question might have been too coarse to detect differ-
ences in expectancy. Furthermore, our approach did not differentiate between different dimensions of expectancy 
such as strength and confidence. For instance, it would be interesting to study whether expectancy confidence or 
strength of expectancy was modulated by the placebo intervention. In addition, expectancy shifts and confidence 
levels could be assessed multiple times during the experiment to evaluate the development of these values in the 
course of performing the tasks. It is also possible that the introduction of the NIBS device in the high-uncertainty 
condition distracted the participants in such a fashion that they were less able to concentrate on the verbal manip-
ulation. In order to investigate this scenario, additional experiments are required that employ the NIBS device 
without the verbal manipulation. Alternatively, future studies could combine verbal manipulation with condition-
ing by surreptitiously manipulating the feedback given the participants in each trial, which would make the task 
subjectively easier or more difficult. We expect that such a procedure would have the potential to influence the 
participants’ expectations to a larger extent.

Another limitation is the gender of the participants, as the present study recruited only males to avoid gonadal 
steroid mediated changes in DA signaling observed in an earlier study with females69. By controlling estradiol 
and progesterone levels between the different conditions, future studies that include females could investigate the 
placebo response in both genders70,71. Furthermore, the present findings are confined to the placebo effect, and 
it has yet to be investigated whether a cognitive nocebo effect, a decrease in learning performance following the 
administration of an simulated intervention, could be similarly evoked by verbal instruction53,68,72. Finally, careful 
replication studies are needed, preferably performed by independent laboratories, in order to confirm our find-
ings and investigate whether the present results can be generalized to various other cognitive tasks, personality 
traits, genetic factors or different cultures11,53,57,73.

Overall, our behavioral and computational modeling results support the idea that placebo is a powerful phe-
nomenon to improve reward learning even in healthy individuals. We showed that a cognitive placebo effect in 
healthy individuals does not necessarily require a conditioning procedure but can be evoked purely by verbal 
manipulation combined with sham NIBS protocols. Our results open up novel and exciting avenues of future 
research on the effects of cognitive placebo and highlight the importance of carefully designing informed consent 
forms, controlling contextual information and social interaction in NIBS studies.

Methods
Participants.  Thirty participants were recruited for the experiment via online advertisement. All partici-
pants signed an informed consent form. The experiment was approved by the Ethic Committee of the University 
Medical Center Göttingen and was performed in accordance with relevant guidelines and regulations. Twenty-
nine volunteers completed the study (mean age: 23.3 ±​ 2.95 yrs; mean years of education: 15.8 ±​ 2.35 yrs), as 
one participant did not return after the first session. In order to avoid menstrual cycle-dependent alterations in 
reward-related neural processing69, only male participants were recruited. None of the participants was familiar 
with Chinese or Japanese characters, similar to the procedure of an earlier study39. Before being finally recruited, 
the volunteers went through a neurological screening performed by a neurologist at the Department Clinical 
Neurophysiology, University Medical Center Göttingen, who was blinded to the genuine purpose of the study. 
Exclusion criteria included a history of current medical, neurological or psychiatric illnesses including epilepsy, 
drug and/or alcohol addiction, and the presence of metal implants in the head, neck and chest. Participants were 
asked about prior experience with brain stimulation. Only one participant had had prior experience with tran-
scranial magnetic stimulation (TMS) and one other with transcranial direct current stimulation (tDCS). In both 
cases, the stimulation had been delivered to the motor cortex.

Placebo induction and blinding procedure.  The operator responsible for participant recruitment and 
for data collection was blinded to the purpose of the study and to the stimulation parameters during the time 
course of the entire study. The efficacy of blinding was confirmed verbally at the end of the study by the primary 
investigator. The operator was a native German medical student (22 year-old, female), naïve to tDCS and tran-
scranial near infrared light stimulation (tNILS) studies and had no prior experience with non-invasive brain 
stimulation research. Before the start of the study, the operator received several weeks of special training in data 
collection. As the emotional characteristic of the experiment was not manipulated, the operator was instructed 
to use a neutral style during the consultation. In addition, the researcher performing the formal data analysis was 
unaware of which of the three conditions was the baseline, low- and high-uncertainty condition, respectively, 
until the data analysis was completed. This approach, often referred to as a triple-blind design37, was taken to 
minimize the cognitive biases that have recently been shown to be pervasive in scientific data acquisition and 
analysis74.

