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1.  Introduction

Process modelling aims at simulating forces and mechanisms driving processes. Process 
models therefore provide insights into the dynamics of change. Spatial processes interact 
with space and lead to observable patterns and distributions in space (Thomas & Huggett 
1980). The relationship between process and space or structures in space such as transpor-
tation networks is often bi-directional. Considering the relationship between process and 
space in both directions is a challenge in modelling (Birkin 2013). This article presents the 
application of an object-based spatial system dynamics (SSD) approach that meets this 
challenge.

As opposed to modelling approaches such as agent-based or cellular automaton modelling, 
system dynamics (SD) evolved as a non-spatial technique. System dynamics has the strength 
to consider feedback between model components. The modelling approach has been used 
for modelling physical and social phenomena (e.g. Gastélum et al. 2010; Khan et al. 2009). 
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However, as the independent variable in the ordinary differential equations of SD models is 
always time, space is not implicitly contained in the model formulation.

To overcome the limitation of SD, a new spatial system dynamics approach based on the 
association of SD stock variables and raster data from geographic information systems (GIS) 
was presented by Maxwell and Costanza (1997) and applied in numerous studies (e.g. Ahmad 
& Simonovic 2004; BenDor & Metcalf 2006; Jiao & Xu 2013). This approach foresees a one-
to-one raster cell to stock relation. In this way processes modelled as flows between stocks 
can be visualised in a two-dimensional regular grid. A comprehensive review of techniques 
can be found in Neuwirth et al. 2015.

As opposed to field-based representations, little attention has been paid to the object 
view of space. This restricts the application of the existing approach in cases where space is 
better represented by a collection of discrete entities. According to Burrough and McDonnell 
(1998, p. 32) ‘most human phenomena (houses, land parcels, administrative units, roads, 
cables, pipelines, agricultural fields in Western agriculture) can be handled best using the 
entity approach’.

The approach presented in this paper supplements the established method by incorpo-
rating irregular spatial arrangements in SD simulations. Furthermore, space itself is modelled 
dynamically as a function of processes acting upon it. In this way the evolution of man-made 
structures can be modelled using the well-known SD logic.

As proof of concept, the object-based SSD approach is applied to a model of structural 
change in grassland agriculture. Structural change in agriculture refers to the change in the 
number of farms in different farm types classified according to their size, age cohorts or 
specialisation classes (Zimmermann et al. 2006). The changing structure is especially char-
acterised by an increase in average farm size (Goddard et al. 1993). In this study particular 
attention was dedicated to farmland competition and scaling-up of enterprises as one aspect 
of structural change as well as its spatial implications. The conceptualisation of this agricul-
tural system suggests a model based on an object view considering feedback between 
process and space:

• � the simulation environment is made up of a number of plots (polygon objects) that 
belong to farms;

• � ownership of plots changes in the course of time and is a property of plots that needs 
to be repeatedly updated;

• � ownership patterns affect transportation costs, machinability of farms, economic  
yield, etc.

Ownership changes have an effect on the level of farmland fragmentation and also influ-
ence the economic efficiencies of farms. Economic efficiency in turn determines a farm’s 
competitiveness and position in the land market. Moreover, it is assumed that ownership 
change and competition are also significantly affected by the spatial differences in quality 
of farmland.

The evaluation of these assumptions is based on an explanatory model which is intended 
to help the understanding of system behaviour (cf. Bossel 2007). The model does not aim 
at an exact forecast, but strives to reveal key interrelations predominant in the system.

The aims pursued in this study are (i) to investigate interrelations of structural change 
processes in agriculture and conditions regarding location (fragmentation and quality of 
land) and (ii) to propose an object-oriented approach for SD simulations. In the next two 
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sections the example of structural change in agriculture is briefly outlined and the object- 
oriented SD approach is conceptualised. Section 4 explains the use of this concept for mod-
elling structural change. This is followed by a section on model data and simulation results 
in section 5. Finally, conclusions are presented and suggestions are made for possible future 
applications of object-oriented SD simulations.

2.  Case study outline

The reasons for studying structural change are, among others, the anticipated negative 
effects of larger farms on species richness (Marini et al. 2009) and trends in rural demography 
and the tourism industry (Weiss 1998). A number of spatial models of the structural change 
of farms have been implemented (e.g. Freeman et al. 2009; Happe et al. 2006). These models 
focus on technological changes, public programmes and the socioeconomic and macroe-
conomic environment as key drivers of structural change documented in the literature (cf. 
Weiss 1998; Zimmermann et al. 2006).

As opposed to those implementations our model puts emphasis on the spatial implica-
tions of differences regarding location. The underlying assumption of the evaluation of the 
process-space interaction is that heterogeneity of the spatial configuration of farms has an 
influence on their resources. In other words, spatial characteristics of farms matter. Spatial 
heterogeneity among farms in our model is constituted by the fragmentation of land own-
ership and the distribution of farmland quality.

Fragmentation is an issue as it increases the required inputs in terms of transportation 
costs and working hours, whereas outputs stay the same. Large-scale farms may be able to 
overcome this problem by means of investments in high-performance machinery. 
Nevertheless fragmentation imposes limitations on farmland expansion and thus on struc-
tural change processes.

Effects of structural change on fragmentation are assumed to be dependent on initial 
conditions. An initially scattered pattern may evolve to a more consolidated pattern in terms 
of farm fragmentation. Moreover, a dynamic land rental market may have a consolidating 
effect on landholdings (Bizimana et al. 2004). Consolidated holdings, however, tend to 
become more fragmented as a result of scaling-up processes (cf. Dijk 2003; Edwards 1978).

