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Abstract

The notion of conformal infinity has a long history within the research
in Einstein’s theory of gravity. Today, “conformal infinity” is related with
almost all other branches of research in general relativity, from quantisa-
tion procedures to abstract mathematical issues to numerical applications.
This review article attempts to show how this concept gradually and in-
evitably evolved out of physical issues, namely the need to understand
gravitational radiation and isolated systems within the theory of gravi-
tation and how it lends itself very naturally to solve radiation problems
in numerical relativity. The fundamental concept of null-infinity is in-
troduced. Friedrich’s regular conformal field equations are presented and
various initial value problems for them are discussed. Finally, it is shown
that the conformal field equations provide a very powerful method within
numerical relativity to study global problems such as gravitational wave
propagation and detection.
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1 Introduction

The notion of “conformal infinity” introduced by Penrose almost forty years ago
is one of the most fruitful concepts within Einstein’s theory of gravitation. Most
of the modern developments in the theory are based on or at least influenced in
one way or another by the conformal properties of Einstein’s equations in general
or, in particular, by the structure of null infinity: the study of radiating solu-
tions of the field equations and the question of fall-off conditions for them; the
global structure of space-times; the structure of singularities; conserved quanti-
ties; multipole moments; asymptotic quantization procedures; H-spaces and the
twistor programme; the null hypersurface formulation of general relativity; the
conformal field equations and their importance for the numerical evolution of
space-times.

Obviously, there exists a vast amount of material related to the subject
of conformal infinity which cannot be covered adequately within this review
article. A choice has to be made. We will discuss here those issues of “conformal
infinity” which are relevant for numerical applications. On the one hand, this
is a restriction to a subtopic which is reasonably narrow and yet broad enough
to encompass the central ideas and new developments. On the other hand,
questions concerning the numerical treatment of gravitational radiation and,
in particular the problems which arise from the attempt to numerically model
infinitely extended systems, suggest that the conformal methods can be useful
not only for rigorous arguments but also for numerical purposes.

Indeed, we will show that the conformal picture has matured enough to
provide an approach to applications in numerical relativity which relies on a
very sound theoretical basis not only with respect to the physical appropriate-
ness, but also with respect to the mathematical well-posedness of the problems
considered. What is even more remarkable is the fact that the numerical im-
plementations of the conformal picture via the conformal field equations are
numerically well-defined in the sense that there are no spurious instabilities in
the codes (which so often are the stumbling blocks for the traditional approaches
via the ADM equations), so that the computed solutions demonstrably converge
to the order of the discretization scheme. The conformal approach based on the
hyperboloidal initial-value problem allows us to compute (semi-)global space-
times including their asymptotic structure which in turn enables us to rigorously,
i.e. without any further approximation beyond the discretization, determine the
radiation coming out from the system under consideration. The work which
has been devoted to this approach up to now clearly shows its power. The re-
sults obtained have been checked against exact results (exact solutions or known
theorems), and there is no doubt that the results are correct. The geometric
concepts which have been devised by Penrose now turn out to be very useful
in practical applications in the sense that they provide the solution to all con-
ceptual problems posed by the notion of “gravitational radiation” in connection
with numerical computations. Already, it is obvious that with this tool one can
achieve results which have not been feasible by any other numerical method.
Furthermore, the analysis at space-like infinity (see Section 3.5) has finally put
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5 Conformal Infinity

within reach the feasibility of computing the global structure of asymptotically
flat space-times from asymptotically flat Cauchy data.

This article will begin with a survey of the general background, i.e. the phys-
ical motivations behind the idea of asymptotically flat space-times, and a short
account of the historical development which led to our current understanding.
Next, the necessary mathematical ideas will be introduced and the regular con-
formal field equations will be discussed. The equations have been applied to
several initial value problems. We survey the most important results relevant
for the numerical application. The last section is concerned with current issues
in the numerical implementation of the conformal methods. We will see that
the conformal field equations provide a very powerful method to study global
problems in numerical relativity such as gravitational wave propagation and
detection as well as the emergence of singularities and their horizons.

Living Reviews in Relativity (2000-4)
http://www.livingreviews.org

http://www.livingreviews.org


J. Frauendiener 6

2 General Background

Isolated systems provide valuable insights into the workings of a physical theory
by restricting one’s attention to small subsystems [66]. They serve as models
for systems in the real world allowing us to deduce statements about their
behaviour, and to attribute to them various physical properties such as mass,
momentum, emitted radiation, etc. Therefore, it is desirable that a theory
should allow within its mathematical framework the characterization of such
systems. In general relativity, this is a difficult problem. The reason is a familiar
one: The metric which, in other theories, provides a background structure on
which the physical fields act, is itself a dynamical object in general relativity.

In this section we discuss some of the issues which lead us to focus on asymp-
totically flat space-times as models for isolated systems in relativity and hence
as realistic gravitationally radiating systems.

2.1 Isolated systems

The conformal structure of space-times has found a wide range of interesting
applications in general relativity with various motivations. Of particular impor-
tance for us is the emergence of conformal geometric ideas in connection with
isolated systems (see also the related discussions in [66, 56]). As an illustration,
consider a gravitating system (e.g. a binary system or a star) somewhere in our
universe, evolving according to its own gravitational interaction, and possibly
reacting to gravitational radiation impinging on it from the outside. Thereby it
will also emit gravitational radiation. We are interested in detecting and eval-
uating these waves because they provide us with important information about
the physics governing the system. For several obvious reasons, it is desirable not
only to have a description of such situations within the theoretical framework of
the theory but, furthermore, to have the ability to simulate them numerically.

Two problems arise: First, we need to idealize the physical situation in an
appropriate way, since it is hopeless to try to analyze the behaviour of the
system in its interaction with the rest of the universe. We are mainly interested
in the behaviour of the system and not so much in other processes taking place
at large distances from the system. Since we would like to ignore those regions,
we need a way to isolate the system from their influence.

We might want to do this by cutting away the uninteresting parts of the uni-
verse along a time-like cylinder T enclosing the system. Thereby, we effectively
replace the outer part by data on T . The evolution of our system is determined
by those data and initial data on some space-like hypersurface S. But now we
are faced with the problem of interpreting the data. It is well known that ini-
tial data are obtained from some free data by solving elliptic equations. This
is a global procedure. It is very difficult to give a physical meaning to initial
data obtained in this way, and it is even more difficult, if not impossible, to
specify a system, i.e. to determine initial data, exclusively from (local) physical
properties of the constituents of the system like energy-momentum, spin, ma-
terial properties, etc. In a similar spirit, the data on the time-like boundary T
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7 Conformal Infinity

are complicated and only to a rather limited extent do they lend themselves to
physical interpretation. For instance, it is not known how to extract from those
data any piece which would unambiguously correspond to the radiation emitted
by the system. Another problem is related to the arbitrariness in performing
the cut. How can we be sure that we capture essentially the same behaviour
independently of how we define T?

Thus, we are led to consider a different kind of “isolation procedure”. We
imagine the system as being “alone in the universe” in the sense that we assume
it being embedded in a space-time manifold which is asymptotically flat. How
to formulate this is a priori rather vague. Somehow we want to express the fact
that the space-time “looks like” Minkowski space-time “at large distances” from
the source. Certainly, fall-off conditions for the curvature have to be imposed
as one recedes from the source and these conditions should be compatible with
the Einstein equations. This means that there should exist solutions of the
Einstein equations which exhibit these fall-off properties. We would then, on
some initial space-like hypersurface S, prescribe initial data which should, on
the one hand, satisfy the asymptotic conditions. On the other hand, the initial
data should approximate in an appropriate sense the initial conditions which
give rise to the real behaviour of the system. Our hope is that the evolution of
these data provides a reasonable approximation of the real behaviour. As before,
the asymptotic conditions which in a sense replace the influence of the rest of
the universe on the system should not depend on the particular system under
consideration. They should provide some universal structure against which we
can gauge the information gained. Otherwise, we would not be able to compare
different systems. Furthermore, we would hope that the conditions are such
that there is a well defined way to allow for radiation to be easily extracted. It
turns out that all these desiderata are in fact realized in the final formulation.

These considerations lead us to focus on space-times which are asymptoti-
cally flat in the appropriate sense. However, how should this notion be defined?
How can we locate “infinity”? How can we express conditions “at infinity”?

This brings us to the second problem mentioned above. Even if we choose
the idealization of our system as an asymptotically flat space-time manifold, we
are still facing the task of adequately simulating the situation numerically. This
is a formidable task, even when we ignore complications arising from difficult
matter equations. The simulation of gravitational waves in an otherwise empty
space-time coming in from infinity, interacting with themselves, and going out
to infinity is a challenging problem. The reason is obvious: Asymptotically flat
space-times necessarily have infinite extent while computing resources are finite.

The conventional way to overcome this apparent contradiction is the intro-
duction of an artificial boundary “far away from the interesting regions”. During
the simulation this boundary evolves in time thus defining a time-like hypersur-
face in space-time. There one imposes conditions which, it is hoped, approxi-
mate the asymptotic conditions. However, introducing the artificial boundary
is nothing but the reintroduction of the time-like cylinder T on the numerical
level with all its shortcomings. Instead of having a “clean” system which is
asymptotically flat and allows well defined asymptotic quantities to be precisely
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determined, one is now dealing again with data on a time-like boundary whose
meaning is unclear. Even if the numerical initial data have been arranged so
that the asymptotic conditions are well approximated initially by the boundary
conditions on T , there is no guarantee that this will remain so when the system
is evolved. Furthermore, the numerical treatment of an initial-boundary value
problem is much more complicated than an initial value problem because of
instabilities which can easily be generated at the boundary.

What is needed, therefore, is a definition of asymptotically flat space-times
which allows to overcome both the problem of “where infinity is” and the prob-
lem of simulating an infinite system with finite resources. The key observation
in this context is that “infinity” is far away with respect to the space-time metric.
This means that one needs infinitely many “metre sticks” in succession in order
to “get to infinity”. But, what if we replaced these metre sticks by ones which
grow in length the farther out we go? Then it might be possible that only a
finite number of them suffices to cover an infinite range, provided the growth
rate is just right. This somewhat naive picture can be made much more precise:
Instead of using the physical space-time metric g̃ to measure distance and time,
we use a different metric g = Ω2g̃, which is “scaled down” with a scale factor Ω.
If Ω can be arranged to approach zero at an appropriate rate, then this might
result in “bringing infinity in to a finite region” with respect to the unphysical
metric g. We can imagine attaching points to the space-time which are finite
with respect to g but which are at infinity with respect to g̃. In this way we can
construct a boundary consisting of all the end points of the succession of finitely
many rescaled metre sticks arranged in all possible directions. This construction
works for Minkowski space and so it is reasonable to define asymptotically flat
space-times as those for which the scaling-down of the metric is possible.

We arrived at this idea by considering the metric structure only “up to
arbitrary scaling”, i.e. by looking at metrics which differ only by a factor. This
is the conformal structure of the space-time manifold in question. By considering
the space-time only from the point of view of its conformal structure we obtain
a picture of the space-time which is essentially finite but which leaves its causal
properties, and hence the properties of wave propagation unchanged. This is
exactly what is needed for a rigorous treatment of radiation emitted by the
system and also for the numerical simulation of such situations.

The way we have presented the emergence of the conformal structure as the
essence of asymptotically flat space-times is not how it happened historically.
Since it is rather instructive to see how various approaches finally came together
in the conformal picture we will present in the following section a short overview
of the history of the subject.

2.2 The emergence of the current picture

The conformal treatment of infinity has grown out of many roots and it has a
history which goes back to the middle of the past century. One of the main
motivations was the desire to rigorously understand gravitational waves. The
natural question arising was how to characterize wave-like solutions of Einstein’s
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vacuum field equations (allowing for a possible cosmological constant λ):

Gab + λgab = 0.

The existence of gravitational waves was predicted by Einstein [35] shortly after
he had found the general theory of relativity. However, due to the mathematical
and physical complexity of the theory of gravitation there was confusion for a
long time about whether the field equations really rigorously do admit solutions
with a wave-like character. For instance, Rosen [123] came to the conclusion that
there were no such solutions because in the class of plane symmetric waves every
non-flat solution of the field equations became singular on a two-dimensional
submanifold. This result was, however, due to the lack of understanding of the
different kinds of singularities which can occur in a covariant theory and the
singularity appearing in the plane wave space-times later turned out to be a
coordinate singularity.

Thus, one of the early problems in the research area of gravitational waves
was the invariant characterization of radiation. In 1957, Pirani [119] started
the investigation with the suggestion that the algebraic properties of the Rie-
mann (more specifically the Weyl) tensor should be considered as indicating the
presence of radiation. In particular, under the assumption that gravitational
radiation can in fact be characterized by the curvature tensor and that it prop-
agates with the local speed of light, he proposed the definition that gravitational
radiation is present if the curvature tensor has Petrov types {211} or {31}. He
arrived at this characterization by the observation that a gravitational wave-
front would manifest itself as a discontinuity of the Riemann tensor across null
hypersurfaces, these being the characteristics for the Einstein equations. This
result had previously been obtained by Lichnerowicz [90]. In his article, Pirani
did not enforce the field equations, but towards the end of the paper he proposed
to look at the equations ∇aRabcd = 0, which follow from the Bianchi identity
for vacuum space-times. This is the first hint at the importance of the Bianchi
identity for the study of gravitational waves. In [91] Lichnerowicz proposed a
similar definition for a pure gravitational radiation field.

The next important step in the development of the subject was Trautman’s
study of the question of boundary conditions for the gravitational field equa-
tions [140]. He wanted to obtain conditions which were general enough to al-
low for gravitational radiation of an isolated system of matter, but still strong
enough to guarantee uniqueness (appropriately defined) of the solution given
“reasonable” initial data. He gave an asymptotic fall-off condition for the
metric coefficients with respect to a certain class of coordinate systems. It
was obtained by analogy to the situation with the scalar wave equation and
Maxwell theory [139], where the fields can be required to satisfy Sommerfeld’s
“Ausstrahlungsbedingung”. In those cases it is known that there exist unique
solutions for given initial data, while in the gravitational case this was not known
at the time and, in fact, remained unknown until only quite recently.

Trautman then went on to discuss some consequences of this boundary con-
dition. He defined an energy-momentum four-vector at infinity which is well
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defined as a consequence of the boundary condition. It is obtained as the limit
of an integral of the energy-momentum pseudo-tensor over a space-like man-
ifold with boundary as it stretches out to infinity. By application of Stokes’
theorem, the three-dimensional integral can be converted to a surface integral
over the boundary, the sphere at infinity, of certain components of the so-called
“superpotentials” for the energy-momentum pseudo-tensor. Nowadays these
are recognized as certain special cases of the Nester-Witten two-form [37] and,
hence, Trautmans energy-momentum integral coincides with the Bondi-Sachs
expression or the ADM expression depending on how the limit to infinity is
taken. This, however, is not explicitly specified in the paper. He considered
the difference of energy-momentum between two space-like hypersurfaces and
concluded that it must be due to radiation crossing the time-like cylinder which
together with the two hypersurfaces bounds a four-dimensional volume. An es-
timate for the amount of radiation showed that it is non-negative. If the limit
would have taken out to infinity along null directions, then this result would
coincide with the Bondi-Sachs mass-loss formula.

Finally, Trautman observed that the definitions of pure radiation fields given
by Pirani and Lichnerowicz are obeyed not exactly but only asymptotically by
gravitational fields satisfying his boundary condition. Hence, he concluded that
such solutions approach radiation fields in the limit of large distances to the
source.

Based on the ideas of Pirani and Trautman and guided by his own investiga-
tions [130] of the structure of retarded linearized gravitational fields of particles,
Sachs [125] proposed an invariant condition for outgoing gravitational waves.
The intuitive idea was that at large distances from the source, the gravitational
field, i.e. the Riemann tensor, of outgoing radiation should have approximately
the same algebraic structure as does the Riemann tensor for a plane wave. As
one approaches the source, deviations from the plane wave should appear. Sachs
analyzed these deviations in detail and obtained rather pleasing qualitative in-
sights into the behaviour of the curvature in the asymptotic regime.

In contrast to the earlier work, Sachs used more advanced geometrical meth-
ods. Based on his experience in the study of algebraically special metrics [34,
124, 86] he first analyzed the geometry of congruences of null curves. After the
introduction of an appropriate null tetrad he used the Bianchi identity for the
curvature tensor in a form which follows from the vacuum field equations to ob-
tain the characteristic fall-off behaviour of the curvature components which has
been termed the “peeling property”. The Riemann tensor of a vacuum space-
time has this property, if for any given null geodesic with an affine parameter
r which extends to infinity, the curvature falls off along the curve in such a
way that to order 1/r it is null (Petrov type N or {4}) with a quadruple PND
(principal null direction) along the curve. To order 1/r2 it has type III ({31})
with the triple PND pointing along the curve, and to order 1/r3 it has type
II ({211}) with the double PND oriented along the curve. To order 1/r4 it is
algebraically general (type I or {1111}) but one of the PND’s lies in the direc-
tion of the geodesic. To order 1/r5 the curvature is not related to the geodesic.
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11 Conformal Infinity

Symbolically one can express this behaviour in the form

C =
C4

r
+
C3

r2
+
C2

r3
+
C1

r4
+O(r−5), (1)

where C on the left hand side denotes the Weyl tensor, and each Cr on the right
hand side stands for a tensor which has an r-fold PND along the null geodesic
and which is independent of r. The important point is that the part of the
curvature which has no relation to the null direction of the outgoing geodesic
goes as 1/r5.

Sachs postulated the outgoing radiation condition to mean that a bounded
source field is free of mixed (i.e. a non-linear superposition of in- and outgoing)
radiation at large distances if and only if the field has the peeling property. Later
it was realized [26, 102] that this condition does not exclude ingoing radiation.
Instead it is possible to have an ingoing wave profile provided that it falls off
sufficiently fast as a function of an advanced time parameter.

The study of gravitational waves and the related questions was the main
area of research of the group around H. Bondi and F. Pirani at King’s Col-
lege, London, in the years between 1955 and 1967. In a series of papers [92,
93, 24, 120, 94, 125, 25, 127] they analyzed several problems related to grav-
itational waves of increasing complexity. The most important of their results
certainly is the work on axisymmetric radiating systems by Bondi, van der Burg
and Metzner [25]. They used a different approach to the problem of outgoing
gravitational waves. Instead of looking at null geodesics they focused on null
hypersurfaces, and instead of analyzing the algebraic structure of the curva-
ture using the Bianchi identity they considered the full vacuum field equations.
Their work was concerned with axi-symmetric systems but shortly afterwards
Sachs [127] removed this additional assumption.

The essential new ingredient was the use of a retarded time function. This
is a scalar function u whose level surfaces are null hypersurfaces opening up
towards the future. Based on the assumption that such a function exists, one
can introduce an adapted coordinate system, so-called Bondi coordinates, by
labeling the generators of the null hypersurfaces with coordinates on the two-
sphere and introducing the luminosity distance r (essentially the square root of
the area of outgoing wave fronts) along the null generators. The metric, when
written in this kind of coordinate system, contains only six free functions.

Asymptotic conditions were imposed to the effect that one should be able
to follow the null geodesics outwards into the future for arbitrarily large values
of r. Then the metric was required to approach the flat metric in the limit of
infinite distance. Additionally, it was assumed that the metric functions and
other quantities of interest (in particular the curvature) were analytic functions
of 1/r.

The field equations in Bondi coordinates have a rather nice hierarchical
structure which is symptomatic for the use of null coordinates and which allows
for a simpler formal analysis compared to the related Cauchy problem. Bondi
et al. and Sachs were able to solve the field equations asymptotically for large
distances. In essence their procedure amounts to the formulation of a certain
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characteristic initial value problem (see [128, 129]) and the identification of
the free data. It turns out that the freely specifiable data are two functions,
essentially components of the metric, on an initial null hypersurface u = u0

and two similar functions at “r =∞”. These latter functions are Bondi’s news
functions whose non-vanishing is taken to indicate the presence of gravitational
radiation.