Treatment characteristics.  Following the protocols of previous procedures, we used expectation-inducing 
verbal instructions with the purpose of manipulating the uncertainty about the declared effectiveness of the 
stimulation22,38. We implemented a low-uncertainty (LU) and a high-uncertainty (HU) condition. In the LU 
condition, participants were given the information that they would receive a combined stimulation of both tDCS 
and tNILS that had previously been shown to be an effective intervention to improve human cognition. In the 
HU condition, participants were informed that they would receive a tDCS intervention whose effect was not yet 
experimentally proven.

We used different treatment characteristics in the HU and LU conditions. Sham tDCS was used in the HU 
while both sham tDCS and an inactive tNILS device were used in the LU. For tNILS, four inactive laser needles 
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were selected, a fact unknown both to the operator and to the participants. The laser needles were carefully 
focused on the left DLPFC, and were fixed using a metal crown during the stimulation period and removed 
afterwards. In addition, the operator was required to wear goggles as protection from the “laser beam”, while the 
participants were asked to close their eyes during the stimulation. Participants received only sham tDCS in both 
treatment conditions (HU, LU). The anodal electrode was placed over the F3 location corresponding to the left 
dorsolateral prefrontal cortex (DLPFC), the cathode over the F4 location corresponding to the right DLPFC. 
The stimulation current was 1 mA following the fade in (15 s), short stimulation (30 s) fade out (15 s) approach46. 
With this procedure, the stimulation-induced cutaneous sensations were physically equivalent in the LU and 
HU conditions. Therefore, any difference in performance change detected between the two conditions cannot be 
explained by different stimulation setups.

The rationale for the different treatment characteristics was first to provide different conditions for the 
repeated-measures design both for the participants and the operator, and second, to avoid the possibility that 
participants or the operator might encounter earlier scientific publications on the effect of tDCS on cognitive 
functions that were in contradiction to the LU condition, when only sham tDCS would have been applied in that 
condition. Third, as the actively operating tNILS can induce qualitatively and quantitatively different cutaneous 
sensations, we decided to use only the sham tDCS protocol in both conditions as an active sham stimulation, 
in order to keep stimulation- generated cutaneous sensation constant between the sessions. Thus, the different 
treatment characteristics for the HU and LU conditions (tDCS +​ tNILS vs. tDCS only), were necessary due to 
the triple-blind nature of the study design, as operator blindness could not have been maintained under a full 
randomization of the stimulation devices.

Paradigm.  A probabilistic learning and decision-making task was used, which is a well-characterized task 
in humans39,41,42. It consists of a learning phase and a subsequent decision-making phase (see Fig. 1). During the 
learning phase, participants are repeatedly presented with three pairs (AB, CD and EF) of Chinese characters42. 
The participants’ task was to learn to choose the better option from a pair by trial and error. After each decision, 
the participants received feedback, and unknown to the participants, each symbol was probabilistically associ-
ated with reward (A – 80%, B – 20%; C – 70% D – 30%; E – 60% and F – 40%). The learning phase consisted of 
six experimental blocks; each block containing 20 repetitions of AB, CD and EF pairs in a random order. The 
presentation of each symbol pair was counterbalanced for the left and right side for each pair in each block (i.e., 
AB or BA).

Each trial started with a fixation cross (0.3), which was followed by the presentation of the symbol pair. 
Participants had a maximum of 1.7 s to respond, after which their choice was highlighted (0.5 s), and followed 
by the feedback (0.5 s). Each trial lasted for 3.5 s. In order to keep the motivational level constant between the 
treatment conditions, the participants were informed that they would receive 5 EUR per every started hour, plus 
0.01 EUR after each correct decision (indicated by a green smiley face and a 0.01 EUR sign) or 0 EUR after an 
incorrect response (red, sad face and 0 EUR sign) or after a missed response (yellow confused face and the word 
‘late’ in German). The test phase consisted of decisions involving all 15 possible combinations of the symbols; 12 
new ones that were not presented during learning (e.g., AC or BF) as well as the three “old” combinations (AB, 
CD and EF). The symbol pairs were repeated 12 times resulting in a total of 180 decisions, and each symbol pair 
was counterbalanced for left and right side presentation. No feedback was provided during the testing phase, but 
the participants were informed that they would receive 0.01 EUR after each correct decision.. Taken together, 
in all three conditions (baseline, LU and HU), participants were motivated equally by performance-dependent 
financial remuneration. This procedure ensured that participants’ goal was to maximize their financial earnings.

After completing the final experimental session, the participants were informed about the amount of the 
financial compensation for their time and their additional earnings during the experiment. However, unknown to 
both participants and the operator, the final amount of the reimbursement was individually calculated according 
to 8.5 EUR per every started hour.