Quality is a property of farmland that remains unchanged by the process of structural 
change. It does, however, influence the structural change process. Pronounced spatial dif-
ferences in farmland quality may intensify structural change processes, whereas homoge-
neity gives rise to relative stability of the system. Moreover, Eitzinger (2007) assumed that 
increasing farm sizes may compensate for any reduction of agricultural yields. A substantial 
shift in local yield reliability may affect grassland farm sizes. We include hypothetical scenarios 
for the quality of farmland in the evaluations to show how changes in carrying capacities of 
farmland due to climate change can be taken into consideration.

The modelling of such a system requires the synthesis of process and spatial dynamics. 
This type of integration has previously been realised in different ways (e.g., Lauf et al. 2012; 
Walsh et al. 2013). A promising approach is the use of hybrid models, combining features of 
SD and agent-based models as conceptualised by Vincenot et al. (2011). The object-oriented 
approach for SD introduced in the following section follows a similar concept.
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3.  Object approach

The merits of raster and object view as representations of geographic space have been 
broadly discussed in the GIS community (e.g. Peuquet 1988; Couclelis 1992; Blaschke et al. 
2000). The main conclusions of these discussions can be adopted to answer the question: 
why use an object view in SD simulations?

Firstly, the selection of an abstraction scheme is a matter of representation. Object models 
lend themselves nicely to the representation of discrete geographic features with well-de-
fined boundaries. This practically applies for all human artefacts falling into two categories: 
(a) engineering works such as roads, bridges, dykes, railways or surveying marks, and (b) 
administrative and property boundaries (Couclelis 1992). Moreover, despite their fuzzy char-
acteristics, natural features may be best represented as objects in cases where independent 
objects are meaningful in themselves and geometry is of importance to the question being 
investigated. For instance, the discretisation of geomorphic features is used as a method to 
classify landforms (e.g. Drăguţ & Eisank 2011).

Apart from the appropriate representation of geographic space, the alternative object 
view for SD simulations enables an application of computational operations and techniques 
inherent to this concept. Geographic features visually interpreted as objects are fully recog-
nised as objects by the system. This allows the modeller to make use of intrinsic object 
attributes such as the length of a polyline or polygon perimeter and area (De Smith et al. 
2007). In addition, relationships among objects may be stored as complementary topological 
information in a database. This concerns relationships between objects, used to define more 
complex objects (e.g. points forming a line), relationships between objects defined by their 
geometry (e.g. adjacency or connectedness) and other relationships between non-con-
nected objects (e.g. distance) or directions of flow (Goodchild 1993).

In summary it can therefore be said that an integration of the object view in SD, on the 
one hand, allows for simulating the dynamics of spatially non-continuous phenomena. On 
the other hand, spatial relationships come in handy in cases where spatial geometries and 
relationships between discrete entities are an important input in the simulation.

The interaction between processes and space inherent to such simulations may be 
expressed by linking SD process models to object models (see Figure 1). Spatially distributed 

Figure 1. SD models are interfaced with spatial objects (zone of influence ZOI). (a) Object-to-model ratio 
is constant. (b) SD models communicate with a variable number of objects (variable zone of influence).
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processes are modelled by duplicating SD models which are linked to objects. The objects 
assigned to a process model define its zones of influence (ZOI) (cf. Vincenot et al. 2011).

Two types of interaction between SD and object model, i.e. between process and space, 
are distinguished: (i) the geometry and topology of objects affect processes modelled in SD; 
(ii) the geometry and topology of objects affect processes modelled and simultaneously 
processes modify object structures. In model type (ii) objects are exchanged between ZOIs 
as a process gains control over another. The latter case implies dynamic feedback between 
process and space.

An implementation of this model type makes high demands on the space-time associa-
tion. The current state of spatial topology needs to be quantified by means of spatial analyses 
and updated in a spatial database. Therefore, operations such as process simulation (SD 
module), spatial analysis and data update (GIS module) are required to be tightly coupled 
and synchronised.

Recently a Python-based middleware program was presented to synchronise dynamic 
SD simulations with spatial analytical GIS operations (c.f. Neuwirth et al. 2015). The function 
of this tool was illustrated using the example of land cover change. Land cover patches 
(objects) were generated by assigning numeric identifiers to raster cells. One basic problem 
of this approach is that although objects can be visually interpreted, they are not recognised 
as objects by the computer system. Accordingly, the use of the aforementioned intrinsic 
object geometries and relations is very limited. Hence, while techniques for synchronising 
operations can be adopted, the raster view is replaced by an object view.

Moreover, whereas in the land cover model object size is directly bound to system stock 
variables, the presented approach uses an indirect link. This means the SD module doesn’t 
deliver object size as an output, but it simulates processes which may in consequence cause 
an expansion or contraction of the variable ZOI. In the case of a model of structural change 
in grassland farming, simulations of economic processes are run in SD. The economic success 
of a farm eventually determines the actions taken by the farmer on the land market. In other 
words, the SD simulation outcomes drive decisions which affect spatial patterns of 
ownership.

4.  A model of structural change in grassland farming

According to the terminology used in section 3, farmland plots defined by the land-use 
cadastre are equivalent to objects in this example. Every farm comprises a certain number 
of plots. The aggregate of plots of a farm constitutes its ZOI. As farms compete for farmland, 
ZOIs are subject to modifications which in turn affect processes of structural change (e.g. 
due to changes in farming efficiency).

In order to model structural change as well as process-space interaction, a number of 
difference equations were defined and formalised in SD. Basic finance equations were mod-
ified from Balmann (1997) for calculating a farm’s economic situation over time (see Table 1).