The results of this analysis were very satisfactory and physically reasonable.
The most important consequence is the demonstration that outgoing gravita-
tional waves carry away energy from the source and hence diminish its mass.
This is the consequence of the Bondi-Sachs mass loss formula which relates the
rate of the mass decrease to the integral over the absolute value of the news.
Another consequence of the analysis was the peeling property: For space-times
which satisfy the vacuum field equations and the Bondi-Sachs boundary condi-
tions, the curvature necessarily has the asymptotic behaviour (1) as predicted
by Sachs’ direct analysis of the Riemann tensor using the vacuum Bianchi iden-
tity. Thus, the Bondi-Sachs conditions imply the covariant outgoing radiation
condition of Sachs and also the boundary condition proposed by Trautman.

The group of coordinate transformations which preserve the form of the
metric and the boundary conditions was determined. This infinite dimensional
group which became known as the BMS group is isomorphic to the semi-direct
product of the homogeneous Lorentz group with the Abelian group of so-called
super-translations. The emergence of this group came as a surprise because one
would have expected the Poincaré group as the asymptotic symmetry group
but one obtained a strictly larger group. However, the structure of the BMS
group is sufficiently similar to the Poincaré group. In particular, it contains
a unique Abelian normal subgroup of four dimensions, which can be identified
with the translation group. This result forms the basis of further investigations
into the nature of energy-momentum in general relativity. The BMS group
makes no reference to the metric which was used to derive it. Therefore, it
can be interpreted as the invariance group of some universal structure which
comes with every space-time satisfying the Bondi-Sachs boundary conditions.
The BMS group has been the subject of numerous further investigations since
then. For some of them we refer to [95, 96, 97, 101, 111, 118, 126].

At about the same time Newman and Penrose [100] had formulated what
has become known as the NP formalism. It combined the spinor methods which
had been developed earlier by Penrose [107] with the (null-)tetrad calculus used
hitherto. Newman and Penrose applied their formalism to the problem of grav-
itational radiation. In particular, they constructed a coordinate system which
was very similar to the ones used by Bondi et al. and Sachs. The only difference
was their use of an affine parameter instead of luminosity distance along the
generators of the null hypersurfaces of constant retarded time. Based on these
coordinates and an adapted null frame they showed that the single assumption
Ψ0 = O(1/r5) (and the technical assumption of the uniformity of the angular
derivatives) already implied the peeling property as stated by Sachs. The use of
Ψ0 as the quantity whose properties are specified on a null hypersurface was in
accordance with a general study of characteristic initial value problems for spinor
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equations and in particular for general relativity undertaken by Penrose [113].
An important point in this work was the realization that the Bianchi identity

could be regarded as a field equation for the Weyl tensor. It might be useful
here to point out that it is a misconception to consider the Bianchi identity as
simply a tautology and to ignore it as contributing no further information, as it
is done even today. It is an important piece of the structure on a Riemannian
or Lorentzian manifold which relates the (derivatives of the) Ricci and Weyl
tensors. If the Ricci tensor is restricted by the Einstein equations to equal
the energy-momentum tensor, then the Bianchi identity provides a differential
equation for the Weyl tensor. Its structure is very similar to the familiar zero
rest-mass equation for a particle with spin 2. In fact, in a sense one can consider
this equation as the essence of the gravitational theory.

Newman and Unti [104] carried the calculations started in [100] further and
managed to solve the full vacuum field equations asymptotically for large dis-
tances. The condition of asymptotic flatness was imposed not on the metric
but directly on the Weyl tensor in the form suggested by Newman and Penrose,
namely that the component Ψ0 of the Weyl tensor should have the asymptotic
behaviour Ψ0 = Ψ0

0/r
5+O(1/r6). From this assumption alone (and some techni-

cal requirements similar to the ones mentioned above) they obtained the correct
peeling behaviour of the curvature, the form of the metric up to the order of
1/r5, in particular its flatness at large distances, and also the Bondi-Sachs mass
loss formula. Later, the procedure developed by Newman and Unti to integrate
the vacuum field equations asymptotically has been analyzed by Dixon [33], who
showed that it can be carried out consistently to all orders of 1/r.

It is remarkable how much progress could be made within such a short time
(only about four years). The trigger seems to have been the use of the struc-
ture of the light cones in one form or another in order to directly describe the
properties of the radiation field: the introduction of the retarded time function,
the use of an adapted null-tetrad, and the idea to “follow the field along null
directions”. This put the emphasis onto the conformal structure of space-times.

The importance of the conformal structure became more and more obvious.
Schücking had emphasized the conformal invariance of the massless free fields,
a fact which had been established much earlier by Bateman [15] and Cunning-
ham [31] for the wave equation and the free Maxwell field, and by McLennan [98]
for general spin. This had led to the idea that conformal invariance might play a
role also in general relativity and, in particular, in the asymptotic behaviour of
the gravitational radiation field (see [116] for a personal account of the develop-
ment of these ideas). Finally, Penrose [108] outlined a completely different point
of view on the subject, arrived at by taking the conformal structure of space-
time as fundamental. He showed that if one regarded the metric of Minkowski
space-time to be specified only up to conformal rescalings g 7→ Ω2g for some
arbitrary function Ω, then one could treat points at infinity on the same basis as
finite points. Minkowski space-time could be completed to a highly symmetrical
conformal manifold by adding a “null-cone at infinity”. The well known zero
rest-mass fields which transform covariantly under conformal rescalings of the
metric are well defined on this space and the condition that they be finite on the
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null-cone at infinity translates into reasonable fall-off conditions for the fields
on Minkowski space. On the infinite null-cone one could prescribe characteris-
tic data for the fields which correspond to the strength of their radiation field.
He suggested that asymptotically flat space-times should share at least some of
these properties.

This point of view proved successful. In a further paper by Penrose [109],
the basic qualitative picture we have today is developed. Roughly speaking (see
the next section for a detailed account), the general idea is to attach boundary
points to the “physical” space-time manifold which idealize the end-points at
infinity reached by infinitely extended null geodesics. This produces a manifold
with boundary, the “unphysical” manifold, whose interior is diffeomorphic to the
physical manifold. Its boundary is a regular hypersurface whose causal character
depends on the cosmological constant. The unphysical manifold is equipped
with a metric which is conformal to the physical metric with a conformal factor
Ω which vanishes on the boundary. In addition, the structure of the conformal
boundary is uniquely determined by the physical space-time.

Let us illustrate this with a simple example. The metric of Minkowski space-
time in polar coordinates is

g̃ = dt2 − dr2 − r2dσ2, (2)

where dσ2 is the metric of the unit sphere. To perform the conformal rescaling
we introduce null coordinates u = t− r and v = t+ r. This puts the Minkowski
line-element into the form

g̃ = dudv − 1
4

(v − u)2dσ2, (3)

where dσ2 is the metric of the unit sphere. The coordinates u and v each range
over the complete real line, subject only to the condition v−u ≥ 0. This infinite
range is compactified by transforming with an appropriate function, e.g.

u = tanU, v = tanV, (4)

thus introducing new null coordinates U and V , in terms of which the metric
takes the form

g̃ =
1

4 cos2 U cos2 V

{
4dUdV − sin2(V − U)dσ2

}
. (5)

The coordinates U , V both range over the open interval (−π/2, π/2) with the
restriction V −U ≥ 0. Obviously, the Minkowski metric is not defined at points
with U = ±π/2 or V = ±π/2. Any extension of the metric in this form will be
singular.

Now we define a different metric g = Ω2g̃, conformally related to g̃ by the
conformal factor Ω = 2 cosU cosV . Thus,

g = 4dUdV − sin2(V − U)dσ2. (6)
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This metric is perfectly regular at the points mentioned above and, in fact, g
is the metric of the Einstein cylinder E . This can be verified by defining an
appropriate time and radius coordinate. With T = U +V , R = V −U we have

g = dT 2 − dR2 − sin2Rdσ2. (7)

Figure 1: The embedding of Minkowski space into the Einstein cylinder E.

Thus, we may consider Minkowski space to be conformally embedded into the
Einstein cylinder. This is shown in Figure 1. The Minkowski metric determines
the structure of the boundary, namely the two 3-dimensional null-hypersurfaces
I+ and I− which represent (future and past) “null-infinity”. This is where null-
geodesics “arrive”. They are given by the conditions V = π/2, |U | < π/2 (I+)
and U = −π/2, |V | < π/2 (I−). The points i± are given by U = V = ±π/2.
They represent “future and past time-like infinity”, the start respectively the
end point of time-like geodesics, while i0 is a point with U = −π/2, V = π/2. It
is the start and end point of all space-like geodesics, hence it represents “space-
like infinity”.

The conformal boundary of Minkowski space-time consists of the pieces I±,
i±, and i0. These are fixed by the Minkowski metric. In contrast to this,
the conformal manifold into which Minkowski space-time is embedded (here
the Einstein cylinder) is not fixed by the metric. Obviously, had we chosen a
different conformal factor Ω̂ = θΩ with some arbitrary positive function θ we
would not have obtained the metric of the Einstein cylinder but a different one.
We see from this that although the conformal boundary is unique, the conformal
extension beyond the boundary is not.
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The conformal compactification process is useful for several reasons. First
of all it simplifies the discussion of problems at infinity which would involve
complicated limit procedures when viewed with respect to the physical metric.
Transforming to the unphysical metric attaches a boundary to the manifold so
that issues which arise at infinity with respect to the physical metric can be
analyzed by local differential geometric arguments in the neighbourhood of the
boundary.

This is particularly useful for discussing solutions of conformally invariant
field equations on space-time. The basic idea is the following: Consider a space-
time which allows us to attach a conformal boundary, thus defining an unphys-
ical manifold conformally related to the given space-time. Suppose we are also
given a solution of a conformally invariant equation on this unphysical manifold.
Because of the conformal invariance of the equation, there exists a rescaling of
that unphysical field with a power of the conformal factor, which produces a
solution of the equation on the physical manifold. Now suppose that the un-
physical field is smooth on the boundary. Then the physical solution will have a
characteristic asymptotic behaviour which is entirely governed by the conformal
weight of the field, i.e. by the power of the conformal factor used for the rescal-
ing. Thus, the regularity requirement of the unphysical field translates into
a characteristic asymptotic fall-off or growth behaviour of the physical field,
depending on its conformal weight.

Penrose used this idea to show that solutions of the zero rest-mass equations
for arbitrary spin on a space-time, which can be compactified by a conformal
rescaling, exhibit the peeling property in close analogy to the gravitational case
as discovered by Sachs. Take as an example the spin-2 zero rest-mass equation
for a tensor Kabcd with the algebraic properties of the Weyl tensor

∇aKabcd = 0. (8)

This is the equation for linear perturbations of the gravitational fields propa-
gating on a fixed background. It is conformally covariant, in the sense that it
remains unchanged provided the field is rescaled as Kabcd 7→ Ω−1Kabcd, i.e., it
is a conformal density with weight −1.

Using the geometric technique of conformal compactification, Penrose was
able to establish the peeling property also for general (non-linear) gravitational
fields. We will discuss this result explicitly in the following section. Furthermore,
he showed that the group of transformations of the conformal boundary leaving
the essential structure invariant was exactly the BMS group. This geometric
point of view suggested that the asymptotic behaviour of the gravitational field
of an isolated radiating gravitational system can be described entirely in terms of
its conformal structure. The support for this suggestion was overwhelming from
an aesthetical point of view, but a rigorous support for this claim was provided
essentially only from the examination of the formal expansion type solutions of
Bondi-Sachs and Newman-Unti and the analysis of explicit stationary solutions
of the field equations.

The geometric point of view outlined above is the foundation on which many
modern developments within general relativity are based. Let us now discuss
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the notion of asymptotically flat space-times and some of their properties in
more detail.

2.3 Asymptotically flat space-times

We have seen in Section 2.1 that the question of how to define isolated systems
in general relativity has led to the mathematical idealization of asymptotically
flat space-times. They are defined by the requirement that they allow the at-
tachment of a smooth conformal boundary. The precise definition is:

Definition 1 A smooth (time- and space-orientable) space-time (M̃, g̃ab) is
called asymptotically simple, if there exists another smooth Lorentz manifold
(M, gab) such that

(i) M̃ is an open submanifold of M with smooth boundary ∂M̃ = I;

(ii) there exists a smooth scalar field Ω on M, such that gab = Ω2g̃ab on M̃,
and so that Ω = 0, dΩ 6= 0 on I;

(iii) every null geodesic in M̃ acquires a future and a past endpoint on I.

An asymptotically simple space-time is called asymptotically flat, if in addition
R̃ab = 0 in a neighbourhood of I.

Thus, asymptotically flat space-times are a subclass of asymptotically simple
space-times, namely those for which the Einstein vacuum equations hold near
I. Examples for asymptotically simple space-times which are not asymptot-
ically flat include the de Sitter and anti-de Sitter space-times, both solutions
of the Einstein equations with non-vanishing cosmological constant. We will
concentrate here on asymptotically flat space-times.

According to the first condition, the space-time (M̃, g̃ab), which we call the
physical space-time can be considered as part of a larger space-time (M, gab),
the unphysical space-time. As a submanifold of M the physical space-time can
be given a boundary which is required to be smooth. The unphysical metric
gab is well-defined on M and, in particular, on M̃, while the physical metric
g̃ab is only defined on M̃ and cannot be extended in a well-defined sense to
the boundary of M̃ or even beyond. The metrics generate the same conformal
structure, they are conformally equivalent in the sense that on M̃ they define
the same null-cone structure.

Note that although the extended manifold M and its metric are called un-
physical, there is nothing unphysical about this construction. As we shall see
below, the boundary of M̃ inM is uniquely determined by the conformal struc-
ture of M̃ and, therefore, it is just as physical as M̃. The extension beyond the
boundary, given byM is not unique, as we have already seen in Section 2.2, but
this is of no consequence for the physics in M̃ because the extension is causally
disconnected from M̃.

The second condition fixes the behaviour of the scaling factor on I as being
“of the order 1/r” as one approaches I from within M̃. The condition (iii) is a
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completeness condition to ensure that the entire boundary is included. In some
cases of interest, this condition is not satisfied. In the Schwarzschild space-time,
for instance, there are null-geodesics which circle around the singularity, unable
to escape to infinity. This problem has led to a weakening of Definition 1 to
weakly asymptotically simple space-times (see e.g. [110]). Such space-times are
essentially required to be isometric to an asymptotically simple space-time in
a neighbourhood of the boundary I. A different completeness condition has
been proposed by Geroch and Horowitz [68]. In the following discussion of the
analytic and geometric issues, weakly asymptotically simple space-times will
not play a role so that we can assume our space-times to be asymptotically
simple. Of course, for applications weakly asymptotically simple space-times
are important because they provide interesting examples of space-times with
black holes.

We defined asymptotically flat space-times by the requirement that the Ein-
stein vacuum equation holds near the boundary, i.e., that asymptotically the
physical space-time is empty. There are ways to relax this condition by impos-
ing strong enough fall-off conditions on the energy-momentum tensor without
violating any of the consequences. For example, it is then possible to include
electro-magnetic fields. Since we are concerned here mainly with the asymptotic
region, we are not really interested in including any matter fields. Therefore,
we will assume henceforth that the physical space-time is a vacuum space-time.
This does not mean that the following discussion is only valid for vacuum space-
times, it simply allows us to make simpler statements.

The conformal factor Ω used to construct the boundary I is, to a large
extent, arbitrary. It is fixed only by its properties on the boundary. This raises
the important question about the uniqueness of the conformal boundary as a
point set and as a differential manifold. If this uniqueness were not present,
then the notion of “points at infinity” would be useless. It could then happen
that two curves which approach the same point in one conformal boundary for
a space-time reach two different points in another conformal completion. Or,
similarly, that two conformal extensions which arise from two different conformal
factors were not smoothly related. However, these problems do not arise. In
fact, it can be shown that between two smooth extensions there always exists
a diffeomorphism which is the identity on the physical space-time, so that the
two extensions are indistinguishable from the point of view of their topological
and differential structure. This was first proved by Geroch [62]. It also follows
from Schmidt’s so called b-boundary construction [131, 132, 134].

From the condition that the vacuum Einstein equation holds, one can derive
several important consequences for asymptotically flat space-times:

(a) I is a smooth null hypersurface in M.

(b) I is shear-free.

(c) I has two connected components, each with topology S2 × R.

(d) The conformal Weyl tensor vanishes on I.
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The first part of statement (a) follows from the fact that I is given by the
equation Ω = 0. Since Ω has a non-vanishing gradient on I, regularity follows.
Furthermore, from the Einstein vacuum equations one has Λ̃ = 0 on M̃. Hence,
Equation (111) implies on M̃:

Ω2Λ− 1
4

Ω 2Ω +
1
2
∇aΩ∇aΩ = 0.

This equation can be extended smoothly to the boundary of M̃, yielding there
the condition NaN

a = 0 for the co-normal Na = −∇aΩ of I. Hence, the
gradient of the conformal factor is null, and I is a null hypersurface.

As such it is generated by null geodesics. The statement (b) asserts that the
congruence formed by the generators of I has vanishing shear. To show this we
look at Equation (110) and find from Φ̃ab = 0 that

ΩΦab +∇a∇bΩ−
1
4
gab 2Ω = 0,

whence, on I we get (writing mab for the degenerate induced metric on I)

2∇aNb = LNmab = −1
2
mab 2Ω, (9)

whence the Lie-derivative of mab along the generators is proportional to mab,
which is the shear-free condition for null geodesic congruences with tangent
vector Na (see [75, 118]).

To prove statement (c) we observe that since I is null, either the future
or the past light cone of each of its points has a non-vanishing intersection
with M̃. This shows that there are two components of I, namely I+ on
which null geodesics attain a future endpoint, and I− where they attain a
past endpoint. These are the only connected components because there is a
continuous map from the bundle of null-directions over M̃ to I±, assigning to
each null direction at each point P of M̃ the future (past) endpoint of the light
ray emanating from P in the given direction. If I± were not connected then
neither would be the bundle of null-directions of M̃, which is a contradiction (M̃
being connected). To show that the topology of I± is S2 × R requires a more
sophisticated argument which has been given by Penrose [109] (a different proof
has been provided by Geroch [65]). It has been pointed out by Newman [105]
that these arguments are only partially correct. He rigorously analyzed the
global structure of asymptotically simple space-times and he found that, in
fact, there are more general topologies allowed for I. However, his analysis
was based on methods of differential topology not taking the field equations
into account. Indeed, we will find later in Theorem 6 that the space-time which
evolves from data close enough to Minkowski data will have a I+ with topology
S2 × R.

The proof of statement (d) depends in an essential way on the topological
structure of I. We refer again to [109]. The vanishing of the Weyl curvature on
I is the final justification for the definition of asymptotically flat space-times:
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Vanishing Ricci curvature implies the vanishing of the Weyl tensor and hence
of the entire Riemann tensor on I. The physical space-time becomes flat at
infinity.

But there is another important property which follows from the vanishing of
the Weyl tensor on I. Consider the Weyl tensor Cabcd of the unphysical metric
gab which agrees on M̃ with the Weyl tensor C̃abcd of the physical metric g̃ab
because of the conformal invariance (107). On M̃, C̃abcd satisfies the vacuum
Bianchi identity

∇̃aC̃abcd = 0. (10)

This equation looks superficially like the zero rest-mass equation (8) for spin-
2 fields. However, the conformal transformation property of (10) is different
from the zero rest-mass case. The equation is not conformally invariant since
the conformal rescaling of a vacuum metric generates Ricci curvature in the
unphysical space-time by Equation (108), which then feeds back into the Weyl
curvature via the Bianchi identity (cf. Equation (112)). However, we can define
the field

Ka
bcd = Ω−1Cabcd

on M̃. As it stands, Ka
bcd is not defined on I. But the vanishing of the

Weyl tensor there and the smoothness assumption allow the extension of Ka
bcd

to the boundary (and even beyond) as a smooth field on M. It follows from
Equation (10) that this field satisfies the zero rest-mass equation

∇aKa
bcd = 0 (11)

on the unphysical space-time M with respect to the unphysical metric. There-
fore, the rescaled Weyl tensor Ka

bcd is a genuine spin-2 field with the natural
conformal behaviour. In fact, this is the field which most directly describes the
gravitational effects, in particular its values on the boundary are closely related
to the gravitational radiation which escapes from the system under considera-
tion. It propagates on the conformal space-time in a conformally covariant way
according to Equation (11) which looks superficially like the equation (8) for a
(linear) spin-2 zero rest-mass field. However, there are highly non-linear cou-
plings between the connection given by ∇a and the curvature given by Kabcd.
In the physical space-time, where the conformal factor is unity, the field Kabcd

coincides with the Weyl tensor which is the source of tidal forces acting on test
particles moving in space-time. For these reasons, we will call the rescaled Weyl
tensor Kabcd the gravitational field.