Data analytic strategy.  For data analysis, we only used Bayesian methods because of their many advantages 
compared to traditional null-hypothesis testing in general48,49 and in particular because they allow a hierarchical 
integration of the computational reinforcement-learning model50. We report our results in terms of posterior 
mean and the 95% highest-density intervals (HDIs), which give the range in which the estimated parameter is 
located with probability 0.95.

Model-fitting.  All reported models were fitted using Hamiltonian Monte-Carlo (HMC) techniques. We sam-
pled from the joint posterior distribution of the parameters given the model using the HMC algorithms imple-
mented in the Stan software75–77. All fits used eight parallel chains, each with a warm-up period of 1000 samples. 
Chains were initialized at random values and we sampled 1000 samples from each of the converged chains. We 
used no thinning as this was not deemed necessary by visual inspection of the chains and autocorrelation statis-
tics. Resulting samples for each individual variable were visually inspected for convergence to ensure good mixing 
behaviour. We also applied the Gelman-Rubin diagnostic78 and ensured that all reported results had ≤ .R̂ 1 05. We 
used the Watanabe information criterion (WAIC) which resolves several of the difficulties of the deviance infor-
mation criterion79–81. Differences in WAIC larger than 10 can be considered strong82.

Analysis of performance data.  We analysed learning performance by submitting the accuracy data from 
the learning part of the experiment to a Bayesian hierarchical logistic regression model. We included trial num-
ber, condition (baseline; low-expectancy, LU; high-expectancy, HU; dummy-coded) and pair number (1, 2, 3; 
coded numerically) as predictors and let the intercept vary by subject. Specifically, the accuracy in trial t for 
subject i was modeled as
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∼ + + +a b b bACC Bernoulli(logit( trial, pair condition ))i i t p t c t,trial

where the intercepts were constrained by a group-level distribution

µ σ∼ .a Normal( , )i a a

Non-informative (uniform) priors were placed on all variables. In words, the probability to respond correctly 
in a given trial was modeled as a function of the number of the current trial (because we expect performance to 
increase over the experiment as the subject learns the correct mapping), the pair number (the pairs had different 
reward probabilities and pairs with lower reward probabilities should therefore be harder to learn), the condition 
(reflecting potential placebo effects of the inert intervention) and the intercept accounting for between-subject 
variation in learning efficiency.

A similar analysis, using the same set of predictors, was applied to the reaction times (RTs). Specifically, the 
model was

σ∼ + + +a b b blog(RT ) Normal( trial, pair condition , )i i t p t c t RT,trial

where the intercepts were constrained by a group-level distribution

µ σ∼ .a Normal( , )i a a

Non-informative (uniform) priors were placed on all variables. We used log-transformed reaction times because 
reaction times commonly have a non-normal distribution with a steep front and long tails, and are more appro-
priately modeled by a log-normal distribution83 but the results are qualitatively similar for non-transformed RTs.

Analysis of subjective measures.  In both experimental conditions, the participants were asked to antici-
pate whether the (inert) stimulation would improve, impair or not affect their performance relative to the baseline 
task. Similarly, they were asked immediately after the task whether they felt that their performance had been 
impaired, improved or not affected. We subjected the resulting categorical data for the anticipated and experi-
enced effect of the stimulation for subject i to a softmax-regression model49:

β β β

β

∼ + +

+ ×

d Categorical(softmax( condition question

condition question ))
i 0 1 HU 2 Exp

3 HU Exp

where conditionHU is an indicator variable which is 0 in the LU condition and 1 in the HU condition, questionExp 
is the indicator variable for the two different questions (anticipated vs. experienced change in performance; 
0 =​ Anticipated, 1 =​ Experienced) and β is a 4 ×​ 3 matrix of parameters (intercept, condition, question, condi-
tion ×​ question vs. decline, neutral, improve). We set “neutral” as reference category and fix β =

→0neutral  to make 
the parameter set identifiable. The softmax-function for a vector θ is defined as

θ θ
θ

=
∑ ∈

softmax( ) exp( )
exp( )c c{decline,neutral,improve}

and yields a vector p =​ (pdecline, pneutral, pimprove) whose components are constrained to sum to one and represent the 
probabilites for each category.

To exclude the possibility that our results reflect the effect of a general arousal due to the presence of an inter-
vention rather than a genuine placebo effect, we asked our participants to rate their arousal before and after each 
experimental session. The rating was done on an 11-point Likert scale where 0 indicated very tired and 10 fully 
awake. We submitted the resulting data to a Bayesian hierarchical linear regression model with condition (base-
line, LU, HU) and time (before vs. after) and their interaction as variables:

β β β β β

β σ

∼ + + + ×

+ ×
×

×

(arousal Normal LU HU after LU after

HU after , )
i j i i i i i i

i i

0, [ ] LU HU after LU after

HU after

where the intercepts were constrained by a group-level distribution

β µ σ∼ .Normal( , )j0, 0 0

Here, “LU”, “HU”, and “after” are indicator variables that are 0 or 1 depending on the condition and time. In addi-
tion, j[i] indicates from which subject datapoint i was recorded. Non-informative (uniform) priors were placed 
on all parameters.