This system of non-spatial difference equations was supplemented with travel distances 
derived from a network (equivalent to model type (a) in Figure 1). Distances between farm-
stead and plot were calculated for every landholding. The distance travelled (DT) is calculated 
as the sum of individual farmstead-plot distances (see Table 1; equation 8) and serves as an 
estimate of actual travel distances.
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In addition, a set of rules has been determined. For instance, farm operators can raise 
credits as a 1:1 share of equity to invest in assets. Investments are linearly related to the farm 
size as the stock of machinery and buildings is assumed to be constant per unit of area (cf. 
Freeman et al. 2009). Investment assets are continuously depreciated over five years in the 
simulation.

Moreover, rules on the auctioning of farmland have been defined. Farms auction all of 
their plots in the case of bankruptcy (Liquidity <= 0). Therefore, auctions only take place if 
farms became bankrupt. In addition, auctioning of farmland due to the absence of a farm 
successor was implemented as an optional model setting. Ageing of farmers is implemented 
by simply counting time steps in the simulation. Once a farmer turns 65, farm succession is 
evaluated as a derivative of the farm’s carrying capacity CCF based on the following logistic 
regression adapted from Stiglbauer and Weiss (1998):

 

Regardless of what causes the compulsory auction (bankruptcy or the lack of a farm succes-
sor), farmland is not sold, but leased to other farmers. Once a plot is leased, it remains with 
the renter unless the renter becomes bankrupt or cannot find a successor himself. In this 
case leased plots as well as owned plots are put up to auction.

The potential of a farmer to rent farmland in addition crucially depends on workforce 
capacities. It is assumed that farms are small-scale and family-operated, which implies that 
the farm-owned labour is about the same for every holding. Nevertheless, reinvestment of 
profits in machinery with higher performance diminishes operational efforts. This concerns 

(15)Ps =
e0.174 ⋅ CCF

1 + e0,174 ⋅ CCF

Table 1. Farm model equations.

*The rent is negotiated individually for every plot in an auction. 
**The distance travelled per time step is estimated based on network distances.
***Carrying capacity serves as a measure of farmland quality.

No. Variables
Equations and 
descriptions

(1) Debts DL = DLt−1 − R
(2) Repayment R = DL ⋅ iR iR is the repayment rate
(3) Interest expenses IC = DL ⋅ i i is the interest rate
(4) Assets A = I − D I are the investments
(5) Depreciation D = A − iD iD is the depreciation rate

(6) Rent income
RY =

n
∑

1

(Areal ⋅ r
∗
)

Areal is the area of a plot leased r is the rent per 
unit of area

(7) Rent expenses
RC =

n
∑

1

(Arear ⋅ r
∗
)

Arear is the area of a plot in rent

(8) Transportation costs TC = DT ∗∗
⋅ DC DT is the distance travelledDCare the costs per 

distance travelled

(9) Number of animals
N =

n
∑

1

(Area ⋅ CC∗∗∗

P )
Area is the area of a plot being cultivatedCCP is 

the carrying capacity of a plot expressed as 
the maximum number of animals per unit of 
area 

(10) Turnover T = N ⋅ P P is the price gained per animal and time step
(11) Profit Y = T − D − IC − RC + RY − 

TC
(13) Equity capital EC = ECt−1 + Y −WD
(12) Withdrawals WD = Y ⋅ iWD iWD is the withdrawal rate
(14) Liquidity L = Lt−1 + Y −WD + D − R
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the adoption of technologies suitable for operating the respective farmland. As a conse-
quence, the potential (Pot) of a holding (i) to rent land in addition may be calculated as a 
normalised function of profits (Y) and operational efforts (E):

 

Operational efforts are assumed to be highly dependent on different aspects of land frag-
mentation such as plot shape, plot size, distances and spatial distribution of plots. In order 
to take this effect into consideration, a dimensionless fragmentation index was derived for 
every farm (see section 'Quantification of fragmentation'). Efforts (E) were computed as the 
product of this index and farm size.

High profits associated with low operational efforts indicate high potential for investments 
on the land market. High potentials increase the willingness of farm operators to pay rents 
above market prices. The theoretical maximum bid a farmer can offer in an auction (rmax) is 
defined as the difference between expected additional gross margin and farm-specific trans-
portation costs (Balmann 1997). This can be calculated according to the formula

 

where plot area (Areap) and required investment assets for a plot (Ip) are introduced as new 
variables. The maximum rent is now scaled down by individual farm potentials as follows:
 

whereby rbid is a farmer’s bid for renting a plot. If nobody can bid more than zero, the plot is 
rented at no cost to the farmer with the lowest negative bid. In addition, an optional model 
setting is implemented which allows the abandonment of such unprofitable farmland.

The way bids are calculated ensures that distance to plots limits their profitability. It also 
implies that farms benefit from bankruptcies in their vicinity as this enables farmland expan-
sion at low cost and minor fragmentation. However, farms with higher potentials may outbid 
farms which are closer to plots for auction.

At the same time farm potentials may decrease as a function of farmland rented, as expan-
sion is often associated with increasing farmland fragmentation and operational efforts. In 
order to model effects of size and fragmentation, spatial attributes need to be updated in 
the simulation whenever plots are reassigned (equivalent to model type (b) in Figure 1). This 
concerns in particular the calculation of transportation costs as well as farmland 
fragmentation.

Quantification of fragmentation

Fragmentation in agriculture is related to operational efforts, as outlined in the previous 
section. The question to be answered is what makes cultivation of farmland more time-con-
suming and inefficient. Edwards (1978) stressed the importance of headquarter-plot dis-
tances and the number of plots. Furthermore, the dispersion of plots in space as well as their 
size and shape characteristics contribute to fragmentation (King & Burton 1982).