From Equation (11) and the regularity on I follows a specific fall-off be-
haviour of the field Ka

bcd and hence of the Weyl tensor which is exactly the
peeling property obtained by Sachs. It arises here from a reasoning similar to
the one presented towards the end of Section 2.2. It is a direct consequence
of the geometric assumption that the conformal completion be possible and of
the conformal invariance of Equation (11). This equation for the rescaled Weyl
tensor is an important sub-structure of the Einstein equation because it is con-
formally invariant in contrast to the Einstein equation itself. In a sense it is the
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most important part also in the system of conformal field equations which we
consider in the next section.

The possibility of conformal compactification restricts the lowest order struc-
ture of the gravitational field on the boundary. This means that all asymptot-
ically flat manifolds are the same in that order, so that the conformal bound-
ary and its structure are universal features among asymptotically flat space-
times. The invariance group of this universal structure is exactly the BMS
group. Differences between asymptotically flat space-times can arise only in a
higher order. This is nicely illustrated by the Weyl tensor which necessarily
vanishes on the conformal boundary, but the values of the rescaled Weyl tensor
Kabcd = Ω−1Cabcd are not fixed there.

In summary, our qualitative picture of asymptotically flat space-times is
as follows: Such space-times are characterized by the property that they can
be conformally compactified. This means that we can attach boundary points
to all null-geodesics. More importantly, these points together form a three-
dimensional manifold which is smoothly embedded into a larger extended space-
time. The physical metric and the metric on the compactified space are confor-
mally related. Smoothness of the resulting manifold with boundary translates
into asymptotic fall-off conditions for the physical metric and the fields derived
from it. The boundary emerges here as a geometric concept and not as an artifi-
cial construct put in by hand. This is reflected by the fact that it is not possible
to impose a “boundary condition” for solutions of the Einstein equations there.
In this sense it was (and is) not correct to talk about a “boundary condition at
infinity” as we and the early works sometimes did.

2.4 Example: Minkowski space

In this subsection we continue our discussion of the prototype of an asymptot-
ically flat space-time, namely Minkowski space-time. The motivation for doing
so is partly to get more acquainted with the idea of conformal compactification
and partly to show why this concept is the correct one for the description of
radiation processes.

For the following discussion we refer to the rescaled metric

g = 4dUdV − sin2(V − U)dσ2, (12)

which is the metric of the Einstein cylinder. The standard conformal diagram
for Minkowski space [109] is shown in Figure 2.

Each point in the interior of the triangle corresponds to a 2-sphere. The
long side of the triangle consists of all the points in the centre, r = 0 (i.e.
U = V ). The other two sides of the triangle correspond to null-infinity I±.
The points i± are points in the centre with U = V = ±π/2, while i0 is a point
with U = −π/2, V = π/2. The lines meeting at i0 are lines of constant t,
while the lines emanating from i− and converging into i+ are lines of constant
r. In the four-dimensional space-time the lines of constant t correspond to
three-dimensional space-like hypersurfaces which are asymptotically Euclidean.
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Figure 2: The conformal diagram of Minkowski space.

In the case of Minkowski space-time, the metric can be extended in a regular
way to three points representing future and past time-like infinity and space-like
infinity, but this is not generally so. Already in the case of the Schwarzschild
metric, which is also an asymptotically flat metric, there are, strictly speaking,
no such points because any attempt to extend the metric yields a singularity.
However, it is common language to refer to this behaviour by saying that “the
points i0 and/or i± are singular”. The reason for this is related to the presence of
mass. For any space-time which has a non-vanishing ADM-mass, the point i0 is
necessarily singular while the singularity of the time-like infinities is, in general,
related to the fall-off properties of the energy-momentum tensor in time-like
directions. In the case of the Schwarzschild solution (like in any stationary
black-hole solution) it is the presence of the static (stationary) black hole which
is responsible for the singularity of i±.

Let us now assume that there is a particle which moves along the central
world-line r = 0, emitting radiation. For the sake of simplicity we assume that
it emits electro-magnetic radiation which travels along the outgoing null-cones
to null-infinity. The null-cones are symbolized in Figure 2 by the straight lines
going off the particle’s world-line at 45◦. We are now interested in the behaviour
of the signal along various space-like hypersurfaces. In Figure 3 we show again
the conformal diagram of Minkowski space. The generic features discussed below
will be the same for any asymptotically flat space-time as long as we stay away
from the corners of the diagram. The reason for choosing Minkowski space is
simply a matter of convenience.
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Figure 3: Spacelike hypersurfaces in the conformal picture.

The vertical dashed line is the world-line of the particle which defines the
time axis. We have displayed two asymptotically Euclidean space-like hyper-
surfaces intercepting the time axis at two different points and reaching out to
space-like infinity. Furthermore, there are two hypersurfaces which intersect the
time axis in the same two points as the asymptotically flat ones. They reach
null-infinity, intersecting in a two-dimensional space-like surface. This geometric
statement about the behaviour of the hypersurfaces in the unphysical space-time
translates back to the physical space-time as a statement about asymptotic fall-
off conditions of the induced (physical) metric on the hypersurfaces, namely
that asymptotically the metric has constant negative curvature. This is, in par-
ticular, a property of the space-like hyperboloids in Minkowski space. Thus,
such hypersurfaces are called hyperboloidal hypersurfaces. An important point
to keep in mind is that the conformal space-time does not “stop” at I but that
it can be extended smoothly beyond. The extension is not uniquely determined
as we have already discussed in connection with the embedding of Minkowski
space into the Einstein cylinder (cf. Figure 1). Thus, the extension plays no role
for the concept of null-infinity but it can be very helpful for technical reasons,
in particular when numerical issues are discussed.

We now imagine that the central particle radiates electro-magnetic waves of
uniform frequency, i.e. proportional to sin(ωτ), where τ is the particle’s proper
time. This gives rise to a retarded electro-magnetic field on the entire space-
time which has the form φ ∝ sin(ωu), where u is a retarded time coordinate on
Minkowski space with u = τ on the central world-line. We ignore the fall-off of
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the field because it is irrelevant for our present purposes. Let us now look at
the waves on the various hypersurfaces.

In the physical space-time, the hypersurfaces extend to infinity and we can
follow the waves only up to an arbitrary but finite distance along the hypersur-
faces. The end-points are indicated in Figure 3 as little crosses. The resulting
wave-forms are shown in Figure 4.

Figure 4: Wave forms in physical space-time.

The first diagram shows the situation on the asymptotically Euclidean sur-
faces. These are surfaces of constant Minkowski time which implies that the
signal is again a pure sine. Note, however, that this is only true for these spe-
cial hypersurfaces. Even in Minkowski space-time we could choose space-like
hypersurfaces which are not surfaces of constant Minkowski time but which
nonetheless are asymptotically Euclidean. On such surfaces the wave would
look completely different.

On the hyperboloidal surfaces the waves seem to “flatten out”. The reason
for the decrease in frequency is the fact that these surfaces tend to become more
“characteristic” as they extend to infinity, thus approaching surfaces of constant
phase of the retarded field.

The final diagram shows the signal obtained by an idealized observer which
moves along the piece of I between the two intersection points with the hy-
perboloidal surfaces. The signal is recorded with respect to the retarded time
u which, in the present case, is a so called Bondi parameter (see Section 4.3).
Therefore, the observer measures a signal at a single frequency for a certain
interval of this time parameter. A different Bondi time would result in a signal
during a different time interval but with a single, appropriately scaled, frequency.
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Using an arbitrary time parameter would destroy the feature that only one fre-
quency is present in the signal. This is, in fact, the only information that can
be transmitted from the emitter to the receiver under the given circumstances.

Figure 5: Wave forms in conformal space-time.

The wave-forms of the signal as they appear in the conformal space-time,
i.e. with respect to a coordinate system which covers a neighbourhood of I,
are shown in Figure 5. In the specific case of Minkowski space-time we use the
coordinates T and R on the Einstein cylinder. The signal on the asymptotically
Euclidean surfaces shows the “piling up” of the waves as they approach space-
like infinity. The signal on the hyperboloidal surfaces looks very similar to the
physical case. Since the field and the surfaces are both smooth across I, the
signal can continue on across null-infinity without even noticing its presence.
The points where I is crossed are indicated in the diagram as two little crosses.
The values of the field at these points are the same as the boundary values of
the signal in the third diagram. Here the signal on the same region of I as in
Figure 4 is displayed, but with respect to the coordinate U = arctan(u) which
is not a Bondi parameter. Accordingly, we see that the wavelength of the signal
is not constant.

What these diagrams teach us is the following: It has been convenient in
relativity to decompose space-time into space and time by slicing it with a
family of space-like hypersurfaces. In most of the work on existence theorems
of the Einstein equations it has been convenient to choose them to be Cauchy
surfaces and thus asymptotically Euclidean. Also, in most numerical treatments
of Einstein’s equations the same method is used to evolve space-times from one
space-like hypersurface to the next (see Section 4). Here the hypersurfaces used
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are finite because the numerical grids are necessarily finite. In the approaches
based on the standard Einstein equations it makes no difference whether the grid
is based on a finite portion of an asymptotically Euclidean or a hyperboloidal
hypersurface. The fact that the space-time should be asymptotically flat has to
be conveyed entirely by a suitable boundary condition which has to be imposed
at the boundary of the finite portion of the hypersurface (i.e. at the little crosses
in Figure 3). However, this implies that the accuracy of the wave-form templates
obtained with such approaches depends to a large extent on the quality of that
boundary condition. So far there exists no suitable boundary condition which
would be physically reasonable and lead to stable codes.

In the conformal approach one has the option to “include infinity” by using
the conformal field equations (see Section 3). Then the type of the space-like
hypersurfaces becomes an issue. The diagrams show that the hyperboloidal
surfaces are very well suited to deal with the radiation problems. They provide
a foliation of the conformal space-time on which one can base the evolution with
the conformal field equations. The solution obtained will be smooth near I and
we “only” need to locate I on each hypersurface to read off the value of the
radiation data (as indicated in the second diagram of Figure 5).

2.5 Going further

As we indicated already in the introduction, the amount of results and devel-
opments related to the conformal structure of space-times and, in particular, to
conformal infinity is overwhelming. We take the opportunity to refer to several
other developments which are not treated here in detail.

There exist several reviews of the subject from different points of view, e.g.
by Geroch [66], by Penrose [110], by Schmidt [133], by Newman and Tod [103],
by Ashtekar [6, 7], and by Friedrich [53, 56].

A large part of the literature on null-infinity is concerned with “conserved
quantities”. There exist several ways to derive the Bondi-Sachs energy-momen-
tum expression. It can be defined in terms of limits of integrals, called link-
ages [69], over spheres which approach a cut of null-infinity I+, where the inte-
grals are taken over certain vectorfields in the physical space-time which suitably
approximate the infinitesimal generators of asymptotic symmetries. Penrose,
who had earlier [111] reexpressed the original Bondi-Sachs expressions in terms
of genuine geometric quantities at I+, has also derived them from his quasi-local
mass proposal [114]. They can also be obtained by “helicity lowering” of the
rescaled Weyl tensor at I+ using a two-index asymptotic twistor [138]. Other
approaches (see [72] for a review) start from a Hamiltonian or Lagrangian formu-
lation of the theory and derive the energy-momentum expressions via Noether
theorems or the moment-map of symplectic geometry (see e.g. [9, 12]). These
formulations also provide a framework for “asymptotic quantization”, a scheme
which is geared towards a scattering-matrix description for gravity. The univer-
sal structure of I provides the necessary background structure for the definition
of a phase-space of the radiative modes of the gravitational field and its subse-
quent quantization [8].
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While the energy-momentum expressions all coincide, there is still disagree-
ment about the various angular-momentum expressions (see e.g. the review ar-
ticle by Winicour [147]). This difficulty is caused by the group structure of the
BMS group which does not allow to single out a unique Lorentz subgroup (it is
obtained only as a factor group). Hopefully these discrepancies will be resolved
once the structure of the gravitational fields at i0 is completely understood.

All the “conserved quantities” are associated with a (space-like) cut of null-
infinity which is used for evaluation of the surface integrals, and an infinitesimal
generator of the asymptotic symmetry group used in defining the integrand.
They are not conserved in a strict sense because they depend on the cut. The
prime example is again the Bondi-Sachs energy-momentum, which obeys the
famous Bondi-Sachs mass-loss formula which relates the values of the energy-
momentum at two given cuts with a negative definite “flux integral” over the
part of I+ between the two cuts.

Furthermore, there exist the somewhat mysterious Newman-Penrose con-
stants [102], five complex quantities which are also defined by surface integrals
over a cut of I+. In contrast to the previous conserved quantities, the NP
constants are absolutely conserved in the sense that they do not depend on the
particular cut which is used for the evaluation of the integrals. In space-times
which have a regular point i+, the NP constants turn out to be the value of
the gravitational field at i+. If i+ is singular, then the NP constants are still
well-defined, although now they should probably be considered as the value of
the gravitational field at an ideal point i+. Other interpretations relate them to
certain combinations of multipole moments of the gravitational field [102, 118].
People have tried to give an interpretation of the NP constants in terms of a
Lagrangian or symplectic framework [71, 70, 122], but these results are still
somewhat unsatisfactory. Very recently, Friedrich and Kánnár [58] were able to
connect the NP constants defined at null-infinity to initial data on a space-like
asymptotically Euclidean (time-symmetric) hypersurface.

Finally, we want to mention the recent formulation of general relativity as a
theory of null hypersurfaces, see [89]. This theory has its roots in the observation
that one can reconstruct the points of Minkowski space-time from structures
defined on null-infinity. The future light-cone emanating from an arbitrary point
in Minkowski space-time is a shear-free null hypersurface intersecting I+ in a
cut. The shear-free property of the light-cone translates into the fact that the
cut itself is given as a solution of a certain differential equation, the “good cut
equation” on I+. Conversely, it was realized that in flat space the solution space
of the good cut equation is isometric to Minkowski space-time (in particular, it
carries a flat metric). Attempts to generalize this property led to Newman’s H-
space construction [99] which associates with each (complexified) asymptotically
flat and (anti-)self-dual space-time a certain complex four-dimensional manifold
which carries a Ricci-flat metric. It is obtained as the solution space of the
complex good cut equation. Trying to avoid the unphysical complexification has
finally led to the above mentioned null surface formulation of general relativity.

At this point the connection to Penrose’s theory of twistors is closest. New-
man’s H-spaces were the motivation for the “non-linear graviton” construc-
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tion [112] which associates with each anti self-dual vacuum space-time a certain
three-dimensional complex manifold. The interpretation of these manifolds at
the time was that they should provide the one-particle states of the gravitational
field in a future quantum theory of gravity. For a recent review of twistor theory,
we refer to [115]. The non-linear gravitons themselves have led to remarkable
developments in pure mathematics (see e.g. the contributions in [83]).
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3 The Regular Conformal Field Equations

It is clear that Penrose’s method of conformally compactifying space-time does
provide a convenient and elegant framework for discussing questions of asymp-
totics. What is not obvious, however, is how to answer the question of existence
of space-times which actually do possess the asymptotic structure suggested by
the conformal picture. On the one hand, a very specific geometric property of
the space-time is required, namely the possibility to attach a smooth conformal
boundary, and on the other hand, the Einstein equation, a differential equation
on the metric of the space-time, has to be satisfied. It is not clear whether these
two different requirements are indeed compatible.

To be more precise, one would like to know how many asymptotically flat
solutions of the field equations actually exist, and whether this class of solutions
contains the physically interesting ones which correspond to radiative isolated
gravitating systems. The only possible avenue to answering questions of ex-
istence consists of setting up appropriate initial value problems and proving
existence theorems for solutions of the Einstein equations subject to the appro-
priate boundary conditions.

The conventional Cauchy problem which treats the Einstein equation as a
second order partial differential equation for the metric field is already rather
complicated by itself (see e.g. the review by Choquet-Bruhat and York [27]).
But to obtain statements of the type mentioned above is further complicated by
the fact that in order to discuss the asymptotic fall-off properties of solutions one
would need to establish global (long time and large distance) existence together
with detailed estimates about the fall-off behaviour of the solution.

The geometric characterization of the asymptotic conditions in terms of the
conformal structure suggests to discuss also the existence problem in terms of
the conformal structure. The general idea is as follows: Suppose we are given
an asymptotically flat manifold which we consider as being embedded into an
appropriate conformally related unphysical space-time. The Einstein equations
for the physical metric imply conditions for the unphysical metric and the con-
formal factor relating these two metrics. It turns out that one can write down
equations which are regular on the entire unphysical manifold, even at those
points which are at infinity with respect to the physical metric. Existence of
solutions of these “regular conformal field equations” on the conformal mani-
fold then translate back to (semi-)global results for asymptotically flat solutions
of the field equations in physical space. This approach towards the existence
problem has been the programme followed by Friedrich since the late 1970’s.

In this section we will discuss the conformal field equations which have been
derived by Friedrich, and the various subproblems which have been successfully
treated by using the conformal field equations.
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3.1 General properties of the conformal field equations

Before deriving the equations we need to define the arena where the discussion
is taking place.

Definition 2 A conformal space-time is a triple (M, gab,Ω) such that

(i) (M, gab) is a (time- and space-orientable) Lorentz manifold;

(ii) Ω is a smooth scalar field onM such that the set M̃ = {p ∈M : Ω(p) > 0}
is non-empty and connected;

(iii) the gravitational field Ka
bcd = Ω−1Cabcd extends smoothly to all of M.

Two conformal space-times (M, gab,Ω) and (M̂, ĝab, Ω̂) are equivalent ifM and
M̂ are diffeomorphic and if, after identification of M and M̃ with a suitable
diffeomorphism, there exists a strictly positive scalar field θ on M such that
Ω̂ = θΩ and ĝab = θ2gab.

From this definition follows that M̃ is an open sub-manifold ofM on which
a metric g̃ab = Ω−2gab is defined, which is invariant in the sense that two
equivalent conformal space-times define the same metric g̃ab.

The space-time (M̃, g̃ab) allows the attachment of a conformal boundary
which is given by I = {p ∈ M : Ω(p) = 0, dΩ 6= 0}. The above definition of
conformal space-times admits much more general situations than those arising
from asymptotically flat space-times; this generality is sometimes needed for
numerical purposes.

Under the conditions of Definition 2, it follows that the Weyl tensor vanishes
on I because the gravitational field (i.e. the rescaled Weyl tensor) is smooth on
M. Note that we make no assumptions about the topology of I. If each null
geodesic which starts from the inside of M̃ has a future and a past endpoint on
I, then M̃ is asymptotically simple in the sense of Definition 1. If, in addition,
the metric g̃ab is a vacuum metric then I has the implied topology S2×R. Note
also that it is quite possible to have situations, where g̃ab is a vacuum metric
and where the topology of I is not S2 ×R, but e.g. T 2 ×R. Then, necessarily,
there must exist null geodesics which do not reach I.

In the special case when I is empty, the conformal factor Ω is strictly pos-
itive, i.e. M̃ = M, and the conformal space-time is isometric to the physical
space-time (choosing θ = Ω−1).