Reinforcement-learning model.  We used a fully Bayesian hierarchical modeling approach for fitting 
the QLearning model to the individual data. This approach has been successfully used previously in fitting 
reinforcement-learning models50 and is superior to classical, maximum-likelihood based inference for a number 
of reasons see, e.g., ref. 49: Firstly, it includes the likelihood of the data of all subjects in all conditions under a 
single comprehensive model. This allows for a very flexible choice of distributional assumptions and dependen-
cies of the parameters. Second, the hierarchical structure enables a “partial pooling” of the individual estimates, 
resulting in more stable estimates48.
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We implemented a standard QLearning model39,84. The accuracy data for each trial = …y y y( , , )i i i n
T

,1 ,  of 
subject i was modeled as as

α β∼y p rQLearning( , , , )i i i i i

where the n-vector pi ∈​ {1, 2, 3}n indicates the number of the pair that was shown to subject i in each trial and 
ri ∈​ {0, 1}n is the vector indicating whether or not the subject received a reward in each trial (0-no reward, 
1-reward present). The two parameters α and β are the learning rate and softmax-noise parameter, respectively. 
The learning-rate α influences the likelihood of the model by accumulating the expected value of all stimuli 
s ∈​ {A, B, C, D, E, F} in the so-called Q-values

α+ = + −Q t Q t r t Q t( 1) ( ) [ ( ) ( )] (1)s s s

where t indexes trials ∈ …t n{1, , }. Here, r(t) −​ Qs(t) is the so-called prediction error and is slowly integrated 
into the general estimated reward-probability depending on the size of the learning-rate α ∈​ [0, 1]. To account for 
uncertainty in the choice-reward mapping, the actual choice in the model is done probabilistically as well, where 
option A is chosen over option B in trial t with probability

=
+

.
β

β β
P t e

e e
( )A

Q t

Q t Q t

( )

( ) ( )

A

A B

1

1 1

This is the so-called soft-max rule where the uncertainty in making a choice (or “noise”) is captured in the 
inverse-temperature parameter β. The likelihood is calculated as the product of these probabilities for each trial.

For each participant i, separate parameters αi and βi are estimated and they are constrained by group-level 
distributions

α µ σ∼ α αlogit( ) Normal( , )i

and

β µ σ∼ .β βlog( ) Normal( , )i

We were mainly interested in how our placebo manipulation would affect the model parameters and we therefore 
modeled the influence of the manipulation by adding them as fixed effects to the individual parameters:

α µ δ δ σ∼ + +α α α αlogit( ) Normal( LU HU , )i i i,LU ,HU

where LUi and HUi are indicator variables specifying whether the current dataset i (iterating over the sub-
ject ×​ condition space) was acquired in condition LU or HU, respectively. Similarly,

β µ δ δ σ∼ + + .β β β βlog( ) Normal( LU HU , )i i i,LU ,HU

For a fully Bayesian approach, we had to specify prior distributions to the group-level parameters {μα, μβ, σα, 
σβ, δα,LU, δα,HU, δβ,LU, δβ,HU}. We assigned mildly informative priors to the parameters such that the parameter 
estimates were allowed to vary across a large number of parameter values while constraining them to a plausible 
range48,85. The results were robust to the choice of prior. During the model fitting, we experimented with different 
“degrees of non-informativeness” by changing the standard-deviation and limits of the prior distributions but the 
results were unchanged. Concretely, the reported analyses used the following prior

µ

σ
δ

∼

∼
∼

θ

θ

θ

Normal(0, 100)
Uniform(0, 100)
Normal(0, 1)c,

where θ ∈​ {α, β} and c ∈​ {LU, HU}.
As discussed above, we implemented a model where separate learning rates for learning from gains and learn-

ing from losses were estimated39 as learning from positive and negative outcomes appears to be implemented in 
by different sectors of striatal neurons. Concretely, equation (1) becomes

α α+ = + − + −+ −Q t Q t r t Q t r t Q t( 1) ( ) [ ( ) ( )] [ ( ) ( )] (2)s s G s L s

where [x]+ is x if positive and 0 otherwise and [x]− is x if negative and 0 otherwise. All other elements of the hier-
archical model (including the prior) remained identical, except that all group-level distributions and effects were 
calculated for αG, αL and β independently.
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