A highly fragmented farm is composed of many small plots which are dispersed in space, 
oddly shaped and far away from the farmstead. By contrast, consolidated farms exhibit large 

(16)Pot�i =
Yi

Ei
[0..1]

lin

→[MIN..MAX]

(17)rmax = Areap ⋅ CC ⋅ P − Ip − TC

(18)rbid = rmax ⋅ Pot
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rectangular plots which are clustered in space and close to the farmstead. Hence, fragmen-
tation is defined and evaluated in this study by taking the following fragmentation variables 
into account: (i) shape of plots, (ii) size of plots, (iii) between-plot dispersion and (iv) farm-
to-plot dispersion.

The shape of plots was evaluated based on a multi-parameter index proposed by 
Demetriou et al. (2013) and supplemented with an additional plot size parameter introduced 
in Demetriou et al. (2012a). They derived multiple parameters which were defined by five 
land consolidation experts based on the direct value rating method (see also Demetriou 
 et al. 2012b for more details on the value rating method). The parameter values are dimen-
sionless scores between 0 and 1. A value of 1 indicates an ideal rectangular plot whereas a 
low value indicates the opposite.

The index comprises six different parameters which are defined by (1) the number of 
sides with a length less than 25 m, (2), the number of acute angles of less than 80°, (3), the 
number of reflex angles greater than 215°, (4), the number of boundary points (corners of a 
plot), (5) compactness defined as plot area to squared plot perimeter ratio and ( 6) plot size. 

Figure 2. Parameter value functions (cf. Demetriou et al. 2012a, 2013).
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Each of those parameters is standardised by means of an individual value function (see 
Figure 2).

The index is calculated for every plot by summing up standardised parameters (pi) and 
dividing them by the number of parameters involved. In order to put emphasis on certain 
characteristics single parameters may be complemented with additional weightings (wi). 
The parcel shape index is obtained as follows:

 

In addition between-plot distances were calculated using Dijkstra’s shortest network path 
algorithm (cf. Dijkstra 1959). The between-plot dispersion of a farm is computed by
 

where d is the shortest network distance between plot centroids and PSI is the plot shape 
index of the destination plot. Similarly, farm-to-plot dispersion is calculated for every farm 
as follows:
 

In this way highest BPD and FtPD indices were calculated in cases where plots of a farm are 
far apart from each other or distant from farmsteads, small scale and complexly shaped. 
Between-plot and farm-to-plot dispersion are summarised and normalised by scaling 
between 0 and 1 in the model to get comparable measures of single farm fragmentation 
(see equation 22).
 

Similar between-plot dispersion, farm-to-plot dispersion or plot weighting metrics found 
application in numerous fragmentation analyses. A complete list of metrics which have 
inspired the definition of equations 20, 21 and 22 is presented in conjunction with other 
examples in the appendix.

The update of this fragmentation index and operational efforts is performed for every 
farm renting plots in addition after an automatic temporal interruption of the SD simulation. 
This enables an integration of immediate feedback between economic and spatial structural 
processes.

Input data

An area north of the Austrian Alps which encompasses five cadastral communities (Hof, 
Kirchberg, Neuhofen, Plainfeld, Schwaighofen) and an area of about 30 km² was chosen as 
a study site to investigate anticipated process-space relations. The predominance of grass-
land agriculture allows the exclusion of agricultural land use changes in the model and to 
focus on the evolution of property relations as one aspect of structural change. Moreover, 

(19)PSIi =

∑m

1
pi ⋅ wi

m

(20)BPD =

∑

jPlot

∑

iPlot∕{j} d(Plotj ,Ploti )
⋅

1

PSI

∑

jPlot

∑

iPlot∕{j}

1

PSI

(21)FtPD =

∑

iPlot d(Farm,Ploti )
⋅

1

PSI
∑

iPlot

1

PSI

(22)FFI� = BDP + FtPD [0..1]
lin

→[MIN..MAX ]
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the hilly terrain implies complex, non-uniform property relations which make fragmentation 
a relevant aspect of economic efficiency in this region.

The investigation of anticipated effects (see section 2) requires simulations performed 
on a farm level. Unfortunately, the use of data at this level is restricted due to privacy regu-
lations or fine-grain data are missing. In order to overcome this problem, pseudo-data sets 
were generated from basic, real-world data.

Cadastral polygon data including 414 agricultural plots as well as 24 farmsteads were 
provided by the Austrian Federal Office of Metrology and Surveying as an anonymised data 
set without information on property relations. Furthermore, statistical farm size distributions 
were acquired freely on a national level. This statistic could be used to supplement cadastral 
data with missing information on ownership relations.

The procedure used to recreate ownership relations was based on a simple seed-growth 
algorithm which was implemented in Python. Firstly, statistical farm size values are randomly 
assigned to farmstead polygons (seed) to set desired farm sizes for every farm. Subsequently, 
plots closest to the respective farmsteads are assigned consecutively until the desired farm 
size criterion is met. In this way, the statistical farm size distribution can be approximated 
(see Table 2).

Alternatively, the fragmentation of landholdings can be increased by assigning second, 
third or fourth closest plots to farmsteads. This selection parameter was foreseen as a user 
input field in the graphical user interface of the ownership data generator. Furthermore, 
fragmentation may be increased considerably by shuffling plots. This was implemented by 
a random selection and reassignment of a user-defined number of plots.