Our goal is to express the vacuum equations in M̃ in terms of geometric
quantities on the unphysical space-time. Consider first the Einstein vacuum
equation for the metric g̃ab = Ω2gab. When expressed in terms of unphysical
quantities it reads (see the formulae of Appendix 7)

0 = G̃ab = Gab −
2
Ω

(∇a∇bΩ− gab 2Ω)− 3
Ω2

gab∇cΩ∇cΩ. (13)

This equation can be interpreted as the Einstein equation for the metric gab
with a source term which is determined by the conformal factor. If we assume
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Ω to be known, then it is a second order equation for gab, which is formally
singular on I, where Ω vanishes. Therefore, it is very hard to make any progress
towards the existence problem using this equation. To remedy this situation,
Friedrich [43, 44, 45] suggested to consider a different system of equations on
M which can be derived from the geometric structure on M, the conformal
transformation properties of the curvature and the vacuum Einstein equation
on M̃. It consists of equations for a connection ∇a, its curvature and certain
other fields obtained from the curvature and the conformal factor.

Let us assume that ∇a is a connection on M which is compatible with the
metric gab so that

∇cgab = 0 (14)

holds. This condition does not fix the connection. Let T abc and Rabcd denote
the torsion and curvature tensors of ∇a. We will write down equations for the
following unknowns:

– the connection ∇a,

– the conformal factor Ω, a one-form Σa and a scalar function S,

– a symmetric trace-free tensorfield Φab, and

– a completely trace-free tensorfield Ka
bcd which has the symmetries of the

Weyl tensor.

We introduce the zero-quantity

Z = (T abc,Qabcd,Pabc,Bbcd,Sa,Sab,Da), (15)

where T abc is the torsion tensor of ∇a and the other components of Z are defined
in terms of the unknowns by

Qabcd ≡ Rabcd − ΩKabcd + 2 gc[aΦb]d − 2 gd[aΦb]c − 4 gc[agb]dΛ, (16)

Pabc ≡ 2∇[cΦa]b + 2gb[c∇a]Λ−Kcab
dΣd, (17)

Bbcd ≡ ∇aKa
bcd, (18)

Sa ≡ ∇aΩ− Σa, (19)
Sab ≡ ∇aΣb − gabS + Ω Φab, (20)

Da ≡ ∇aS + ΦabΣb − Ω∇aΛ− 2ΛΣa. (21)

In addition, we consider the scalar field

T ≡ 2ΩS − 2Ω2Λ− ΣaΣa (22)

on M. The equations Z = 0 are the regular conformal vacuum field equations.
They are first order equations. In contrast to Equation (13) this system is
regular1 on M, even on I because there are no terms containing Ω−1.

1It might be worthwhile to point out that the notion of regularity of the system of equations
has nothing whatsoever to do with the regularity of its solutions. While the former is a formal
property of the system which can be established simply by inspection, the latter is usually
rather difficult to establish because it involves detailed investigations of the appropriate well-
posed problems.
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Consider the equation Bbcd = ∇aKa
bcd = 0. This subsystem lies at the

heart of the full system of conformal field equations because it feeds back into
all the other parts. It was pointed out in Section 2.2 that the importance of
the Bianchi identity had been realized by Sachs. However, it was first used in
connection with uniqueness and existence proofs only by Friedrich [45, 44]. Its
importance lies in the fact that it splits naturally into a symmetric hyperbolic
system of evolution equations2 and constraint equations. Energy estimates for
the symmetric hyperbolic system naturally involve integrals over a certain com-
ponent of the Bel-Robinson tensor [52], a well known tensor in general relativity
which has certain positivity properties.

The usefulness of the conformal field equations is documented in

Theorem 1 Suppose that ∇a is compatible with gab and that Z = 0 on M. If
T = 0 at one point of M, then T = 0 everywhere and, furthermore, the metric
Ω−2gab is a vacuum metric on M̃.

Proof: From the vanishing of the torsion tensor it follows that ∇a is the Levi-
Civita connection for the metric gab. Then, Qabcd = 0 is the decomposition of
the Riemann tensor into its irreducible parts which implies that the Weyl tensor
Cabcd = ΩKa

bcd, that Φab is the trace-free part of the Ricci tensor, and that
Λ = 24R. The equation Sa = 0 defines Σa in terms of Ω, and the trace of the
equation Sab = 0 defines S = 1/42Ω. The trace-free part of that equation is
the statement that Φ̃ab = 0, which follows from the conformal transformation
property (110) of the trace-free Ricci tensor. With these identifications the
equations Babc = 0 resp. Pabc = 0 do not yield any further information because
they are identically satisfied as a consequence of the Bianchi identity on (M, g),
resp. (M̃, g̃).

Finally, we consider the field T . Taking its derivative and using Sab = 0 and
Da = 0, we obtain ∇aT = 0. Hence, T vanishes everywhere if it vanishes at one
point. It follows from the transformation (111) of the scalar curvature under
conformal rescalings that T = 0 implies Λ̃ = 0. Thus, g̃ab is a vacuum metric.

�

It is easy to see that the conformal field equations are invariant under the
conformal rescalings of the metric specified in Definition 2 and the implied
transformation of the unknowns. The conformal invariance of the system implies
that the information it contains depends only on the equivalence class of the
conformal space-time.

The reason for the vanishing of the gradient of T is essentially this: If we
2A system of partial differential equations for unknowns u = (u1, . . . , uM )t on RN+1 of

the form

A0∂0u +

N∑
k=1

Ak∂ku = b

is called symmetric hyperbolic, if the matrices Ak, k = 0, . . . , N are symmetric and the
matrix A0 is positive definite. Both the matrices and the right hand side b may depend on
the coordinates x0, x1, . . . , xN and the unknowns u.
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impose the equation Φ̃ab = 0 for the trace-free part of the Ricci tensor of a
manifold, then by use of the contracted Bianchi identity we obtain ∇̃aΛ̃ =
0. Expressing this in terms of unphysical quantities leads to the reasoning in
Theorem 1. The special case Ω = 1 reduces to the standard vacuum Einstein
equations, because then we have Kabcd = Cabcd and Σa = 0. Then Sab = 0
implies Φab = 0 and S = 0, while T = 0 forces Λ = 0. The other equations are
identically satisfied.

Given a smooth solution of the conformal field equations on a conformal
manifold, Theorem 1 implies that on M̃ we obtain a solution of the vacuum
Einstein equation. In particular, since the Weyl tensor of gab vanishes on I due
to the smoothness of the gravitational field, this implies that the Weyl tensor
has the peeling property in the physical space-time. Therefore, if existence of
suitable solutions of the conformal field equations on a conformal manifold can
be established, one has automatically shown existence of asymptotically flat
solutions of the Einstein equations. The main advantage of this approach is
the fact that the conformal compactification supports the translation of global
problems into local ones.

Note that the use of the conformal field equations is not limited to vac-
uum space-times. It is possible to include matter fields into the conformal field
equations provided the equations for the matter have well-defined and com-
patible conformal transformation properties. This will be the case for most of
the interesting fundamental field equations (Maxwell, Yang-Mills [52], scalar
wave [77, 78] etc.)

3.2 The reduction process for the conformal field equa-
tions

We have set up the conformal field equations as a system of equations for the
conformal geometry of a conformal Lorentz manifold. As such they are invariant
under general diffeomorphisms and, as we have seen, under conformal rescalings
of the metric. In this form they are not yet very useful for treating questions of
existence of solutions or even for numerical purposes. For existence results and
numerical evolution the geometric equations have to be transformed into partial
differential equations for tensor components which can then be used to set up
well-posed initial value problems for hyperbolic systems of evolution equations.

This process, sometimes referred to as “hyperbolic reduction” consists of
several steps. First, one needs to break the invariance of the equations. By im-
posing suitable gauge conditions one can specify a coordinate system, a linear
reference frame and a conformal factor. Then the equations can be written as
equations for the components of the geometric quantities with respect to the
chosen frame in the chosen conformal gauge and as functions of the chosen coor-
dinates. In the next step, one needs to extract from the equations a subsystem
of propagation equations which is hyperbolic so that it has a well-posed initial
value problem. It is often referred to as the “reduced equations”. Finally, one
has to make sure that solutions of the reduced system give rise to solutions of
the full system. This step may involve the verification that the gauge conditions
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imposed are compatible with the propagation equations, or that other equations
(constraints) not included in the reduced system are preserved under the prop-
agation. The first two steps, choice of gauge and extraction of the reduced
system, are very much related. Gauge conditions should be imposed such that
they lead to a hyperbolic reduced system. Furthermore, the gauge conditions
should be such that they can be imposed locally without loss of generality.

The gauge freedom present in the conformal field equations can easily be
determined. The freedom to choose the coordinates amounts to four scalar
functions while the linear reference frame, which we take to be orthogonal, can
be specified by a Lorentz rotation, which amounts to six free functions. Finally,
the choice of a conformal factor contributes another free function. Altogether,
there are eleven functions which can be chosen at will.

Once the geometric equations have been transformed into equations for com-
ponents, the next step is to extract the reduced system. These are equations
for the components of the geometric quantities defined above as well as for
gauge-dependent quantities: the components of the frame with respect to the
coordinate basis, the components of the connection with respect to the given
frame and the conformal factor.

There are several well-known choices for coordinates (harmonic, Gauß, Bondi,
etc.), as well as for frames (Fermi-Walker transport, Newman-Penrose, etc.).
These are usually “hard-wired” into the equations and one has no further con-
trol on the properties of the gauge. Gauß coordinates for instance have the
tendency to become singular when the geodesic congruence which is used for
their definition starts to self-intersect. Similarly, Bondi coordinates are attached
to null-hypersurfaces which have the tendency to self-intersect thus destroying
the coordinate system. In the context of existence proofs and the numerical
evolution of the equations it is of considerable interest to have additional flexi-
bility in order to prevent the coordinates or the frame from becoming singular.
The goal is to “fix the gauge” in as flexible a manner as possible and to obtain
reduced equations which still have useful properties.

A scheme to obtain the reduced equations in symmetric hyperbolic form
while still allowing for arbitrary gauges has been devised by Friedrich [48] (see
also [55] for various examples). The idea is based on the following observation.
Cartan’s structure equations which express the torsion and curvature tensors
in terms of tetrad and connection coefficients are two-form equations: They
are skew on two indices and the information contained in the equations is not
enough to fix the tetrad and the connection by specifying the torsion and the
curvature. The additional information is provided by fixing a gauge. Normally,
this is achieved by reducing the number of variables, in this case the number of
tetrad components and connection coefficients. However, one can just as well
add appropriate further equations to have enough equations for all unknowns.
The additional equations should be chosen so that the ensuing system has “nice”
properties.

We illustrate this procedure by a somewhat trivial example. Consider, in
flat space with coordinates (xµ) = (t, x1, x2, x3), a one-form ω which we require
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to be closed:
∂µων − ∂νωµ = 0.

From this equation we can extract three evolution equations, namely

∂tω1 − ∂1ω0 = 0,

∂tω2 − ∂2ω0 = 0,

∂tω3 − ∂3ω0 = 0.

Obviously, these three equations are not sufficient to reconstruct ω from ap-
propriate initial data. One possibility to proceed from here is to specify one
component of ω freely and then obtain equations for the other three. However,
it is easily seen that only by specifying ω0 we can achieve a pure evolution sys-
tem. Otherwise, we get mixtures of evolution and constraint equations. So we
may note that proceeding in this way leads to a restriction of possibilities as to
which components should be specified freely and, in general, it also entails that
derivatives of the specified component appear.

Another possible procedure is to enlarge the system by adding an equation
for the time derivative of ω0. Doing this covariantly implies that we should add
an equation in the form of a divergence

∂µωµ = F,

where F is an arbitrary function. This results in the system

∂tω0 − ∂1ω1 − ∂2ω2 − ∂3ω3 = F,

∂tω1 − ∂1ω0 = 0,

∂tω2 − ∂2ω0 = 0,

∂tω3 − ∂3ω0 = 0,

which is symmetric hyperbolic for any choice of F . Note also that F appears as
a source term and only in undifferentiated form. Clearly, our influence on the
component ω0 is now very indirect via the solution of the system, while before
we could specify it directly.

In a similar way, one proceeds in the present case of the conformal field
equations. Note, however, that this way of fixing a gauge is not at all specific
to these equations. Since it depends essentially only on the form of Cartan’s
structure equations it is applicable in all cases where these are part of the first
order system. The Cartan equations can be regarded as exterior equations for
the one-forms ωµa dual to a tetrad eaµ and the connection one-forms ωµa ν =
ωµc∇aecν . Similar to the system above, the equations involve only the exterior
derivative of the one-forms and so we expect that we should add equations in
divergence form, namely

∇aωµa = Fµ,
∇aωµa ν = Fµν ,

(23)
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with arbitrary gauge source functions Fµ for fixing coordinates and Fµν for
choosing a tetrad. Note that ωµa = ∇axµ implies Fµ = 2xµ.

In a given gauge (i.e., coordinates and frame field are specified) the gauge
sources can be determined from

Fµ = 2xµ, (24)
Fµν = ∇a (ωµc∇aecν) . (25)

In fact, these equations are exactly the same equations as (23) except that they
are written in a more invariant form. Now it is obvious that the gauge sources
contain information about the coordinates and the frame used. What needs to
be shown is that any specification of the gauge sources fixes a gauge. In fact,
suppose we are given functions F̂µ and F̂µν on R4 then there exist (locally)
coordinates x̂µ and a frame êaµ so that in that coordinate system the gauge
sources are just the prescribed functions F̂µ and F̂µν . This follows from the
equations

2x̂µ = F̂µ(x̂ν), (26)

∇a (ω̂µc∇aêcν) = F̂µν(x̂ρ). (27)

These are semi-linear wave equations which determine a unique solution from
suitably given initial data close to the initial surface. Note that on the right hand
side of (26) there is a function of the x̂µ, and not a source term. The equations
can be solved in steps. Once the coordinates x̂µ have been determined from (26),
the right hand side of (27) can be considered as a source term.

Finally, we need to discuss the gauge freedom in the choice of the conformal
factor Ω. In many discussions of asymptotic structure the conformal factor is
chosen in such a way that null-infinity is divergence-free, in addition to the van-
ishing of its shear, which is a consequence of the asymptotic vacuum equations.
That means that infinitesimal area elements remain unchanged in size as they
are parallelly transported along the generators of I. Since they also remain
unchanged in form due to the vanishing shear of I, they remain invariant and
hence they can be used to define a unique metric on the space of generators of
I. This choice simplifies many calculations on I, still leaving the conformal
factor quite arbitrary away from I. Yet, in numerical applications this choice
of the conformal factor may be too rigid and so one needs a flexible method for
fixing the conformal factor.

It turns out that one can introduce a gauge source function for the conformal
gauge as well. Consider the change of the scalar curvature under the conformal
rescaling gab 7→ ĝab = θ2gab, Ω 7→ Ω̂ = θΩ: It transforms according to

Λ 7→ Λ̂ = θ−2

(
Λ +

2θ

4θ

)
.

Reading this transformation law as an equation for θ we obtain

2θ = 4θ
(
θ2Λ̂− Λ

)
. (28)
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It follows from this equation that we may regard the scalar curvature as a gauge
source function for the conformal factor: For, suppose we specify the function Λ̂
arbitrarily onM, then Equation (28) is a non-linear wave equation for θ which
can be solved given suitable initial data. This determines a unique θ, hence a
unique Ω̂ and ĝab such that the scalar curvature of the rescaled metric ĝab has
scalar curvature Λ̂. Note that these considerations are local. They show that
locally the gauges can be fixed arbitrarily. However, the problem of identifying
and fixing a gauge globally is very difficult but also very important because
only when the gauges are globally known one can really compare two different
space-times.

Having established that the gauge sources do in fact, locally, fix a unique
gauge we can now split the system of conformal field equations into evolution
equations and constraints. The resulting system of equations is exhibited below.
The reduction process is rather straightforward but tedious. It is sketched in
Appendix 6. Here, we only describe it very briefly. We introduce an arbitrary
time-like unit vectorfield ta which has a priori no relation to the tetrad field
used for framing. We split all the tensorial quantities into the parts which are
parallel and orthogonal to that vector field using the projector hab = δba − tatb.
The connection coefficients for the four-dimensional connection ∇a are treated
differently. We introduce the covariant derivatives of the vectorfield ta by

χab = hca∇cta, χa = tc∇cta.

They account for half (9+3) of the four-dimensional connection coefficients.
The other half is captured by defining a covariant derivative ∂a which has the
property that it annihilates both ta and ta and agrees with ∇a when acting on
tensors orthogonal to ta (see Equations (40)). Note that we have not required
that ta be the time-like member of the frame, nor have we assumed that it be
hypersurface orthogonal. In the latter case, χab is the extrinsic curvature of the
family of hypersurfaces orthogonal to ta and hence it is symmetric. Further-
more, the derivative ∂a agrees with the Levi-Civita connection of the metric hab
induced on the leaves by the metric gab.

We write the equations in terms of the derivative ∂a and the “time derivative”
∂ which is defined in a way similar to ∂a (see Equation (40)), because in this
form it is quite easy to see the symmetric hyperbolicity of the equations.

As they stand, the Equations (90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103) form a symmetric hyperbolic system of evolution equations for
the collection of 65 unknowns

{cµ, cµa , χab, χa,Γabc,Λab, φab, φa, Eab, Bab,Ω, σa, σ, S}.

This property is present irrespective of the particular gauge. For any choice
of the gauge source functions Fµ, Fa, Fab and Λ, the system is symmetric
hyperbolic. The fact that the gauge sources appear only in undifferentiated
form implies that one can specify them not only as functions of the space-time
coordinates but also as functions of the unknown fields. In this way, one can
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feed information about the current status of the evolution back into the system
in order to influence the future development.

Other ways of specifying the coordinate gauge, including the familiar choice
of a lapse function and a shift vector, are not as flexible because then not only
these functions themselves appear in the equations, but also their derivatives.
Specifying them as functions of the unknown fields alters the principal part of
the system and, hence, the propagation properties of the solution. This may not
only corrupt the character of the system but it may also be disastrous for the
numerical applications because an uncontrolled change of the local propagation
speeds implies that the stability of a numerical scheme can break down due to
violation of the CFL condition (see [39] for a more detailed discussion of these
issues). However, due to the intuitive meaning of lapse and shift they are used
(almost exclusively) in numerical codes.

There are several other ways of writing the equations. Apart from various
possibilities to specify the gauges which result in different systems with different
numbers of unknowns, one can also set up the equations using spinorial methods.
This was the method of choice in almost all of Friedrich’s work (see e.g. [52] and
also [38]). The ensuing system of equations is analogous to those obtained
here using the tetrad formalism. The main advantages of using spinors is the
fact that the reduction process automatically leads to a symmetric hyperbolic
system, that the variables are components of irreducible spinors which allows
for the elimination of redundancies, and that variables and equations become
complex and hence easier to handle.

Another possibility is to ignore the tetrad formalism altogether (or, more
correctly, to choose as a basis for the tangent spaces the natural coordinate
frame). This also results in a symmetric hyperbolic system of equations (see [55,
81]), in which the gauge dependent variables are not the frame components with
their corresponding connection coefficients but the components of the spatial
metric together with the usual Christoffel symbols and the extrinsic curvature.

The fact that the reduced equations form a symmetric hyperbolic system
leads, via standard theorems, to the existence of smooth solutions which evolve
uniquely from suitable smooth data given on an initial surface. We have the

Theorem 2 [Friedrich [48]] For functions Fµ, Fa, Fab, Λ on R4 and data
given on some initial surface let u be the solution of the reduced equations. If
u satisfies the conformal field equations (16, 17, 18, 19, 20, 21) on the initial
surface then, in fact, it satisfies them on the entire domain of dependence of the
initial surface in the space-time defined by u.

The proof of this theorem relies on the existence of a “subsidiary system”
of equations for the zero-quantity Z (see Equation (15)), whose vanishing in-
dicates the validity of the conformal field equations. This system turns out to
be linear, symmetric hyperbolic and homogeneous. Thus, one has uniqueness
of the solutions so that Z vanishes in the domain of dependence of the initial
surface if it vanishes on the surface. Hence, the conformal field equations hold.
It can be shown that solutions obtained from different gauge source functions
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are in the same conformal class, so they lead to the same physical space-time.