The output of the ownership data generator was fed into a GIS database, which was later 
interfaced with the simulation modules. The simple spreadsheet-like database comprises 
fields holding information on plot owners and tenants as well as plot rents. Initially, every 
plot is owned and farmed by the same farmer. Therefore, fields giving information on the 
rental situation were kept empty. In addition to initial ownership and rental conditions, fields 
such as plot area and quality were inserted. Plot sizes are calculated automatically as a built-in 
function of the database. The quality database field and values had to be supplemented 
manually.

Quality of farmland plots was modelled as a function of average altitude using three 
hypothetical scenarios (see Figure 3). Grassland quality is expressed in animal units per 
hectare of land (au ha−1), which serves as a measure of grassland carrying capacity. An animal 
unit is equivalent to a 454 kg animal, which roughly corresponds to a mature cow (Scarnecchia 
1985).

The three scenarios are hypothetical and based on simplified assumptions.
In Austria the average stocking density corresponds to about 0.8 au ha−1 (Buchgraber & 

Schaumberger 2006), which is assumed to be roughly in line with the physical limitations 
of natural carrying capacities. This statistic, however, also includes extensive upland areas 
which exhibit significantly lower carrying capacities. Hence, base scenario A assumes a 
slightly increased and uniform carrying capacity of 1 au ha−1. In order to account for regional 
variation, values can be lowered with altitude. Scenarios B and C hypothesise a linear reduc-
tion of carrying capacity to 70% and 50% at highest altitudes, respectively.

The lowest carrying capacities can certainly be expected for the highest plots. Nevertheless, 
climate change may have a positive effect on the length of growing seasons and productivity 
of upland areas (Schaumberger 2011). Hence scenario A may be interpreted as a climate 
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change scenario which assumes that climate change balances out the diversity of growing 
seasons. Scenario B depicts moderate climate change impact, while impacts in scenario C 
are negligible.

Further model parameters such as the initial age of farm operators could be derived from 
census data (c.f. Statistics Austria 2013). The statistical age distribution of Austrian farmers 
from 1999 is used to approximate the age of the 24 farm operators in the study region by 
percentage.

Moreover, transportation costs are assumed to have considerable influence on spatial 
patterns produced by simulations. Hence, multiple scenarios with different settings are run 
to allow for an evaluation of parameter impact. Due to the high variability of cost figures 
and general lack of reliable data, expert consultations were undertaken to set parameters 
as plausibly as possible. Other exogenous input parameters are also based on expert opinions 
as data are not available on a small scale or inputs are purely behavioural in nature and thus 
empirical data are rarely available (see Table 3).

Table 2. Comparison of statistical and pseudo size distributions.

aStatistics Austria (2013).
bClosest plot assignment.
c50 plots shuffled.

Farm type

Farms per type [%]

Stat. 1999a Level 1b Shuffled 50c

< 10 ha 33.21 46.41 44.63
10 < 20 ha 21.37 21.42 23.21
20 < 50 ha 31.14 23.2 21.42
>50 ha 14.26 8.91 10.7
Goodness of fit (χ²) 2.22 (p > .05) 1.92 (p > .05)

Figure 3. Hypsometric distribution of plots and height-dependent farmland quality scenarios A, B and C.
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Parameter estimates are suitable for analysing general dynamic patterns produced by 
this complex system. The correct identification of important causal links is more relevant to 
understand the system’s dynamics than a time-intensive empirical validation of dependen-
cies, which would go way beyond the scope of this study (c.f. Bossel 2007). The model is 
designed to run simulations for deriving tendencies as a rule of thumb.

5.  Results

Fragmentation of farmland and structural change

Structural change was modelled for 15 years based on 10 synthetic datasets created by 
means of the ownership data generator (see Figure 4). Selection parameter values between 
1 and 10 (fragmentation levels 1 to 10) were used to produce distinct initial conditions in 
terms of fragmentation for each simulation. The carrying capacity of grassland plots corre-
sponds to scenario A (see Figure 3). Moreover, high (10 cu) and low transportation cost (5 
cu) simulations were compared. Thus, 20 simulation runs were conducted to reveal effects 
of structural change processes on fragmentation under varying initial conditions.

The simulation results confirm the assumption of increasing fragmentation due to struc-
tural change. However, the rise in average farm fragmentation is affected by initial fragmen-
tation and transportation costs. A significant correlation (p < .05) exists between initial 
fragmentation and increase in fragmentation under high transportation cost conditions (10 
cu). Simulations initialised with consolidated fragmentation patterns tend to show higher 
fragmentation gains than those initialised with highly fragmented structures. This depend-
ency was not significant under low transportation cost conditions (5 cu) (see Figure 5).

Transportation costs limit fragmentation induced by structural change processes. Plots 
provided in auctions are rented to holders in the closer vicinity as transportation costs 
become economically relevant in the high transportation cost scenario (10 cu). In this way 
transportation cost determines future pathways of fragmentation.

In contrast, the amount of land provided for rent in a simulation period proved to have 
negligible effects on the evolution of fragmentation. Auctioned land is also independent of 
initial fragmentation conditions or transportation costs. Variations in the amount of land 
offered in the respective simulation runs are caused by the probabilistic nature of the farm 
successor logic (see equation 15 in section 4).

Table 3. Exogenous parameters, values and units.

*currency unit.; **animal unit.