3.3 Initial value problems

From the physical point of view the most interesting scenario is the following one:
A gravitating material system (like e.g. several extended bodies) evolves from
a given initial state, possibly interacting with incoming gravitational radiation
and emitting outgoing gravitational radiation until it reaches a final state. This
situation is sketched in Figure 6.

Figure 6: The physical scenario: The figure describes the geometry of an isolated
system. Initial data are prescribed on the blue parts, i.e. on a hyperboloidal
hypersurface and the part of I− which is in its future. Note that the two cones
I+ and I− are separated to indicate the non-trivial transition between them.

In more mathematical terms, this requires the solution of an initial value
problem: We provide appropriate initial data, describing the initial configura-
tion of the matter and the geometry, on a hyperboloidal hypersurface Σ0, and
appropriate boundary data, describing the incoming gravitational radiation, on
the piece of I− which is in the future of Σ0. Then we have to show that there is a
unique solution of the conformal field equations coupled to the matter equations
which exists for some time. If the situation is “close enough” to a Newtonian
situation, i.e., the gravitational waves are weak and the matter itself is rather
“tame”, then one would expect that there is a solution, i.e. a space-time, which
is regular on arbitrary hyperboloidal hypersurfaces intersecting I+. In general,
however, we cannot expect to have a regular point i+ representing time-like
infinity.

So far, results of this kind are out of reach. The reason is not so much the
incorporation of matter into the conformal field equations but a more funda-
mental one. Space-like infinity i0 is a singularity for the conformal structure
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of any space-time, which has a non-vanishing ADM-mass. Without the proper
understanding of i0 there will be no way to bridge the gap between past and
future null-infinity because i0 provides the link between the incoming and the
outgoing radiation fields.

The results obtained so far are concerned only with the pure radiation prob-
lem, i.e. the vacuum case. In [29] Christodoulou and Klainerman prove the
global non-linear stability of Minkowski space, i.e. the existence of global solu-
tions of the Einstein vacuum equations for “small enough” Cauchy data which
satisfy certain fall-off conditions at space-like infinity. Their result qualitatively
confirms the expectations based on the concept of asymptotic flatness. How-
ever, they do not recover the peeling property for the Weyl tensor but a weaker
fall-off, which implies that in this class of solutions the conformal compactifica-
tion would not be as smooth as it was expected to be. This raises the question
whether their results are sharp, i.e., whether there are solutions in this class
which indeed have their fall-off behaviour. In that case, one would probably
have to strengthen the fall-off conditions of the initial data at space-like infinity
in order to establish the correct peeling of the Weyl tensor. Then an interesting
question arises as to what the physical meaning of these stronger fall-off con-
ditions is. An indication that maybe more restrictive conditions are needed is
provided by the analysis of the initial data on hyperboloidal hypersurfaces (see
below).

The first result [46] obtained with the conformal field equations is concerned
with the asymptotic characteristic initial value problem (see Figure 7) in the
analytic case. It was later generalized to the C∞ case.

Figure 7: The geometry of the asymptotic characteristic initial value problem:
Characteristic data are given on the blue parts, i.e. an ingoing null surface and
the part of I− which is in its future. Note that the ingoing surface may develop
self-intersections and caustics.
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In this kind of initial value problem, one specifies data on an ingoing null
hypersurface N and that part of I which is in the future of N . The data
which have to be prescribed are essentially the so-called null data on N and I,
i.e. those parts of the rescaled Weyl tensor which are entirely intrinsic to the
respective null hypersurfaces. In the case of I the null datum is exactly the
radiation field.

Theorem 3 [Kánnár [88]] For given smooth null data on an ingoing null hy-
persurface N and a smooth radiation field on the part I of I− which is to the
future of the intersection S of N with I− and certain data on S, there exists
a smooth solution of Einstein’s vacuum equations in the future of N ∪ I which
implies the given data on N ∪ I.

The result is in complete agreement with Sachs’ earlier analysis of the asymp-
totic characteristic initial value problem based on formal expansion methods
[128].

Another case is concerned with the existence of solutions representing pure
radiation. These are vacuum solutions characterized by the fact that they are
smoothly extensible through past time-like infinity, i.e. by the regularity of the
point i−. This case has been treated in [49, 51]. A solution of this kind is
uniquely characterized by its radiation field, i.e. the intrinsic components of the
rescaled Weyl tensor on I−. In the analytic case, a formal expansion of the
solution at i− can be derived, and growth conditions on the coefficients can be
given to ensure convergence of the formal expansion near i−. Furthermore, there
exists a surprising relation between this type of solutions and static solutions,
summarized in

Theorem 4 [Friedrich] With each asymptotically flat static solution of Ein-
stein’s vacuum field equations can be associated another solution of these equa-
tions which has a smooth conformal boundary I− and for which the point i− is
regular.

This result establishes the existence of a large class of purely radiative solu-
tions.

For applications, however, the most important type of initial value prob-
lem so far, in the sense that the asymptotic behaviour can be controlled, has
been the hyperboloidal initial value problem where data are prescribed on a
hyperboloidal hypersurface. This is a space-like hypersurface whose induced
physical metric behaves asymptotically like a surface of constant negative cur-
vature (see Section 2.4). In the conformal picture, a hyperboloidal hypersurface
is characterized simply by the geometric fact that it intersects I transversely
in a two-dimensional space-like surface. Prototypes of such hypersurfaces are
the space-like hyperboloids in Minkowski space-time. In the Minkowski pic-
ture they can be seen to become asymptotic to null cones which suggests that
they reach null-infinity. However, the picture is deceiving: The conformal struc-
ture is such that the hyperboloids always remain space-like, the null-cones and
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the hyperboloids never become tangent. The intersection is a two-dimensional
surface S, a “cut” of I. The data implied by the conformal fields on such a
hypersurface are called hyperboloidal initial data. The first result obtained for
the hyperboloidal initial value problem states that if the space-time admits a
hypersurface which extends smoothly across I+ with certain smooth data given
on it, then the smoothness of I+ will be guaranteed at least for some time into
the future. This is contained in

Theorem 5 [Friedrich [47]] Smooth hyperboloidal initial data on a hyperboloidal
hypersurface Σ determine a unique solution of Einstein’s vacuum field equations
which admits a smooth conformal boundary at null-infinity in the future of Σ.

There exists also a stability result which states that there are solutions which
behave exactly like Minkowski space near future time-like infinity:

Theorem 6 [Friedrich [50]] If the hyperboloidal initial data are in a sense suf-
ficiently close to Minkowskian hyperboloidal data, then there exists a conformal
extension of the corresponding solution which contains a point i+ such that I+

is the past null cone of that point.

It should be emphasized that this result implies that the physical metric of
the corresponding solution is regular for all future times. Thus, the theorem
constitutes a (semi-)global existence result for the Einstein vacuum equations.

3.4 Hyperboloidal initial data

Now the obvious problem is to determine hyperboloidal initial data. That such
data exist follows already from Theorem 4 because one can construct hyper-
boloidal hypersurfaces together with data on them in any of the radiative so-
lutions whose existence is guaranteed by that theorem. However, one can also
construct such data sets in a similar way to the construction of Cauchy data on
an asymptotically Euclidean hypersurface by solving the constraint equations
implied on the Cauchy surface. Let Σ̃ be a hyperboloidal hypersurface in an
asymptotically flat vacuum space-time which extends out to I, touching it in
a two-surface ∂Σ which is topologically a two-sphere. The assumptions on Σ̃
are equivalent to the fact that Σ̃ := Σ ∪ S is a smooth Riemannian manifold
with boundary, which carries a smooth metric hab and a smooth function Ω,
obtained by restriction of the unphysical metric and the conformal factor. The
conformal factor is a defining function for the boundary ∂Σ (i.e. it vanishes only
on ∂Σ with non-vanishing gradient), and together with the metric it satisfies

h̃ab = Ω−2hab (29)

on Σ̃, where h̃ab is the metric induced on Σ̃ by the physical metric. Furthermore,
let χ̃ab be the extrinsic curvature of Σ̃ in the physical space-time. Together with
h̃ab it satisfies the vacuum constraint equations,

R̃− χ̃abχ̃ab + (χ̃aa)2 = 0, (30)
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∂̃aχ̃
a
b − ∂̃bχ̃aa = 0, (31)

where ∂̃a is the Levi-Civita connection of h̃ab and R̃ is its scalar curvature.
Several results of increasing generality have been obtained. We discuss only

the simplest case here, referring to the literature for the more general results.
Assume that the extrinsic curvature is a pure trace term,

χ̃ab =
1
3
ch̃ab.

The momentum constraint (31) implies that c is constant while the hyper-
boloidal character of Σ̃ implies that c 6= 0. With these simplifications and a
rescaling of h̃ab with a constant factor, the Hamiltonian constraint (30) takes
the form

R̃ = −6. (32)

A further consequence of the condition (29) is the vanishing of the magnetic
part Bab of the Weyl tensor. For any defining function ω of the boundary, the
conformal factor has the form Ω = φ−2ω. Expressing Equation (32) in terms of
the unphysical quantities hab and Ω yields the single second-order equation

8ω2∆φ− 8ω∂aω∂aφ−
[
ω2R+ 4ω∆ω − 6∂aω∂aω

]
φ = 6φ5. (33)

This equation is a special case of the Lichnérowicz equation and is sometimes
also referred to as the Yamabe equation. For a given metric hab and boundary
defining function ω it is a second-order, non-linear equation for the function
φ. Note that the principal part of the equation degenerates on the boundary.
Therefore, on the boundary, the Yamabe equation degenerates to the relation

φ∂aω∂aω = φ5.

Note also that φ = 0 is a solution of (33) which, however, is not useful for
our purposes because it would correspond to a conformal factor with vanishing
first derivative on I. Therefore, we require that φ be non-vanishing on the
boundary, i.e. bounded from below by a strictly positive constant. Then the
relation above determines the boundary values of φ in terms of the function ω.
Taking derivatives of Equation (33), one finds that also the normal derivative
of φ is fixed on the boundary in terms of the second derivative of ω.

A given metric h̃ab does not fix a unique pair (hab,Ω). Therefore, Equa-
tion (33) has the property that, for fixed ω, rescaling the metric hab with an
arbitrary smooth non-vanishing function θ on Σ∪S according to hab 7→ θ−4hab
results in a rescaling of the solution φ of (33) according to φ 7→ θφ and, hence,
a change in the conformal factor Ω 7→ θ−2Ω.

Now we define the trace-free part sab = φab − 1/3habφcc of the projection
φab of the trace-free part of the unphysical Ricci tensor onto Σ and consider the
equations

sab = −Ω−1

(
∂a∂bΩ−

1
3
hab∆Ω

)
,

Eab = −Ω−1

(
Rab −

1
3
habR− sab

)
,

(34)
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which follow from the Equations (20) and (16), respectively. Together with
the fields hab, Ω, s = 1/3∆Ω they provide initial data for all the quantities
appearing in the evolution equations under the given assumptions. As they
stand, these expressions are formally singular at the boundary and one needs
to worry about the possibility of a smooth extension of the field to ∂Σ. This
question was answered in [4], where the following theorem was proved:

Theorem 7 Suppose (Σ, h) is a three-dimensional, orientable, compact, smooth
Riemannian manifold with boundary ∂Σ. Then there exists a unique solution φ
of (33), and the following conditions are equivalent:

1. The function φ as well as the tensor fields sab and Eab determined on the
interior Σ̃ from h and Ω = φ−2ω extend smoothly to all of Σ.

2. The conformal Weyl tensor computed from the data vanishes on ∂Σ.

3. The conformal class of h is such that the extrinsic curvature of ∂Σ with
respect to its embedding in (Σ, h) is pure trace.

Condition (3) is a weak restriction of the conformal class of the metric h on
Σ, since it is only effective on the boundary. It is equivalent to the fact that
in the space-time which evolves from the hyperboloidal data, null-infinity I is
shear-free. Interestingly, the theorem only requires Σ to be orientable and does
not restrict the topology of Σ any further.

This theorem gives the answer in a highly simplified case because the free-
dom in the extrinsic curvature has been suppressed. But there are also several
other, less restrictive, treatments in the literature. In [2, 3] the assumption (29)
is dropped allowing for an extrinsic curvature which is almost general apart from
the fact that the mean curvature is required to be constant. In [85] also this re-
quirement is dropped (but, in contrast to the other works, there is no discussion
of smoothness of the implied conformal initial data), and in [87] the existence
of hyperboloidal initial data is discussed for situations with a non-vanishing
cosmological constant.

The theorem states that one can construct the essential initial data for the
evolution once Equation (33) has been solved. The data are given by expressions
which are formally singular at the boundary because of the division by the
conformal factor Ω. This is of no consequences for the analytical considerations
if Condition (3) in the theorem is satisfied. However, even then it is a problem
for the numerical treatments because one has to perform a limit process to
get to the values of the fields on the boundary. This is numerically difficult.
Therefore, it would be desirable to solve the conformal constraints directly. It
is clear from Equations (79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89) that the
conformal constraints are regular as well. Some of the equations are rather
simple but the overall dependencies and interrelations between the equations
are very complicated. At the moment there exists no clear analytical method
(or even strategy) for solving this system. An interesting feature appears in
connection with Condition (3) of the theorem and analogous conditions in the
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more general cases. The necessity of having to impose this condition seems
to indicate that the development of hyperboloidal data is not smooth but in
general at most C2. If the condition were not imposed then logarithms appear
in an expansion of the solution of the Yamabe equation near the boundary,
and it is rather likely that these logarithmic terms will be carried along with
the time evolution, so that the developing null-infinity looses differentiability.
Thus, the conformal boundary is not smooth enough and, consequently, the
Weyl tensor need not vanish on I which, in addition, is not necessarily shear-
free. The Sachs peeling property is not completely realized in these situations.
One can show [2] that generically hyperboloidal data fall into the class of “poly-
homogeneous” functions which are (roughly) characterized by the fact that they
allow for asymptotic expansions including logarithmic terms. This behaviour
is in accordance with other work [148] on the smoothness on I, in particular
with the Bondi-Sachs type expansions which were restricted by the condition of
analyticity (i.e. no appearance of logarithmic terms). It is also consistent with
the work of Christodoulou and Klainerman.

Solutions of the hyperboloidal initial value problem provide pieces of space-
times which are semi-global in the sense that their future (or past) development
is determined. However, the domain of dependence of a hyperboloidal initial
surface does not include space-like infinity and one may wonder whether this
fact is the reason for the apparent generic non-smoothness of null-infinity. Is
it not conceivable that the possibility of making a connection between I+ and
I− across i0 to build up a global space-time automatically excludes the non-
smooth data? If we let the hyperboloidal initial surface approach space-like
infinity it might well be that Condition (3) imposes additional conditions on
asymptotically flat Cauchy data at spatial infinity. These conditions would make
sure that the development of such Cauchy data is an asymptotically flat space-
time, in particular that it has a smooth conformal extension at null-infinity.

These questions give some indications about the importance of gaining a
detailed understanding of the structure of gravitational fields near space-like in-
finity. One of the difficulties in obtaining more information about the structure
at space-like infinity is the lack of examples which are general enough. There
exist exact radiative solutions with boost-rotation symmetry [20]. They possess
a part of a smooth null-infinity which, however, is incomplete. This is a general
problem because the existence of a complete null-infinity with non-vanishing
radiation restricts the possible isometry group of a space-time to be at most
one-dimensional with space-like orbits [13]. Some of the boost-rotation sym-
metric space-times even have a regular i0, thus they have a vanishing ADM-
mass. Other examples exist of space-times which are solutions of the Einstein-
Maxwell [32] or Einstein-Yang-Mills [14] equations. They have smooth and
complete null-infinities. However, they were constructed in a way which en-
forces the field to coincide with the Schwarzschild or the Reissner-Nordström
solutions near i0. So they are not general enough to draw any conclusions about
the generic behaviour of asymptotically flat space-times near i0.
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3.5 Space-like infinity

As indicated above, the problem at i0 is one of the most urgent and important
ones related to the conformal properties of isolated systems. However, it is also
one of the most complicated ones and a thorough discussion of all its aspects is
not possible here. We will try to explain in rough terms what the new develop-
ments are, but we have to refer to [57] for the rigorous statements and all the
details.

There have been several approaches over the years towards a treatment of
space-like infinity. Geroch [66] gave a geometric characterization along the same
lines as for null-infinity based on the conformal structure of Cauchy surfaces. He
used his construction to define multipole moments for static space-times [63, 64],
later to be generalized to stationary space-times by Hansen [74]. It was shown
by Beig and Simon [19, 136] that the multipole moments uniquely determine a
stationary space-time and vice versa.

Different geometric characterizations of spatial infinity in terms of the four-
dimensional geometry were given by Sommers [137], Ashtekar and Hansen [10,
6], and by Ashtekar and Romano [11]. The difficulties in all approaches which
try to characterize the structure of gravitational fields at space-like infinity in
terms of the four-dimensional geometry arise from the lack of general results
about the evolution of data near spatial infinity. Since there are no radiating
solutions which are general enough at spatial infinity to provide hints, one is
limited more or less to one’s intuition. So all these constructions essentially
impose “reasonable” asymptotic conditions on the gravitational field at i0 and
from them derive certain nice properties of space-times which satisfy these con-
ditions. But there is no guarantee that there are indeed solutions of the Ein-
stein equations which exhibit the claimed asymptotic behaviour. In a sense,
all these characterisations are implicit definitions of certain classes of space-
times (namely those which satisfy the imposed asymptotic conditions). What
is needed is an analysis at space-like infinity which is not only guided by the
geometry but which also takes the field equations into account (see e.g. [18, 17]
for such attempts using formal power series).

Recently, Friedrich [57] has given such an analysis of space-like infinity which
is based exclusively on the initial data, the field equations and the conformal
structure of the space-time. In this representation several new aspects come
together. First, in order to simplify the analysis, an assumption on the initial
data (metric and extrinsic curvature) on an asymptotically Euclidean hypersur-
face Σ̃ is made. Since the focus is on the behaviour of the fields near space-like
infinity, the topology of Σ̃ is taken to be R3. It is assumed that the data
are time-symmetric (χ̃ab = 0) and that on Σ̃ a (negative definite) metric h̃ab
with vanishing scalar curvature is given. Let Σ be the conformal completion of
(Σ̃, h̃ab) which is topologically S3, obtained by attaching a point i to Σ̃, and
assume furthermore that there exists a smooth positive function Ω on Σ with
Ω(i) = 0, dΩ(i) = 0 and Hess Ω(i) negative definite. Furthermore, the metric
hab = Ω2h̃ab extends to a smooth metric on S. Thus, the three-dimensional
conformal structure defined by h̃ab is required to be smoothly extensible to the
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point i.
From these assumptions follows that the conformal factor near i is deter-

mined by two smooth functions U and W , where U is characterized by the
geometry near i while W collects global information because W (i) = 1

2mADM,
while U(i) = 1. With this information the rescaled Weyl tensor, the most im-
portant piece of initial data for the conformal field equations, near i is found
to consist of two parts, a “massive” and a “mass-less” part. Under suitable
conditions, the mass-less part, determined entirely by the local geometry near i,
can be extended in a regular way to i, while the massive part always diverges at
i as 1/|x|3 in a normal coordinate system (x1, x2, x3) at i unless the ADM-mass
vanishes.

In order to analyze the singular behaviour of the initial data in more detail,
the point i is blown up to a spherical set I0 essentially by replacing it with the
sphere of unit vectors at i. Roughly speaking, this process yields a covering
space C of (a suitable neighbourhood of i in) Σ projecting down to Σ which has
the following properties: The pre-image I0 of i is an entire sphere while any
other point on Σ has exactly two pre-image points. There exists a coordinate
r on C which vanishes on I0 and which is such that on each pair of pre-image
points it takes values r and −r, respectively. The actual blowup procedure
involves a rather involved bundle construction which also takes into account
the tensorial (respectively spinorial) nature of the quantities in question. The
reader is referred to [57] for details.