No. Parameter Value Unit
(1) Initial debts; DLt=0 0.0 cu*

(2) Repayment rate; ir 0.1 -
(3) Interest rate; i 0.05 -
(4) Asset investment 700 cu ha−1

(5) Carrying capacity of a plot; CCP See Figure 3 au** ha−1

(6) Prices; P 200 cu au−1 y−1 
(7) Withdrawal rate; iWD 0.7 -
(8) Credit to equity share 1:1 -
(9) Initial age of farmers Census data y
(10) Transportation costs; DC Scenario-dependent cu km−1
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Alternatively, initial fragmentation conditions were significantly increased in order to 
identify the fragmentation level above which structural change causes farmland consolida-
tion. Highly fragmented property relations were generated by using the shuffling function 

Figure 4.  Input fragmentation data created by means of the ownership data generator; left: minor 
fragmentation (selection parameter value 1); right: pronounced fragmentation (selection parameter 
value 10).

Figure 5. Effects of initial fragmentation and transportation costs on the evolution of fragmentation due 
to structural change.
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of the ownership data generator. Whereas selection parameter values were kept constant 
at 1 (level 1), the number of plots being shuffled was varied between 10 and 100 with an 
interval of 10. In this way 10 different datasets were generated. The shuffling significantly 
increases the fragmentation of landholdings, since proximity is ignored in the reassignment 
of plots. Simulations conducted on these data sets were run for 15 years assuming high 
transportation cost conditions.

Analogous to previous simulations, the highest fragmentation increase rates were 
observed for simulation runs initialised on lower fragmentation levels. Simulation runs con-
ducted based on highest average fragmentation levels, however, show a consolidating effect 
of structural change processes (see Figure 6).

In order to examine the effects of transportation costs over time, six additional simulation 
runs were conducted using fragmentation level 1. The range of transportation cost values 
was significantly increased (4 to 20 cu) to illustrate its effects on fragmentation patterns. The 

Figure 6. Effects of initial fragmentation on the evolution of fragmentation due to structural change 
under highly fragmented initial conditions and high transportation costs (10 cu).

Figure 7. Change of average farm fragmentation over time under different transportation cost conditions; 
simulations are based on fragmentation level 1.
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results show that the pace of change accelerates in the long run. While after 15 years average 
fragmentation was not even doubled in any of the scenarios, fragmentation increased 5-fold 
and above after 30 years (see Figure 7). This acceleration of fragmentation increase is much 
more pronounced in scenarios initialised with lower transportation costs (2 to 6 cu).

The time lag can be explained by effects of scale. At the beginning of the simulation 
bankruptcy assets are distributed among many small farms, whereas at the end of the sim-
ulation most of the land put up for auction is rented by a few large-scale farms. This inevitably 
leads to higher fragmentation increments over time. Low transportation costs exacerbate 
the situation, as plots of farmland remain profitable for large-scale farms even if they are 
distant from farmsteads. This mechanism could easily lead to an underestimation of long-
term effects of varying transportation costs on the increase of farm fragmentation.

It may be concluded that structural change processes affect the evolution of farm frag-
mentation as a function of initial fragmentation and transportation costs. Structural change 
tends to just slightly increase fragmentation of highly fragmented farms or even decreases 
their fragmentation. Consolidated farms, however, become more fragmented. Thus, results 
are consistent with the original assumptions formulated in section 2.

Feedback between the state of fragmentation and future changes in fragmentation may 
be explained by the constraints of compact development. The capability for further compact 
development continuously decreases with compactness, whereas fragmented patterns give 
room for compact development. This implies that outwards development prevails for com-
pact farms while fragmented farms may become more compact.

Contrary to our expectations, fragmentation is independent of the amount of farmland 
offered in auctions. A highly dynamic land rental market alone doesn’t foster land consoli-
dation. Rather, a dynamic land market in combination with high transportation costs is 
responsible for a pronounced consolidation effect.

High transportation costs imply a steep increase of marginal costs with distance. As min-
imising travel distances becomes a relevant factor in economic success, farmers tend to rent 
farmland closer to their farmsteads. Therefore, fragmented landholdings tend to become 
consolidated under high transportation cost conditions.

Quality of land and structural change

Quality scenarios A, B and C (see Figure 3) were run for 30 years to reveal the effects of quality 
patterns on structural change processes. Fragmentation level 1 was chosen as the input data 
set. High transportation costs (10 cu) were kept constant to foster consolidation. In addition 
to previous simulations, abandonment of uneconomic plots was considered as an alternative 
opportunity of action in the following simulation examples. Furthermore, the ageing of farm 
operators was turned off to avoid auctions as a result of overageing. The aim of the simula-
tions was to reflect the economic consequences of changing quality patterns.

The number of bankruptcies increased with the increase of the quality function (see Figure 
8). In other words, the number of bankrupt farms correlates to the advance of unfavourable 
conditions for upland farms. Apart from one farm in the northwest of the study area, bank-
ruptcies were restricted to farms owning significant amounts of land in upland regions. Thus, 
quality patterns crucially affected structural change processes in the simulation. The highest 
dynamics were observed where quality of farmland was lowest.
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Farms which were located next to these hot spots benefited from a large supply of afforda-
ble land. For instance farm 6 managed to rent the most profitable upland plots, which 
improved the economic situation of this farm in the long run (see Figure 8, detail view). This 
effect was reinforced due to a lack of strong competitors in the vicinity of farm 6, which 
enabled the renting of high-profit plots at low costs.

In contrast, unfavourable plots were abandoned as their profit margins were too low. The 
simulations showed that especially small plots which are distant from farmsteads were aban-
doned. Therefore, the relation between farm-to-plot distance and plot size appeared to be 
the most relevant factor. This is also underlined by the abandonment of a farm located in 
the north-western lowlands in all scenarios. Despite the high quality of farmland, renting 
doesn’t pay off for any holding as plots are too small and remote. Farmland abandonment 
also has a consolidating effect on holdings and thus fosters overall economic efficiency in 
the simulation.