Consider now a four-dimensional neighbourhood of space-like infinity. The
next important step is the realization that, in order to take full advantage of the
conformal structure of space-time, it is not enough to simply allow for metrics
which are conformally equivalent to the physical metric but that one should
also allow for more general connections. Instead of using a connection which
is compatible with a metric in the conformal class, one may use a connection
∇a which is compatible with the conformal structure, i.e. which satisfies the
condition

∇cg̃ab = 2λcg̃ab

for some one-form λa. If λa is exact, then one can find a metric in the con-
formal class for which ∇a is the Levi-Civita connection. Generally, however,
this will not be the case. This generalization is motivated by the use of con-
formal geodesics as indicated below, and its effect is to free up the conformal
factor, which we call Θ to distinguish it from the conformal factor Ω given on
the initial surface Σ, from the connection (recall that two connections which are
compatible with metrics in the same conformal class differ only by terms which
are linear in the first derivative of the conformal factor relating the metrics).
As a consequence, the conformal field equations, when expressed in terms of a
generalized connection, do not any longer contain an equation for the conformal
factor. It appears, instead, as a gauge source function for the choice of con-
formal metric. Additionally, a free one-form appears which characterizes the
freedom in the choice of the conformal connection.

To fix this freedom, Friedrich uses conformal geodesics [60]. These are curves
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which generalize the concept of auto-parallel curves. They are given in terms
of a system of ordinary differential equations (ODE’s) for their tangent vector
together with a one-form along them. In coordinates this corresponds to a third-
order ODE for the parameterization of the curve. Their crucial property is that
they are defined entirely by the four-dimensional conformal structure with no
relation to any specific metric in that conformal structure.

A time-like congruence of such curves is used to set up a “Gauß” coordinate
system in a neighbourhood of i0 and to define a conformal frame, a set of
four vectorfields which are orthonormal for some metric in the conformal class.
This metric in turn defines a conformal factor Θ which rescales it to the physical
metric. The one-form determined by the conformal geodesics defines a conformal
connection ∇a, thus fixing the freedom in the connection. In this way, the gauge
is fixed entirely in terms of the conformal structure.

If the physical space-time is a vacuum solution of the Einstein equations
then one can say more about the behaviour of the conformal factor Θ along the
conformal geodesics: It is a quadratic function of the natural parameter τ along
the curves, vanishing at exactly two points if the initial conditions for the curves
are chosen appropriately. The vanishing of Θ indicates the intersection of the
curves with I±. The intersection points are separated by a finite distance in
the parameter τ .

Now one fixes an initial surface Σ with data as described above, and the
conformal geodesics are used to set up the coordinate system and the gauge as
above. When the blow-up procedure is performed for Σ, a new finite represen-
tation of space-like infinity is obtained which is sketched in Figure 8.

The point i on the initial surface has been replaced by a sphere I0 which is
carried along the conformal geodesics to form a finite cylinder I. The surfaces
I± are the surfaces on which the conformal factor Θ vanishes. They touch the
cylinder in the two spheres I±, respectively. The conformal factor Θ vanishes
with non-vanishing gradient on I and on I± while on the spheres I± its gradient
also vanishes.

In this representation there is for the first time a clean separation of the
issues which go on at space-like infinity: The spheres I± are the places where
“I touches i0” while the finite cylinder I serves two purposes. On the one hand,
it represents the endpoints of space-like geodesics approaching from different
directions, while, on the other hand, it serves as the link between past and
future null-infinity. The part “outside” the cylinder where r is positive between
the two null surfaces I± corresponds to the physical space-time, while the part
with r negative is not causally related to the physical space-time but constitutes
a smooth extension. For easy reference, we call this entire space an extended
neighbourhood of space-like infinity.

The conformal field equations, when expressed in the conformal Gauß gauge
of this generalized conformal framework, yield a system of equations which has
similar properties as the earlier version: It is a system of equations for a frame,
the connection coefficients with respect to the frame, and the curvature, split
up into the Ricci and the Weyl parts; they allow the extraction of a reduced
system which is symmetric hyperbolic and propagates the constraint equations.
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Figure 8: The geometry near space-like infinity: The “point” i0 has been blown
up to a cylinder which is attached to I− and I+. The physical space-time is
the exterior part of this “stovepipe”. The “spheres” I± and I0 are shown in blue
and light green, respectively. The brown struts symbolize the conformal geodesics
used to set up the construction. Note that they intersect I and continue into
the unphysical part.
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Its solutions yield solutions of the vacuum Einstein equations whenever Θ > 0.
The Bianchi identities, which form the only sub-system consisting of partial
differential equations, again play a key role in the system. Due to the use of
the conformal Gauß gauge, all other equations are simply transport equations
along the conformal geodesics.

The reduced system is written in symbolic form as

Aτ ∂

∂τ
u + Ar ∂

∂r
u + Aθ ∂

∂θ
u + Aφ ∂

∂φ
u = Bu, (35)

with symmetric matrices Aτ , Ar, Aθ, Aφ, and C which depend on the unknown
u and the coordinates (τ, r, θ, φ). This system as well as initial data for it, first
defined only on the original space-time, can be extended in a regular way to
an extended neighbourhood of space-like infinity which allows for the setup of
a regular initial value problem at space-like infinity. Its properties are most
interesting: When restricted to I0, the initial data coincide necessarily with
Minkowski data, which together with the vanishing of Θ implies that on the
entire cylinder I the coefficient matrix Ar vanishes. Thus, the system (35)
degenerates into an interior symmetric hyperbolic system on I. Therefore, the
finite cylinder I is a total characteristic of the system. The two null-infinities
I± are also characteristics, and at the intersections I± between them and I the
system degenerates: The coefficient matrix Aτ which is positive definite on I
and I± looses rank on I±.

The fact that I is a total characteristic implies that one can determine all
fields on I from data given on I0. I is not a boundary on which one could
specify in- or outgoing fields. This is no surprise, because the system (35)
yields an entirely structural transport process which picks up data delivered
from I− via I− and moves them to I+ via I+. It is also consistent with the
standard Cauchy problem where it is known that one cannot specify any data
“at infinity”.

The degeneracy of the equations at I± means that one has to take special
precautions to make sure that the transitions from and to I± are smooth. In
fact, not all data “fit through the pipe”: Friedrich has derived restrictions on the
initial data of solutions of the finite initial value problem which are necessary
for regularity through I±. They are conditions on the conformal class of the
initial data, stating that the Cotton tensor and all its symmetrized and trace-
removed derivatives should vanish at the point i in the initial surface. If this is
not the case, then the solution of the intrinsic system will develop logarithmic
singularities which will then probably spread across null-infinity, destroying its
smoothness. So here is another concrete indication that initial data have to
be restricted albeit in a rather mild way in order for the smooth picture of
asymptotic flatness to remain intact. It is not known whether this condition is
also sufficient nor what its physical implications are.

Note that the conditions on the Cotton tensor are entirely local-at-infinity.
This is the first time that such local conditions have been derived. It is rather
surprising that the equations should render this possible.

Living Reviews in Relativity (2000-4)
http://www.livingreviews.org

http://www.livingreviews.org


51 Conformal Infinity

The setting described in the above paragraphs certainly provides the means
to analyze the consequences of the conformal Einstein evolution near space-
like infinity and to understand the properties of gravitational fields in that
region. The finite picture allows the discussion of the relation between various
concepts which are defined independently at null and space-like infinity. As one
application of this kind Friedrich and Kánnár [58] have related the Newman-
Penrose constants which are defined by a surface integral over a cut of I+ to
initial data on Σ. The cut of I+ is pushed down towards I+ where it is picked
up by the transport equations of system (35). In a similar way, one can relate
the Bondi- and ADM-masses of a space-time.

3.6 Going further

Readers who are interested in obtaining information about the current status
of existence theorems in general relativity are referred to Rendall’s recently
updated Living Reviews article [121].

Although we have restricted ourselves to the case of a vanishing cosmo-
logical constant this does not mean that other cases have not been analyzed.
Friedrich [52] has shown the existence of asymptotically simple de Sitter type
solutions of the Einstein-Maxwell-Yang-Mills equations and stability of de Sit-
ter space. More recently [54], with the general version of his conformal field
equations, he was able to demonstrate the existence of asymptotically simple
anti-de Sitter type solutions.

Finally, it should also be mentioned that recently some work has gone into
generalizing the Bondi-Sachs calculations to poly-homogeneous space-times [30,
143, 144].
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4 Numerical Issues

In this section we discuss some of the issues which have to be confronted in
a numerical implementation of the Einstein equations and, in particular, of
the conformal field equations to solve the hyperboloidal initial value problem.
The material presented in this section is based to a large extent on work by
Hübner [76, 77, 78, 79, 81, 82] and Frauendiener [38, 39, 40, 41, 42]. These are
also the references which should be consulted for a more detailed discussion of
the various numerical schemes. The presentation here will be rather cursory in
order to keep it reasonably short.

4.1 Why use the conformal method for numerical relativ-
ity?

At the moment three major approaches towards the numerical treatment of
asymptotically flat space-times exist. They are based on three different for-
mulations of the Einstein equations: the standard Cauchy problem using the
Einstein equations in either ADM-like form or in one of the current hyperbolic
formulations, the characteristic initial value problem for the standard Einstein
equations in Bondi- or Newman-Penrose form, and the Cauchy problem for the
conformal field equations.

Figure 9: The geometry of the standard Cauchy approach. The green lines are
surfaces of constant time. The blue line indicates the outer boundary.

Let us discuss the main properties of each of these approaches with respect
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to their treatment of infinity. In this connection it is useful to look at conformal
diagrams. In all three cases the physical situation is the same. A source, indi-
cated by a shaded brown region, evolves between the time-like past and future
infinities i± and thereby emits gravitational radiation which escapes towards
future null infinity I+. The three methods differ in how they introduce an evo-
lution process in order to simulate the physical system. The goal is to obtain
the radiation data which are received by an observer on I+ as accurately as
possible (see [42] for a discussion of the issues involved in the reception process).

In Figure 9 the geometry is sketched which is implied by solving the Cauchy
problem for the standard Einstein equations in any of the various forms which
exist today: ADM formulation, old [5] and improved [16], or any one of the
hyperbolic formulations like, e.g. in [1, 61]. In this approach the physical space-
time is decomposed into space and time by the introduction of a time coordinate.
The hypersurfaces of constant physical time are Cauchy surfaces and, hence,
asymptotically Euclidean. They are indicated by green lines. The blue line
corresponds to a (normally time-like) hypersurface which has to be introduced
because for the standard Einstein equations, formulated in the physical space-
time, null-infinity is infinitely far away. The numerical grids are distributed
along the constant time hypersurfaces, and with each time-step they evolve
from one hypersurface to the next. They have outermost grid-points which, in
the course of the evolution, move along that time-like hypersurface.

Thus, inevitably, we are facing the task of solving an initial boundary value
problem (IBVP) for the Einstein equations. Such problems are notoriously
difficult to treat numerically. This, in fact, is one of the big problems in scientific
computing as witnessed by the following quotation [142]:

The difficulties caused by boundary conditions in scientific comput-
ing would be hard to overemphasize. Boundary conditions can easily
make the difference between a successful and an unsuccessful com-
putation, or between a fast and a slow one. Yet in many important
cases, there is little agreement about what the proper treatment of
the boundary should be.

One of the sources of difficulty is that although some numerical
boundary conditions come from discretizing the boundary conditions
for the continuous problem, other “artificial” or “numerical bound-
ary conditions” do not. The reason is that the number of boundary
conditions required by a finite difference formula depends on its sten-
cil, not on the equation being modeled. Thus even a complete math-
ematical understanding of the initial boundary value problem to be
solved (which is often lacking) is in general not enough to ensure
a successful choice of numerical boundary conditions. This situa-
tion reaches an extreme in the design of what are variously known
as “open”, “radiation”, “absorbing”, “non-reflecting”, or “far-field”
boundary conditions, which are numerical artifacts designed to limit
a computational domain in a place where the mathematical problem
has no boundary at all.
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Despite these remarks, perhaps the most basic and useful advice one
can offer concerning numerical boundary conditions is this: Before
worrying about discretization, make sure to understand the mathe-
matical problem. If the IBVP is ill-posed, no amount of numerical
cleverness will lead to a successful computation. This principle may
seem too obvious to deserve mention, but it is surprising how often
it is forgotten.

While these remarks apply to any numerical problem, they are particularly
relevant to numerical relativity.

Until only quite recently no result on the IBVP for the Einstein equations
was available. This situation has changed with the work in [59] where it is
proved that the IBVP for the Einstein equations in the physical space-time is
well-posed for a certain class of boundary conditions. In rough terms, these
boundary conditions can be understood as follows: For an arbitrarily specified
time-like unit vector tangent to the boundary we can define a null-tetrad by
taking the two real null-vectors as lying in the two-dimensional space spanned
by that vector and the unit vector normal to the boundary. This fixes the
null-tetrad up to boosts in that plane and rotations in the plane orthogonal
to it. With respect to that tetrad we can define the (complex) Weyl tensor
components Ψ0 and Ψ4. Then, the boundary conditions have the form

q = −Ψ4 + αΨ0 + βΨ̄0. (36)

Here α, β and q are complex functions on the boundary. q can be freely specified,
thus representing the free data, while α and β are restricted by some condition,
which implies in particular that |α|2 + |β|2 ≤ 1. They can be regarded as
specifying the reflection and transmission properties of the boundary. In the
frame defined above, the component Ψ0 resp. Ψ4 can be interpreted as the
part of the Weyl tensor which propagates orthogonally across the boundary
in the outward or inward direction, respectively. The boundary conditions (36)
essentially say that we can specify the value of the ingoing part freely and couple
some parts of the outgoing field back to it.

Consider the boundary condition with q = 0 and α = β = 0 viz. Ψ4 = 0.
This looks like a completely absorbing boundary condition or, in other words,
like the condition of no incoming radiation. However, this is deceiving. Recall
that the Weyl tensor components are defined with respect to a time-like unit
vector. But there is no distinguished time-like unit-vector available so that they
are all equivalent. This means that the boundary conditions, and hence the
presence or absence of incoming radiation, are observer dependent. Clearly, the
condition of no incoming radiation is not compatible with the Einstein equations
anyway, because outgoing waves will always be accompanied by backscattered
waves generated by the non-linear nature of the equations. The impossibility of
a local completely absorbing boundary condition for the scalar wave equation
in flat space has been emphasized already in numerical analysis [36]. The deep
reason behind this fact seems to be the Lorentz invariance of the equations.
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While the conditions in (36) give rise to a well-posed IBVP, they have not
found their way into the numerical work yet.

Returning to Figure 9 we see that there are several fundamental difficulties
with this (currently standard) approach. Recall that the goal is to obtain ra-
diative information near I+. To achieve this goal we need to arrange for two
things: We need to make sure that we simulate an asymptotically flat space-
time and we need to have a stable code in order to get meaningful results. In
this approach, both these requirements can only be realized by an appropriate
boundary condition. The orange line in the diagram indicates the domain of
influence of the boundary. The parts of space-time above that line are influ-
enced by the boundary condition. It is obvious from the causal dependencies
that the radiative information which can be accessed using this approach is to a
large extent affected by the boundary condition. A bad choice of the boundary
condition, in particular one which is not compatible with the Einstein evolution,
or one which is not adequate for asymptotic flatness, can ruin any information
gained about the radiation.

So we see that a boundary condition has to have several important proper-
ties. It must be

• physically reasonable: in some way it should express the asymptotic flat-
ness of the space-time manifold,

• mathematically reasonable: the IBVP should be well-posed with this
boundary condition,

• numerically reasonable: codes which implement the boundary condition
should be stable.

Devising a boundary condition which has these properties has been found to
be very hard, if not impossible. There have been several proposals reaching
from specifying Minkowski or Schwarzschild data to matching with linearized
solutions of the Einstein equations. Although these conditions are physically
reasonable to some extent, they are not compatible with the Einstein evolution
and therefore they do not possess the other two properties. Such inappropriate
boundary conditions can be expected to perform well for small amplitudes and
for short times when the non-linear effects can be neglected. However, they will
necessarily become unstable in the long run.

We can also see from the diagram that the choice of asymptotically Euclidean
hypersurfaces is unfortunate for the following reason. A natural thing to do in
order to increase the accuracy of the results is to push the boundary further
outward towards infinity. However, pushing along surfaces of constant time
brings us closer to i0 and not to the interesting parts in the neighbourhood
of I+. This implies that the numerical codes not only increase in size but in
addition that they have to run longer (in the sense of elapsed physical time)
until the interesting regions are covered. The constant time hypersurfaces do
not “track the radiation”.

One idea [21] to overcome the problems encountered in the standard Cauchy
approach is the so-called Cauchy-Characteristic matching procedure [22]. In this
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approach one introduces a time-like hypersurface, the interface, along which one
tries to match a Cauchy problem with a characteristic initial value problem. The
Cauchy part provides the interior boundary condition for the characteristic part
while the latter provides the outer boundary condition for the former. Thus, the
space-time is foliated by hypersurfaces which are partly space-like and partly
null, where the causal character changes in a continuous but non-differentiable
way across a two-dimensional surface (see Figure 10).

Figure 10: The geometry of Cauchy-Characteristic matching. The blue line
indicates the interface between the (inner) Cauchy part and the (outer) charac-
teristic part.

The characteristic part of the hypersurfaces reaches out all the way to I+.
The advantage of this procedure is that the problem of finding the correct
boundary condition has been eliminated by the introduction of the characteristic
part of the scheme.

The characteristic part has been implemented numerically in a very suc-
cessful way (see the Living Reviews article [146] for a recent review on that
topic). It is based on the Bondi-Sachs equations for the gravitational field on
null-hypersurfaces. Using a “compactified coordinate” along the generators of
the null-hypersurfaces it is even possible to “bring null-infinity to finite places”.
However, this is different from the conformal compactification because the met-
ric is not altered. This necessarily leads to equations which “notice where infin-
ity is” because they degenerate there. Because of this degeneracy the solutions
can be singular unless very specific boundary values are prescribed. This is
essentially the peeling property of the fields in disguise.
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Figure 11: The geometry of the conformal approach. The green lines indicate
the foliation of the conformal manifold by hyperboloidal hypersurfaces.

The critical place is, of course, the interface where two completely differ-
ent codes have to be matched. This is not merely a change in the numeri-
cal procedures but the entire setup changes across the interface: the geome-
try, the independent and dependent variables etc. Naturally, this requires a
very sophisticated implementation of the interface. Test calculations have been
performed successfully for space-times with symmetries (cylindrical, spherical)
and/or model equations like non-linear wave equations. Currently, a combined
code for doing the pure gravitational problem in three dimensions is being de-
veloped. This is also described in more detail in [146].

Finally, we want to discuss the approach based on the conformal compact-
ification using the conformal field equations (see Figure 11). In this case, the
arena is not the physical space-time but some other unphysical manifold which
is conformally related via some conformal factor Ω.

The physical space-time is the part of the conformal manifold on which
Ω is positive. Introducing an appropriate time-coordinate in the conformal
manifold leads to a foliation by space-like hypersurfaces which also cover the
physical manifold. Those hypersurfaces which intersect I+ transversely are
hyperboloidal hypersurfaces in the physical space-time. It is important to note
that they are submanifolds of the conformal manifold so that they do not stop
at I+ but continue smoothly across I which is just another submanifold of the
conformal manifold, albeit a special one.

Hyperboloidal initial data (see 3.4) are given on one such hypersurface and
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are subsequently evolved with the symmetric hyperbolic (reduced) system of
evolution equations. In contrast to the behaviour discussed above in connection
with the characteristic evolution, the conformal field equations do not know
where I is. They know that there might be a I (because the conformal factor
is one of the variables in the system) but they have to be told its location on
the initial data surface, and from there on this information is carried along by
the evolution.