As expected, pronounced spatial differences in farmland quality intensify structural 
change processes. Since the carrying capacity of grassland typically correlates to altitude 
on a regional scale, ownership dynamics occur especially along altitudinal belts. In contrast, 
homogeneity gives rise to relative stability in the system.

The assumed compensational capabilities of farms only hold true for farms on a medium 
altitude. Upland farms could not compensate for unfavourable conditions by renting prof-
itable farmland in addition, as farms owning those high-profit plots were expanding them-
selves. Farms on a medium altitude, however, even increase their profits as compared to 
high farmland quality scenarios. This is due to the farmer’s cherry-picking behaviour revealed 
by the simulation.

These findings may also be relevant in the context of climate change. Climate change is 
on the whole likely to reduce grassland productivity in areas which are already susceptible 
to drier summer seasons and thus increases pressure on grassland farms to become more 

Figure 8. Farmland abandonment and renting situation at simulation time step t = 30 for quality scenarios 
A, B and C.
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efficient (Neuwirth & Hofer 2013). Therefore, the lease or abandonment of single plots which 
are distant from the farmstead may increasingly become relevant in the future as a means 
to improve efficiency. Climate change may simultaneously improve the grassland produc-
tivity of upland areas in Alpine regions (Schaumberger 2011), which would at the same time 
mitigate the previously described topographic effects on competition.

6.  Prospects of the object-oriented SD approach

Using object-oriented SD is essentially a matter of the appropriate representation of geo-
graphic space. For instance, an object-oriented SD model for the assessment of urban resi-
dential development was presented by Xu (2011). The number of houses demanded by a 
growing population was modelled in SD. Subsequently, required real estates could be allo-
cated as 3D objects on a GIS map, which facilitates the interpretation of the predicted city 
design by spatial planners and decision-makers.

Moreover, the use of an object view facilitates modelling of feedback and co-evolution 
of process and space. To investigate the relation between space and process, it is often helpful 
to describe space in quantifiable terms (Hargis et al. 1997). The quantification of space is 
essential to establish criteria for relating spatial structures to their consequences (Levin 
1992). The object-oriented spatial view enables an efficient analysis of spatial metrics and 
thus opens up a wide field of new applications of the SD concept in cases where contextual 
and spatial information is needed.

For instance, the allocation of real estates in the city growth model implemented by Xu 
(2011) could be made dependent on existing structures. City development is related to 
infrastructure networks and accessibility. Therefore, allocation of real estates may be mod-
elled as a function of travel distance and time. The evolution of residential areas may in turn 
result in the development of new traffic infrastructure. This implies that distance metrics 
need to be re-evaluated over and over again to keep track of a city’s traffic infrastructure 
development.

The object-oriented SD approach enables the implementation of sophisticated origin-des-
tination network analysis in such a simulation. Thus, object orientation may especially be of 
use in the fields of transportation research or spatial planning. Furthermore, phenomena 
related to human mobility such as the spread of infective disease (e.g. BenDor & Kaza 2012), 
CO2 emissions, resource consumption or social factors such as the quality of life could be 
modelled.

Moreover, object orientation may also be of relevance in the field of ecological modelling. 
The interrelation of process and spatial patterns has been one key focus of ecological research 
(Turner 1989). For instance, a number of landscape metrics were developed in a GIS envi-
ronment to investigate the relation between landscape structure and biodiversity (Schindler 
et al. 2008). Also, many articles in landscape ecology use landscape metrics for habitat anal-
yses (Uuemaa et al. 2009). The presented approach enables an integration of those metrics 
in dynamic SD-based simulations.

Similarly, spatial landscape metrics are used as an additional input parameter for simu-
lating land use / cover change (e.g. Herold et al. 2005; Zamyatin & Cabral 2011). The use of 
SD for modelling land use / land cover change was demonstrated by Lauf et al. (2012). The 
integration of object metrics may contribute an important new level of information to 
SD-based land use / cover change modelling.
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Object-oriented SD may also be of interest in socio-ecological systems science. A possible 
line of research could be the investigation of anthropogenic fragmentation of landscape, 
expansion of infrastructure, ecosystem degradation and resilience (e.g. Forbes et al. 2009). 
Likewise, human impact, ecological consequences and effects on human activity patterns 
could be treated as a spatial feedback system.

In summary, the approach benefits the modelling of systems involving dynamics in cadas-
tral tessellations or any kind of mappable features and irregular spatial arrangements such 
as urban infrastructures, administration units or any anthropogenic landscape disturbances. 
The presented approach shall promote the use of SD concepts for those applications.

7.  Conclusion

This study combines SD simulation with GIS-based object representations and spatial indices 
for modelling the effects of farmland fragmentation and quality in relation to farm structural 
change. The simulations reveal a control loop inherent in the evolution of farmland frag-
mentation over time. Simulations conducted under high initial farmland fragmentation 
conditions resulted in minor increase of fragmentation or consolidation, while consolidated 
farmland tends to become highly fragmented.

This is explained by the spatial limitation of compact development. A compact farm may 
be restricted to radial development, which increases fragmentation and decreases economic 
efficiency. A fragmented farm, however, may have the chance to consolidate its farmland 
by renting additional plots close to the farmstead. This is additionally promoted by increasing 
costs per distance travelled (e.g. increase in fuel prices). Therefore, structural change may 
turn fragmentation into consolidation provided enough land is offered on the land market, 
transportation costs are high and the spatial configuration of ownership (fragmentation) 
allows for compact development. In addition to consolidation achieved by renting plots, 
simulations also suggest favourable effects associated with the abandonment of marginal 
or unproductive plots.

Furthermore, differences in grassland production reinforce structural change. Pronounced 
differences in quality between upland and lowland plots lead to the bankruptcy of upland 
farms, which fosters a highly dynamic land market. Farms located at a medium altitude which 
are close to these hot spots benefited from a large supply of affordable land. This effect is 
especially relevant for agricultural regions characterised by complex terrain. Under such 
preconditions bankruptcy assets are often only relevant for a few bidders, which leads to 
cherry-picking behaviour and abandonment of unfavourable plots.

The simulation demonstrates the successful integration of GIS-based object representa-
tions and spatial analysis in an SD modelling framework. The approach makes use of intrinsic 
object geometries (e.g. plot shape) and relations between objects (e.g. farm-to-plot network 
distance). Attributes of dynamic space are updated in the simulation, which ensures imme-
diate process-space feedback in the model.

In this way established concepts of SD modelling are adopted for conducting object-ori-
ented discrete event simulations. The same approach could potentially find application 
wherever object geometries or object relations are mutually interrelated with continuous 
processes (e.g. ecological modelling). The object view also lends itself nicely in cases where 
space is better represented by discrete entities (e.g. transportation and infrastructure 
planning).
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Nevertheless, alternative applications would require amendments to the approach. The 
presented dynamic modelling of farm sizes could be extended by including line objects to 
represent dynamics in network space. Moreover, in its current form linking multiple SD 
process models to a single object is not foreseen. This would also raise questions on the 
integration of process and object hierarchy which were not considered in the current 
version.

Furthermore, the object approach produces a large computational overhead and thus 
aggravates sophisticated sensitivity testing by means of Monte Carlo simulations. This over-
head is not a result of context switching between GIS and SD applications, but a consequence 
of the iterative use of spatial analytical GIS operations. In the presented simulations con-
straints on computational efficiency are especially an effect of costly network analysis per-
formed on high numbers of origin-destination pairs. The alternative use of specialised routing 
packages such as, for instance, Python Networkx may significantly improve performance. 
For a more detailed discussion of this issue the performance analysis presented in Neuwirth 
et al. (2015) can be consulted.

Apart from issues pertaining to the technical implementation, the presented concept 
constitutes a natural way of modelling phenomena whose behaviour is affected by spatial 
structure or topology. Object shape, size, orientation and movement in networks are best 
represented by making use of intrinsic geometry attributes and object relations in vector 
data. Process models can be linked to these realistic object representations of physical struc-
ture, which at the same time constitute a ‘template’ for the SSD model’s modular 
assembly.

A possible avenue for future research may be the additional embedding of individu-
al-based modelling (IBM) capabilities. The object-oriented SD approach is not entirely equa-
tion-based. A set of rules on farmland auctioning and pricing was defined in the example 
presented. Combining equation-based SD with rule-based IBM is expected to represent 
dynamic phenomena in a more natural and efficient way.
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Appendix

Table A1. List of other fragmentation indices being reviewed for this article.

No. Indices Calculation
Considered aspects  
of fragmentation Reference

(1) Average farm 
size

I
1
=

∑N
i=1 Ai

N

Relative proportion of the holding Thompson 
(1963)

(2) Mean number of 
plots

I
2
=

∑n
i=1 ai

n

Number of parcels, parcel size Bizimana et al. 
(2004)

(3) Simmons’s Index I
3
=

∑n
i=1 a

2

i

A
2

Farm size, number of parcels and 
parcel size

Simmons (1964)

(4) Simpson’s Index I
4
= 1 −

∑n
i=1 a

2

i

A
2

Farm size, number of parcels and 
parcel size

Simpson (1949)

(5) Schmook’s 
Index

I
5
=

ACH

A
Farm size and spatial distribution of 

fields
Schmook (1976)

(6) Igbozurike’s 
Index

I
6
=

DR ⋅
1

ā

100

Number of parcels, parcel size, 
farm-plot distance and between-
plot distance

Igbozurike 
(1974)

(7) Weighted mean 
center of 
parcels

x̄wmc =

�

∑n

i=1 wi ⋅ xi
∑n

i=1 wi

�

ȳwmc =

�

∑n

i=1 wi ⋅ yi
∑n

i=1 wi

�

Number of parcels, spatial and value 
distribution of fields

Demetriou et al. 
(2012a)

(8) Weighted 
dispersion of 
parcels

WDoP =

�

�

�

�

∑n

i=1 wi

�

xi ⋅ x̄wmc
�2

∑n

i=1 wi

+

�

�

�

�

∑n

i=1 wi

�

yi ⋅ ȳwmc
�2

∑n

i=1 wi

Number of parcels, spatial and value 
distribution of fields

Demetriou et al. 
(2012a)

(9) Gross margin 
per holding

GM = Ua ⋅ y ⋅ p − Tt ⋅ CT

−Td ⋅ CT

Parcel shape and size, number of 
parcels, distinction between 
working costs and travel costs, 
spatial distribution of fields, 
farm-plot distances

Gonzalez et al. 
(2007)

Farm size A; plot size a; average plot size ā; number of farms N; number of plots belonging to a holding 
n; farm or plot index i; area of convex hull ACH; distance covered by the operator in a single round that 
takes him to all of his parcels DR; coordinates of the weighted mean center x̄wmc and ȳwmc; coordinates 
of the parcel centroids x and y; parcel weight (e.g. value of field) w; weighted dispersion of parcels 
WdoP; gross margin GM; useful area Ua; expected yield y; price p; tillage time required Tt; cost per time 
of operation CT; transportation distance Td; cost per travel distance CT.
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