What are the advantages of this kind of formulation? First of all, one might
have thought that the question of the correct boundary condition for the IBVP
for the Einstein equations has now merely been shifted to the even more com-
plicated problem of finding a boundary condition for the conformal field equa-
tions. This is true but irrelevant for the following reason: Suppose we give
hyperboloidal initial data on that part of the initial surface which lies inside the
physical region. We may now smoothly extend these data into the unphysical
region. The structure of the characteristics of the conformal field equations is
such that (provided the gauges are chosen appropriately) the outermost charac-
teristic is the light cone. Hence I is a characteristic for the evolution equations,
and this implies that the extension of the initial data into the unphysical region
cannot influence the interior. Similarly, it is true that also the conformal field
equations need a boundary condition. But since this boundary has been shifted
into the unphysical region there is no need for it to be physically reasonable.
It is enough to have a boundary condition which is numerically reasonable, i.e.
which leads to stable codes. The information generated at the boundary travels
at most with the velocity of light and so it cannot swap into the physical region.
I acts as a “one-way membrane”. It should be remarked here that this is true
for the exact analytical case. Numerically, things are somewhat different but
one can expect that any influence from the outside will die away with the order
of accuracy of the discretization scheme used.

A further advantage of the conformal approach is the possibility to study
global properties of the space-times under consideration. Not only do the hy-
perboloidal hypersurfaces extend up to and beyond null-infinity but it is also
possible to study the long-time behaviour of gravitational fields. If the initial
data are small enough so that future time-like infinity i+ is a regular point (see
Theorem 6) then one can determine in a finite (conformal and computational)
time the entire future of the initial surface and therefore a (semi-)global space-
time up to (and even beyond) i+. This has been successfully demonstrated by
Hübner [77] in the case of spherically symmetric calculations and more recently
also in higher dimensions.

The calculation of a global space-time up to i+ has the effect of shrinking the
region on the computational domain which corresponds to the physical space-
time because I+ seems to move through the grid. This means that more and
more grid-points are lost for the computation of the physical part. Sometimes
it might be more useful to have more resolution there. Then the available gauge
freedom can be used to gain complete control over the movement of I+ through
the grid [39].

The conformal field equations lead to a first order system of approximately
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sixty equations depending on the specific formulation and gauge conditions.
In the version derived in Appendix 6 there are 65 equations. This is a very
high number of equations. However, on the one hand one has to compare this
with current proposals for hyperbolic systems for the Einstein equations, which
advocate a number of equations of the same order (although there are not even
equations for a conformal factor). On the other hand, the variables which appear
in the conformal field equations are of a very geometric nature, and for further
investigations of the space-times (finding the geodesics, computing forces etc.),
these variables would have to be computed anyway.

But we can be somewhat more specific: The conformal field equations have
a total number of equations which is roughly 60. The conventional codes use
roughly 10 equations if they use the standard Cauchy approach. So there is
a factor 6 between the conformal field equations and the others. But that is
not really the point. The complexity (in particular, the memory) scales roughly
with the number of gridpoints and for a 3D code that is N3, where N is the
number of grid points per dimension. So already doubling N gives a factor of
8. The upshot of this is that the memory requirements are not dictated by the
number of equations because this is a fixed factor but by the dimensionality of
the code, and this affects both codes in the same way.

A final word concerning the inclusion of matter into the conformal approach:
It is clear that this is more complicated than it is for the standard Einstein
equations. The reason is that the conformal field equations also contain the
(rescaled) Weyl curvature which couples to the energy-momentum tensor via
its derivatives. This means that one needs equations not only for those matter
fields which appear in the energy-momentum tensor but also for their deriva-
tives. Furthermore, the fact that under conformal rescalings the trace-free part
of the energy-momentum tensor behaves differently compared to its trace, causes
additional difficulties. However, these can be overcome under certain circum-
stances [52, 78].

It was mentioned in Section 3.1 that for Ω = 1 the conformal field equations
reduce to the standard Einstein equations together with the vacuum Bianchi
identity. This suggests that one should specify the conformal factor initially to
be equal to unity in a region which contains the sources (assuming the sources
have spatially compact support) and then decreases until it vanishes on I.
Furthermore, the time-derivative of Ω should be adjusted such that it vanishes
in a neighbourhood of the source. In fact, it is possible to do so, but it is not
yet known, whether and, if so, for how long one can keep up this condition of
constant conformal factor around the source. The proposed procedure does not
eliminate the problem that additional equations for the matter variables are
needed, but it might reduce the complexity somewhat.

We will now discuss some issues related to the construction of hyperboloidal
initial data and the implementation of the evolution equations.
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4.2 Construction of initial data

In order to start the evolution one has to determine the initial data. So far, the
numerical methods used for their construction are based entirely on Theorem 7.
It is assumed that the extrinsic curvature of the hyperboloidal initial surface is
pure trace. Then the Yamabe equation is solved for a conformal factor which
chooses from a given conformal class of Riemannian metrics the one which has
constant negative curvature. Finally, the other initial data are obtained from
Equations (34).

There are two problems with this kind of procedure. First, the Yamabe
equation degenerates on the boundary. This is a difficult problem if one tries
to prove existence of solutions of this equation because the loss of ellipticity
on the boundary means that one cannot simply appeal to known theorems.
However, numerically this has not been a serious obstacle. The Yamabe equation
is solved in a more or less standard way by using a Richardson iteration scheme
to reduce the solution of the non-linear equation to a series of inversions of a
linear operator.

The degeneracy of the equation on the boundary forces the solution and
its derivative by regularity to have certain well defined boundary values. This
and the global nature of the elliptic equations suggests to use pseudo-spectral
(or collocation) methods. Such methods are well suited for problems for which
it is known beforehand that the solution will be sufficiently regular. Then,
the solution can be expanded into a series of certain basis functions which are
globally analytic. Therefore, the regularity conditions on the boundary are
already built into the method. We refer readers interested in these methods to
a recent review paper by Bonazzola et al. [23].

The more difficult problem in the determination of the initial data is the
fact that the curvature components are obtained by successive division by Ω.
Since Ω vanishes on the boundary one has to compute a value which is of the
form 0/0. Although the theorem tells us that this is well defined (provided
that some boundary conditions are satisfied), it still poses a numerical problem,
because a straightforward implementation of l’Hôpital’s rule looses accuracy.
There have been two methods to overcome this problem. The first one [40]
is again based on pseudo-spectral methods. Essentially, in this approach the
multiplication with the function Ω is expressed as a linear operation between
the expansion coefficients of Ω and the other factor. The pseudo-inversion of
this linear operator (in the sense of finding its Moore-Penrose inverse [106]) then
corresponds to division by Ω. Although this methods seems to work well, it is
not generally applicable because it depends heavily on the geometric setup.

A more general method has been devised by Hübner [82]. Here, the problem
of dividing by Ω has been reformulated into a problem for solving a second-order
PDE for the quotient. This PDE is similar to the Yamabe equation in the sense
that it also degenerates on the boundary where Ω vanishes, but it is linear. Both
methods have been applied in 2D test cases.

Living Reviews in Relativity (2000-4)
http://www.livingreviews.org

http://www.livingreviews.org


61 Conformal Infinity

4.3 Evolution equations

The initial data constructed in one of the ways described above must be evolved
with the propagation equations extracted from the conformal field equations.
As we remarked upon above, there are several ways to write the evolution equa-
tions, and therefore there are also several ways to implement them numerically.
To date there exist two different implementations. One is based on the ADM-
like formulation of the conformal field equations, while the other uses a tetrad
formalism. In the ADM-like formulation developed by Hübner [82], one intro-
duces the coefficients of the intrinsic metric on the space-like slices and their
extrinsic curvature as variables, while in the other formulation by Frauendi-
ener [39], a tetrad and connection coefficients with respect to that tetrad are
the basic variables. Not much difference concerning efficiency and usefulness
between these formulations is to be expected, provided the numerical schemes
are the same. One minor advantage of the tetrad formulation might be the addi-
tional freedom in the orientation of the tetrad which can be used on I to make
the computational tetrad agree with the preferred tetrad on I (see below).

So far, the discretization of the equations has been rather straightforward.
One of the schemes which have been used is the higher dimensional Lax-Wendroff
scheme, also called the rotated Richtmyer scheme, a discretization scheme with
second order accuracy. It has been employed alone [39] or together with Strang
splitting [82] to treat the principal part of the equations differently from the
source part. Since a second order scheme requires much more computing re-
sources compared to higher order methods to achieve the same accuracy, Hübner
started to use the method of lines [73] with a fourth order scheme to compute
the spatial derivatives and fourth order Runge-Kutta for the evolution in time.
He reports [82] that the fourth order method is very much superior to the second
order scheme in terms of efficiency. (The feasibility of the method of lines in
relativity has been studied by Hungerbühler [84] using pseudo-spectral methods
for the spatial derivatives and a combination of Adams-Bashforth and Adams-
Moulton schemes for the time evolution.)

The conformal field equations and the propagation equations derived from
them are quasi-linear. This implies that the characteristics of the system de-
pend on the current solution and this, in turn, means that one has to be able to
change the time-step ∆t between successive time-slices in order to keep a stable
evolution scheme. This is necessary because the schemes are explicit schemes
and, therefore, subject to the Courant-Friedrichs-Lewy condition which states
that the numerical domain of dependence of a point should always include the
analytical domain of dependence. This requirement already excludes the popu-
lar leapfrog scheme which is nevertheless used sometimes also for evolving the
Einstein equations. A general criterion for computing the maximal time-step
allowed in each iteration in arbitrary dimension has been derived in [39].

Another important point in the development of evolution codes is the nu-
merical treatment of the boundaries. As explained already above, it is one of the
advantages in the conformal approach that the outer boundary is not as influ-
ential as it is in the conventional approach using the standard Cauchy problem.
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It was also pointed out that in this case it is enough to impose a boundary con-
dition which results in a numerically stable code because the outer boundary
is located in the unphysical region and, therefore, cannot influence the physical
space-time.

The proper way to treat the boundary is to prescribe conditions which are
compatible with the full conformal field equations, in particular with their re-
striction to the boundary manifold. This has not been done so far. Since the
outer boundary is not important for the physical effects, other ways of deal-
ing with the boundary have been devised. One way is to forget about the
restrictions of the conformal field equations to the boundary and to analyze
the possible boundary conditions for the propagation equations. To first order,
one can define ingoing and outgoing fields on the boundary. Then a sufficiently
general boundary condition will be obtained by specifying the ingoing fields in
terms of the outgoing ones. Although this boundary treatment is not compat-
ible with the restriction of the conformal field equations to the boundary, it is
compatible with the evolution equations. This means that the evolution can re-
main stable although the solution will not satisfy the constraints in the domain
of influence of the boundary, which, however, is always in the unphysical part
of space-time. This method has been used in [39] with satisfactory results. In
particular, the boundary did not give rise to non-physical modes. These find-
ings are in agreement with the analysis of numerical boundary conditions by
Trefethen [141].

Another, very clever method for dealing with the boundary has been found
by Hübner [81]. He realized that it is sufficient to solve the conformal field
equations in the physical space-time only, and not necessary to solve them in the
unphysical region as long as the characteristics remain such that the information
created in the unphysical part of the computational domain cannot reach the
physical part. Consequently, in his treatment the grid is divided into three zones:
the inner zone, the outer zone, and a transition zone. The inner zone covers the
physical space-time (flagged by a positive conformal factor) and some part of the
adjacent unphysical region. On this part of the grid the conformal field equations
are solved. In the outer zone, which is located in a neighbourhood of the grid
boundary, one solves an advection equation which propagates outwards, off the
grid. In the transition zone, a sufficiently smooth interpolation between these
two systems of equations is solved. The effect is that the boundary condition
which has to be imposed on the grid boundaries is very simple and that the
noise which is generated in the transition region is propagated away from the
physical region outwards towards the grid boundary.

Our next point is concerned with the extraction of the radiative information
from the numerically generated data. This is the part of the entire numerical
process where the superiority of the conformal approach becomes apparent.
How does one determine the radiative field? First of all, one needs to find I
on the current time-slice. Since I is the surface on which the conformal factor
Ω vanishes and since Ω is explicitly known during the evolution the location of
I is a simple task. The next problem is concerned with the orientation of the
tetrad on I. The asymptotic quantities are defined with respect to a specific
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geometrically characterized tetrad, a Bondi frame. But, in general, this tetrad
is completely unrelated to the “computational” tetrad used for the evolution.
Therefore, one needs to find the transformation from one to the other at each
point of I. Without going into too much details (see [39, 42, 41]) we remark
that most asymptotic quantities, in particular the radiation field, are of a local
character so they can be read off without constructing a Bondi frame. This is
rather fortunate because there are global issues involved in the transformation
from the computational tetrad to the Bondi frame. These have implications for
the determination of global quantities like the Bondi energy-momentum four-
vector, but they have no effect on the radiation field, which is defined as that
(complex) component of Kabcd which is entirely intrinsic to I:

ψ4 = Kabcdn
am̄bncm̄d.

Here, na is a null-vector tangent to the generators of I, i.e., na ∝ ∇aΩ, and
ma is any complex space-like null-vector which is orthogonal to na. It is useful
to require the space-like vector to be tangent to the intersection of I with the
current time-slice. Augmenting these two vectors by a further real null-vector
la yields a null-tetrad which is fixed up to rotations in the (two-dimensional)
tangent space of that intersection and boosts in the plane orthogonal to it. The
behaviour of ψ4 under these transformations is that of a GHP-weighted quan-
tity [67, 117] with boost weight −2 and spin weight −2. This corresponds to the
quadrupole-like character of the gravitational radiation field. However, ψ4 re-
ally depends only on the null-vector na. For, suppose we perform a null-rotation
around na, then ma transforms into ma+αna for some complex valued function
α on I. But ψ4 is invariant under this transformation. So in order to find ψ4

it is only necessary to transform from the given computational tetrad to the
tetrad specified above which is rather straightforward. In fact, the computation
of ψ4 involves only the combination of certain components of the gravitational
field with powers of ∇aΩ.

The final step in the correct determination of the radiation is to find the
correct time parameter. Suppose we follow a specific null generator of I crossing
through successive time-slices. On each slice we compute ψ4 on that generator.
Then we obtain the radiation emitted by the source into the direction specified
by the generator as a function of our computational time parameter. Since the
time coordinate is rather arbitrary, this means that the wave form determined
so far has no physical meaning. The problem is already present in Maxwell’s
theory: Suppose we have an emitter which sends out a pure sine wave. A
detector far away from the source cannot determine the absolute frequency of
the signal because the relative velocity of emitter and receiver might be non-zero
but the detector should also find a pure sine signal. However, this will be true
only if the detector records the signal as a function of proper time. Any other
time parameter along the detector’s world-line will not produce a pure sine.

What one needs to do in the general case is to select among all parameters
along the generator a specific, geometrically distinguished one, namely a Bondi
parameter. A generator and such a parameter along it can be understood as
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a certain limit of freely falling observers with proper time clocks as they move
towards infinity [42]. Bondi parameters are obtained as solutions of an ordinary,
linear, second order differential equation, which is conformally invariant.

The computation of the Bondi energy-momentum is a global procedure, i.e.,
it depends on properties of the entire cut of I with the current time-slice.
There are two steps involved in this procedure. First, one needs to obtain the
asymptotic translation group (see e.g. [118]) on each cut. This provides four
functions on the cut which are then, in a second step, integrated against the
“mass aspect” which is another function obtained from the “Coulomb” part ψ2

of the gravitational field, and the “news function” which is a combination of
components of the Ricci tensor and connection coefficients. The first step, the
determination of the translation group, is the global step because it involves
solving a second order elliptic equation on the cut. These issues are discussed
in more detail in [41].

All these procedures for finding the relevant data on I have been worked out
analytically and they have also been tested (at least in part) numerically [39].
The tests have been performed under the assumption that null-infinity admits
toroidal cuts, which has the advantage that one can actually compare the nu-
merical results with analytical expressions because a whole class of exact so-
lutions [135, 80] is known to exist. Admittedly, such space-times are rather
unphysical, but since most of the extraction procedures are local there is no
doubt that they will also work in more realistic cases.

4.4 What has been done?

Let us now discuss some of the achievements of the approach based on the con-
formal field equations in some more detail. They range from investigations of
gravitational fields coupled to a scalar field in spherical symmetry to pure grav-
itational interactions studied in two space dimensions and, recently, in the most
general case of three space dimensions. The numerical treatment of the con-
formal field equations was started by Hübner [76] who analyzed the asymptotic
structure of spherically symmetric space-times in which a scalar field propagates
under the influence of the gravitational attraction due to its own energy den-
sity. This is a system which has been investigated rigorously in detail earlier
by Christodoulou (see e.g. [28] and the references therein). So the numerical
results can be judged against the very detailed information found by analytical
work. In all cases considered, the numerical results agreed with the analytical
ones. As a specific example, let us look at Figure 12 (taken from [79]) where the
“upper part” of a space-time with a singularity is shown. It is obtained from
the numerical evolution of initial data which are supercritical in the sense that
the initial energy density (specified by a parameter A) is so large that the scalar
field collapses down to a black hole.

This is indicated by the appearance of trapped surfaces and the subsequent
formation of a singularity. The boundary of the region where the trapped sur-
faces exist is indicated by the thin line in the figure. It is the apparent horizon
on which the divergence θout of the outgoing light rays vanishes. Note that this
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picture has been obtained by purely numerical methods. It should be compared
with Figure 1 in Christodoulou’s article [28].

Figure 12: Upper corner of a space-time with singularity (thick line). The dashed
line is I, while the thin line is the locus of vanishing divergence of outgoing light
rays, i.e. an apparent horizon.

Another part of the investigation was concerned with the radiation at infin-
ity. In Figure 13 (also from [79]) the scalar radiation field at null-infinity as a
function of proper time of an observer on I is shown.

Figure 13: Decay of the radiation at null-infinity.

In this example, the initial data was subcritical so that the scalar field,
which initially collapses, subsequently disperses again. Note the long time-
scale, ranging over approximately six orders of magnitude in proper time. This
is a remarkable achievement because so far no other numerical method has been

Living Reviews in Relativity (2000-4)
http://www.livingreviews.org

http://www.livingreviews.org


J. Frauendiener 66

able to monitor the evolution of relativistic space-times for such a long period
of time.

The next step in the application of the conformal field equations to numerical
problems has been the implementation of 2-D codes for the solution of A3-
like space-times [38, 39]. These provide the first examples of vacuum space-
times with gravitational radiation. Of course, they cannot be taken seriously as
models of isolated systems because the topology of their I is not the physically
distinguished S2×R. However, they provide important test cases for the codes
and in particular for methods to extract radiation. Since exact solutions with
this kind of global structure are known [135, 80] one can again compare the
numerical results with their exact counterparts. The radiation field ψ4 and the
Bondi mass for a particular case are shown in Figure 14.

Figure 14: The radiation field ψ4 and the Bondi mass for a radiating A3-like
space-time.

In both diagrams the solid line is the exact solution while the dots indicate
the computed values. Note that this is the first time that a fully non-linear
wave-form has been computed which agrees with an exact solution.

As a final example of the conformal method in numerical relativity we
consider the Schwarzschild space-time which has recently been evolved with
Hübner’s 3-D code [82]. Figure 15 is a numerical version of the Kruskal dia-
gram, i.e. a diagram for the conformal structure of the Schwarzschild solution.

What is clearly visible here are the two null-infinities (blue lines) and the
horizons (red lines). The green line is the “central” null-geodesic, i.e. the locus
where the Kruskal null-coordinates U and V (see e.g. [145]) are equal. The
dashed lines are “right going” null-geodesics, moving away from the left-hand
I. The diagram shows the cross-over where the two horizons (and the central
line) intersect and, accordingly, we see a large part of the region III, which is
below the cross-over, the regions I and IV with their corresponding I’s and some
part of region II where the future singularity is located. The non-symmetric look
of the diagram is, of course, due to the fact that the coordinates used in the
code have nothing to do with the Kruskal coordinates with respect to which one
usually sees the Kruskal diagram of the extended Schwarzschild solution.

In all three cases mentioned here, there is a clear indication that long-time
studies of gravitational fields are feasible. All three cases have been checked
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Figure 15: The numerically generated “Kruskal diagram” for the Schwarzschild
solution.

against exact results (exact solutions or known theorems) so that there is no
doubt that the numerical results are correct. These contributions show beyond
any reasonable doubt that the conformal field equations cannot only be used
for the analytical discussion of global properties of space-times but also for the
numerical determination of semi-global solutions. Clearly the problems with
the artificial boundary have evaporated, the asymptotic region can accurately
be determined and the wave-forms can reliably be computed. Together with the
analysis of i0 there is now good hope that the numerical computation of global
space-times can be achieved in the near future.

4.5 What should be done?

Now we want to discuss some of the problems which still have to be dealt with.
Since the conformal approach has been tested numerically so far mostly in 2D
cases with unphysical global structure, it is necessary to implement full 3D
codes to run on general enough data. Work on this is well underway and first
results which confirm the expectations based on the two-dimensional codes are
available [82].

Apart from the requirement of having a general 3D-code, there are other
problems which need more consideration. Let us start with the boundary con-
dition at the boundary of the computational domain. It would be interesting
to see how the results of [59] translate to the conformal field equations. This
would provide mathematically reasonable boundary conditions at the edge of
the computational domain. Their implementation could result in stable codes
which do not need any additional transition zones beyond I, and which are
compatible with the evolution equation unlike the procedure used in [39].

Living Reviews in Relativity (2000-4)
http://www.livingreviews.org

http://www.livingreviews.org


J. Frauendiener 68

Another problem has to do with the constraint equations. The necessity of
dividing by the conformal factor to construct the initial data is annoying. The
way around this problem is to solve the conformal constraints directly. While
it has been possible to do this in the spherically symmetric case [77], no result
is available for the general case. It would be very desirable to have another way
of constructing the initial data, because then one could construct more easily
data which evolve into space-times with multiple black holes.

As a last problem in connection with the conformal approach one should
mention that Friedrich’s work on i0 provides a way to evolve Cauchy data spec-
ified on an asymptotically Euclidean hypersurface to hyperboloidal initial data.
A code which does that kind of evolution can provide the initial data for an
evolution code for the hyperboloidal initial value problem. This area is entirely
unexplored. Surely there will be difficult problems in the numerical treatment
of the transport equations related to the total characteristic at spatial infinity.
But the work on this problem is worthwhile because it would provide the final
step to the ultimate goal of a global simulation of an isolated system.

A problem which affects all the work in numerical relativity today is the ob-
scure nature of the gauge conditions. Currently there is not much understand-
ing of the effects of a gauge condition on the resulting nature of the coordinates
(frame, conformal factor). Most of the work done on these problems is related
to the choice of a lapse function; in particular several proposals have been made
for selecting a time coordinate. These are mostly dictated by formal consider-
ations like the need of making a system hyperbolic or of easy implementation.
To some extent this is justified because the physics cannot depend on the co-
ordinates which are used. But it is also well known that there are “good” and
“bad” coordinates. What “good” and “bad” means depends to a large extent
on what the goal is.

Ideally, coordinates should be tied to the geometry so that they obtain a more
invariant nature. In 1D cases one can set up a system of double null-coordinates
(and a derived system of time and space coordinates). This provides a gauge
which is good as long as the geometry is well behaved [77]. But, unfortunately,
this gauge cannot be generalized in a straightforward way to higher dimensions
(some attempts have been made in [39]). Probably one should assume a prag-
matic viewpoint towards the problem of finding appropriate coordinates in the
sense that one should regard the gauge sources as knobs which have to be ad-
justed by trial and error. Maybe it is possible, at least to some extent, to let the
code do the “twiddling” automatically. This requires that one should be able to
formulate criteria for a “good solution” which can be checked by the computer.
Furthermore, it is also necessary that a change in the gauge sources does not
change the characteristics of the system, because otherwise it is easy to get into
situations where the system is not hyperbolic anymore.

Finally, there is no doubt that the issue of the correct boundary condition for
codes based on the standard Einstein equations also needs more attention. Such
codes should try to implement the boundary conditions given in [59]. Although
it is not clear what these conditions mean physically, chances are good that
they will produce stable codes (see e.g. the discussion of numerical boundary
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conditions in [73]). If this is the case then one could try to check which ones
work best by comparison with exact radiating solutions, like the boost-rotation
symmetric solutions discussed in [20]. Another test should be a numerical com-
parison with the data computed by a hyperboloidal evolution code. Such tests
are important because so far the standard codes have only been tested against
linearized solutions. This is the regime where one would expect them to work
because the boundary condition is still benign. In this way, one could not
only select physically reasonable boundary conditions for the standard codes,
one could also check how well they perform in comparison with the conformal
codes. In particular, one could see how accurate the radiation extraction can be
done with those codes and whether the accuracy is good enough for LIGO wave
forms. Then one can compute them with a safe conscience using the standard
codes, provided they are more efficient than the conformal codes.
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6 Appendix: Reduction Of The Conformal Field
Equations

In this appendix we show how to perform the reduction process for the conformal
field equations to obtain the symmetric hyperbolic system of evolution equations
and the constraints. We assume that we are given a time-like unit vector ta with
respect to which the reduction is done. Any vector va may be decomposed into
parts perpendicular and parallel to ta,

va = v̂a + vta, with v̂ata = 0, v = vata,

and similarly, for one-forms wa. We call a vector spatial with respect to ta if it
is orthogonal to ta. In particular, the metric gab gives rise to a spatial metric
hab by the decomposition

gab = hab + tatb. (37)

The volume four-form εabcd which is defined by the metric also gives rise to a
decomposition as follows:

εabcd = 4ε[abctd] ⇐⇒ εabc = εabcdt
d. (38)

The covariant derivative operator ∇a is written analogously,

∇a = Da + taD,

thus defining two derivative operators Da with taDa = 0 and D = ta∇a. The
covariant derivative of ta itself is an important field. It gives rise to two com-
ponent fields defined by

χa
b = Dat

b, χb = Dtb. (39)

Note that χab is spatial in both its indices and that there is no symmetry implied
between the two indices. Similarly, χb is automatically spatial.

It is useful to define two new derivative operators ∂ and ∂a by the following
relations:

∂avb = Davb + tbχa
eve − χabteve, ∂vb = Dvb + tbχ

eve − χbteve. (40)

These operators have the property that they are compatible with the spatial
metric hab and that they annihilate ta and ta. If ta is the unit normal of
a hypersurface, i.e., if ta is hypersurface orthogonal, then χab is symmetric,
hab is the induced (negative definite) metric on the hypersurface, and ∂a is its
Levi-Civita connection. In general this is not the case and so the operator ∂a
possesses torsion. In particular, we obtain the following commutators (acting
on scalars and spatial vectors):

2∂[a∂b]f + 2χ[ab]∂f = 0, (41)

2∂[a∂b]vc + 2χ[ab]∂vc = −harhbshctRrstdvd + 2χ[a|c|χb]
eve, (42)
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[∂, ∂a] f + χa∂f + χa
c∂cf = 0, (43)

[∂, ∂a] vb + χa∂vb + χa
c∂cvb = χbχa

eve − χabχeve − tchaehbfRcef dvd. (44)

These commutators are obtained from the commutators between the derivative
operators Da and D by expressing them in terms of ∂a and ∂ on the one hand,
and by the four-dimensional connection ∇a on the other hand. This procedure
yields two equations for the derivatives of ta,

2∂[aχb]c − 2χ[ab]χc + ha
rhb

shc
tRrst

dtd = 0, (45)

∂χab − ∂aχb + χa
cχcb + χaχb − tctdharhbsRcrds. (46)

The information contained in the commutator relations and in the Equations (45)
and (46) is completely equivalent to the Cartan equations for ∇a which define
the curvature and torsion tensors.

This completes the preliminaries and we can now go on to perform the
splitting of the equations. Out intention is to end up with a system of equations
for all the spatial parts of the fields. In order not to introduce too many different
kinds of indices, all indices refer to the four-dimensional space-time, but they
are all spatial, i.e., any transvection with ta and ta vanishes. If we introduce
hypersurfaces with normal vector ta then there exists an isomorphism between
the tensor algebra on the hypersurfaces and the subalgebra of spatial four-
dimensional tensors.

We start with the tensorial part of the equations. To this end we decom-
pose the fields into various spatial parts and insert these decompositions into
the conformal field equations defined by (17, 18, 19, 20, 21). The fields are
decomposed as follows:

Kabcd = 4t[aEb][ctd] + 2t[aBb]eεecd − 2εabeBe[ctd] + εabeE
efεfcd, (47)

Φab = φab + 2t(aφb) + tatbφ, (48)

Σa = σa + taσ. (49)

The function φ is fixed in terms of φab because Φab is trace-free.
Inserting the decomposition of Kabcd into Equation (18), decomposing the

equations into various spatial parts and expressing derivatives in terms of the
operators ∂a and ∂ yields four equations:

∂aBac + εeadEc
eχad + εecdEa

eχad = 0, (50)
∂aEac − εeadBceχad − εecdBaeχad = 0, (51)

∂Ebc + εae(b∂
aBec) =

− 2χEbc + 2χa(bEc)a − hbcEadχad + Ea(bχc)
a − 2εea(bB

e
c)χ

a, (52)
∂Bbc − εae(b∂aEec) =

− 2χBbc + 2χa(bBc)a − hbcBadχad +Ba(bχc)
a + 2εea(bE

e
c)χ

a. (53)
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Here we have defined χ = χa
a. Treating the other fields and equations in a

similar way, we obtain Equation (17) in the form of four equations:

∂φa − ∂aφ = χeφae − 2χaeφe − ∂aΛ− Eadσd, (54)
∂[cφa] − χe[cφa]e + χcaφ− 1

2εcaeB
edσd = 0, (55)

∂φab − ∂aφb = −2χ(aφb) − χaeφbe + χabφ+ hab∂Λ + Eabσ +Ba
eεbdeσ

d, (56)

∂[cφa]b = χ[ac]φb − φ[aχc]b + hb[a∂c]Λ− 1
2εcaeB

e
bσ + 1

2εcaeE
efεfbdσ

d. (57)

The equation (19) for the conformal factor are rather straightforward. We obtain

∂Ω = σ, (58)
∂aΩ = σa, (59)

while Equation (20) yields four equations:

∂aσb + χabσ − habS + Ωφab = 0, (60)
∂bσ − χbeσe + Ωφb = 0, (61)
∂σb = −χbσ − Ωφb, (62)
∂σ = χeσe + S − Ωφ. (63)

Finally, the equation (21) for S gives two equations

∂S = −φbσb − φσ + Ω ∂Λ + 2σΛ, (64)
∂aS + φabσ

b + φaσ − Ω ∂aΛ− 2σaΛ = 0. (65)

This completes the gauge independent part of the equations. In order to deal
with the gauges we now have to introduce an arbitrary tetrad and arbitrary
coordinates. We extend the time-like unit vector to a complete tetrad (ta, eai )
with taeai = 0 for i = 1, 2, 3. Let xµ with µ = 0, 1, 2, 3 be four arbitrary functions
which we use as coordinates. Application of ∂ and ∂a to the coordinates yields

∂xµ = cµ, ∂ax
µ = cµa . (66)

The four functions cµ and the four one-forms cµa may be regarded as the 16
expansion coefficients of the tetrad vectors in terms of the coordinate basis
∂µ = ∂/∂xµ because of the identity

∂ = cµ∂µ ⇐⇒ ∂xµ = cµ, (67)
eai ∂a = cµi ∂µ ⇐⇒ eai ∂ax

µ = eai c
µ
a . (68)

In a similar spirit, we apply the derivative operators to the tetrad and obtain

∂eai = Λabebi , (69)
∂ce

a
i = Γcabebi . (70)

Again, transvection with ta on any index of Λab and Γcab vanishes. Further-
more, both Λab and Γcab are antisymmetric in their (last two) indices. Together
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with the 12 components of χa and χab these fields provide additional 12 compo-
nents which account for the 24 connection coefficients of the four-dimensional
connection ∇a with respect to the chosen tetrad.

Note that these fields are not tensor fields. They do not transform as ten-
sors under the change of tetrad. Since we will keep the tetrad fixed here, we
may, however, regard them as defining tensorfields whose components happen
to coincide with them in the specified tetrad.

In order to extract the contents of the first of Cartan’s structure equations
one needs to apply the commutators (41) and (43) to the coordinates to obtain

∂cµa − ∂acµ = −χacµ − χabcµb , (71)
∂ac

µ
b − ∂bcµa + 2χ[ab]c

µ = 0. (72)

Similarly, the second of Cartan’s structure equations is exploited by applying
the commutators to the tetrad vectors. Equation (16) is then used to substitute
for the Riemann tensor in terms of the gravitational field, the trace-free part
of the Ricci tensor, and the scalar curvature. Apart from the Equations (45)
and (46), which come from acting on ta, this procedure yields

∂Γabc − ∂aΛbc =
2Γa[b

eΛc]e − χaΛbc − χaeΓebc − 2χa[bχc] + ΩBaeεebc + 2ha[bφc], (73)
∂aΓbcd − ∂bΓacd + 2χ[ab]Λcd

+2χ[a|dχb]c + ΩεabeEefεf cd − 2hc[aφb]d + 2hd[aφb]c − 4hc[ahb]dΛ = 0. (74)

Now we have collected all the equations which can be extracted from the con-
formal field equations and Cartan’s structure equations. What remains to do is
to separate them into constraints and evolution equations. Before doing so, we
notice that we do not have enough evolution equations for the tetrad compo-
nents and the connection coefficients. The remedy to this situation is explained
in Section 3.2. It amounts to adding appropriate “divergence equations”. We
obtain these by computing the “gauge source functions”. The missing equa-
tions for the coordinates are obtained by applying the d’Alembert operator to
the coordinates. Expressing the wave operator in terms of ∂ and ∂a yields the
additional equations

∂cµ + ∂acµa = χacµa + χcµ − Fµ. (75)

In order to find the missing equations for the tetrad we need to compute the
gauge source functions

F0k = gab∇c
(
ta∇cebk

)
,

Fik = gab∇c
(
eai∇cebk

)
.

(76)

In a similar way as explained above, we may regard these functions as compo-
nents of tensorfields Fab and Fa whose components happen to agree with them
in the specified basis. Thus,

Fik = Fabe
a
i e
b
k, F0i = Fae

a
i .
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Computing these tensorfields from (76) gives

Fab = ∂Λab − ∂eΓeab − χeΓeab + χΛab + 2Γec[aΓecb], (77)
Fa = −∂χa − ∂eχea + χeχea − χaχee − χecΓeca − χcΛca. (78)

Now we are ready to collect the constraints:

∂ac
µ
b − ∂bc

µ
a + 2χ[ab]c

µ = 0, (79)

∂aΓbcd − ∂bΓacd + 2χ[ab]Λcd
+2χ[a|dχb]c + ΩεabeEefεf cd − 2hc[aφb]d + 2hd[aφb]c − 4hc[ahb]dΛ = 0, (80)

∂aχbc − ∂bχac − 2χ[ab]χc − εabeBec + 2hc[aφb] = 0, (81)

∂cφa − ∂aφc − 2χ[c
eφa]e + 2χ[ca]φ− εcaeBedσd = 0, (82)

∂cφab − ∂aφcb − 2χ[ac]φb + 2φ[aχc]b

− 2hb[a∂c]Λ + εcaeB
e
bσ − εcaeEefεfbdσd = 0, (83)

∂aBac + εeadEc
eχad + εecdEa

eχad = 0, (84)

∂aEac − εeadBceχad − εecdBaeχad = 0, (85)

∂aΩ− σa = 0, (86)

∂aσb + χabσ − habS + Ωφab = 0, (87)

∂bσ − χbeσe + Ωφb = 0, (88)

∂aS + φabσ
b + φaσ − Ω∂aΛ− 2Λσa = 0. (89)

Finally, we collect the evolution equations:

∂cµa − ∂acµ = −χacµ − χabcµb , (90)

∂cµ + ∂acµa = χacµa + χcµ − Fµ. (91)

∂Γabc − ∂aΛbc = 2Γa[b
eΛc]e − χaΛbc

− χaeΓebc − 2χa[bχc] + ΩBaeεebc + 2ha[bφc], (92)

∂Λab − ∂eΓeab = χeΓeab − χΛab − 2Γec[aΓecb] + Fab, (93)

∂χa + ∂eχea = χeχea − χaχee − χecΓeca − χcΛca − Fa, (94)

∂χab − ∂aχb = −χacχcb − χaχb − ΩEab + φab + hab (φ− 2Λ) , (95)

∂φa − ∂aφ = χeφae − 2χaeφe − ∂aΛ− Eadσd, (96)

∂φab − ∂(aφb) = −2χ(aφb) − χ(a
eφb)e

+ χ(ab)φ+ hab∂Λ + Eabσ +B(a
eεb)deσ

d, (97)

∂Ebc + εae(b∂
aBec) = −2χEbc

+2χa(bEc)a − hbcEadχad + Ea(bχc)
a − 2εea(bB

e
c)χ

a, (98)

∂Bbc − εae(b∂aEec) = −2χBbc
+2χa(bBc)a − hbcBadχad +Ba(bχc)

a + 2εea(bE
e
c)χ

a, (99)
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∂Ω = σ, (100)

∂σb = −χbσ − Ωφb, (101)

∂σ = χeσe + S − Ωφ, (102)

∂S = −φbσb − φσ + Ω ∂Λ + 2σΛ. (103)

This is the complete system of evolution equation which can be extracted from
the conformal field equations. As it is written, this system is symmetric hyper-
bolic. This is not entirely obvious but rather straightforward to verify. It is
important to keep in mind that with our conventions the spatial metric hab is
negative. Altogether these are 65 equations.
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7 Appendix: Conformal Rescalings And Curva-
ture

We compile here some formulae which are helpful for performing conformal
rescalings. Suppose we rescale the given metric g̃ab to a new metric gab = θ2g̃ab.
Define Υa = ∇aθ/θ. The Levi-Civita connection ∇a of the new metric is given
in terms of the Levi-Civita connection ∇̃a of g̃ab by its action on an arbitrary
vectorfield va,

∇avb = ∇̃avb + Cbacv
c = ∇̃avb +

(
δbaΥc + δbcΥa − gbdgacΥd

)
vc. (104)

From the action on vectorfields we can obtain the action on tensors of arbitrary
valence in the usual way.

Next we consider the curvature tensor. It is useful to split the Riemann
tensor into several pieces which transform differently under conformal rescalings.
We write

Rabcd = Cabcd − 4 δ[a
[cP

b]
d]. (105)

The tensor Cabcd is, of course, Weyl’s conformal tensor, characterised by the
property of having the same symmetries as the Riemann tensor with all traces
vanishing. The other piece, the tensor Pab, can be uniquely expressed in terms
of the Ricci tensor

Pab = −1
2

(
Rab −

1
6
gabR

)
= Φab − gabΛ. (106)

The tensor Φab is proportional to the trace-free part of the Ricci tensor, while
Λ = 24R = − 1

4g
abPab is a multiple of the scalar curvature.

Under the conformal rescaling g̃ab 7→ gab = θ2g̃ab, the different parts of the
curvature transform as follows:

C̃abcd 7→ Cabcd = C̃abcd, (107)

P̃ab 7→ Pab = P̃ab − ∇̃aΥb + ΥaΥb −
1
2
g̃abg̃

cdΥcΥd. (108)

Thus, the Weyl tensor is invariant under conformal rescalings. When P̃ab is
expressed entirely in terms of the transformed quantities we get the relation

P̃ab = Pab +∇aΥb + ΥaΥb −
1
2
gabg

cdΥcΥd, (109)

from which we can deduce (note that the contractions are performed with the
transformed metric)

Φ̃ab = Φab +
1
θ

(
∇a∇bθ −

1
4
gab 2θ

)
, (110)

Λ̃ = θ2Λ− 1
4
θ2θ +

1
2
∇aθ∇aθ. (111)
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Next consider the Bianchi identity ∇[eRab]cd = 0. Inserting the decomposi-
tion (105) and taking appropriate traces allows us to write it as two equations,

∇aCabcd + 2∇[cPd]b = 0, (112)

∇aP ab −∇bP aa = 0. (113)
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[30] Chruściel, P. T., MacCallum, M. A., and Singleton, D., “Gravitational
waves in general relativity. XIV. Bondi expansions and the ‘polyhomo-
geneity’ of I”, Philos. Trans. R. Soc. London, Ser. A, 350(1692), 113–
141, (1995). For a related online version see: P. T. Chruściel, et al.,
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