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Abstract

Motivation: Genome-wide association studies (GWAS) have identified thousands of regions in the

genome that contain genetic variants that increase risk for complex traits and diseases. However,

the variants uncovered in GWAS are typically not biologically causal, but rather, correlated to the

true causal variant through linkage disequilibrium (LD). To discern the true causal variant(s), a var-

iety of statistical fine-mapping methods have been proposed to prioritize variants for functional

validation.

Results: In this work we introduce a new approach, fastPAINTOR, that leverages evidence across

correlated traits, as well as functional annotation data, to improve fine-mapping accuracy at pleio-

tropic risk loci. To improve computational efficiency, we describe an new importance sampling

scheme to perform model inference. First, we demonstrate in simulations that by leveraging func-

tional annotation data, fastPAINTOR increases fine-mapping resolution relative to existing meth-

ods. Next, we show that jointly modeling pleiotropic risk regions improves fine-mapping resolution

compared to standard single trait and pleiotropic fine mapping strategies. We report a reduction in

the number of SNPs required for follow-up in order to capture 90% of the causal variants from 23

SNPs per locus using a single trait to 12 SNPs when fine-mapping two traits simultaneously.

Finally, we analyze summary association data from a large-scale GWAS of lipids and show that

these improvements are largely sustained in real data.

Availability and Implementation: The fastPAINTOR framework is implemented in the PAINTOR

v3.0 package which is publicly available to the research community http://bogdan.bioinformatics.

ucla.edu/software/paintor

Contact: gkichaev@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Genome-wide association studies (GWAS) have identified thousands

of regions in the genome containing risk variants for complex traits

and diseases (Global Lipids Genetics Consortium et al., 2013; Locke

et al., 2015; Okada et al., 2014; Type et al., 2014; Wood et al.,

2014). However, the vast majority of the GWAS reported variants are

not biologically causal, but rather, correlated to the true causal vari-

ants through linkage disequilibrium (LD) (Hormozdiari et al., 2014;

Kichaev et al., 2014; Visscher et al., 2012). Fine mapping studies

gather detailed genetic information within the loci that have been

implicated in GWAS (Kote-Jarai et al., 2013; Meyer et al., 2013; Wu

et al., 2013) and statistically dissect these regions to prioritize variants

according to probability of causality. The top variants resulting from

this procedure may become candidates for functional validation

(Claussnitzer et al., 2015; Musunuru et al., 2010).

Many statistical methods for fine-mapping have been developed

for the prioritization of causal variants. Standard approaches range

from a simple ranking of SNPs based on their p-values to more

sophisticated LD-aware ranking algorithms that quantify probabil-

ities for variants to be causal (Benner et al., 2015; Chen et al., 2015;

Hormozdiari et al., 2014; Kichaev et al., 2014). Initial probabilistic

methods have assumed a simple model in which only one variant per

locus is biologically causal (Maller et al., 2012), with more recent

methods extending the statistical frameworks to accommodate mul-

tiple casual variants at risk regions (Chen et al., 2015; Hormozdiari

et al., 2014; Kichaev et al., 2014; Kichaev and Pasaniuc, 2015).

Although modeling multiple causal variants drastically increases

performance, particularly at loci with evidence of multiple signals of

association, it also presents a combinatorially challenging problem

in performing inference in the model. That is, the likelihood formu-

lation contains a model space size exponential in the number of vari-

ants at a locus, which clearly cannot be enumerated over for even a

modestly sized locus. To account for this combinatorial explosion,

initial methods approximated the full likelihood by restricting the

maximum number of causal variants allowed at a risk locus to a

small number (Chen et al., 2015; Hormozdiari et al., 2014; Kichaev

et al., 2014; Kichaev and Pasaniuc, 2015) More recent works

(Benner et al., 2015) further improved computational efficiency by

sampling likely causal models using stochastic search, leveraging the

intuition that most of the terms in the likelihood computation have

near negligible contribution. The authors demonstrated that this

achieves drastic reduction in runtime with comparable fine-mapping

accuracy relative to enumerative methods (Benner et al., 2015).

However, this was done in the context of a single fine-mapping

locus and did not integrate multiple sources of information.

Many GWAS loci are known to be implicated in multiple related

traits—a phenomenon that is observed in many phenotypic classes.

For example, breast cancer and mammographic density (Lindström

et al., 2014), high density lipoprotein (HDL) and low density lipo-

protein (LDL) (Global Lipids Genetics Consortium et al., 2013), or

rheumatoid arthritis and irritable bowel disease (Liu et al., 2015;

Okada et al., 2014) are all pairs of traits that share overlapping

GWAS signals. Combining association signals at these pleiotropic

regions may strengthen the signal from the causal variants that are

impacting both traits. A standard approach used when combining

association information across multiple studies is fixed-effects meta-

analysis, which assumes that causal variants across studies share the

same effect sizes. The random-effects model does allow for effect

size heterogeneity, but it is poorly suited for situations in which the

variant has opposite effect sizes in the various phenotypes (Solovieff

et al., 2013). For this reason, multivariate analyses that jointly

analyze association data from multiple phenotypes and account for

effect size heterogeneity are beneficial—particularly for related traits

that have opposing phenotypic consequences such as HDL and LDL

(Global Lipids Genetics Consortium et al., 2013).

Considerable effort has been put forth into characterizing the

chromatin landscape across the entire spectrum of human tissues

(ENCODE Project Consortium et al., 2012; Kundaje et al., 2015;

Zhou et al., 2011). Most recently, the Roadmap Epigenomics con-

sortium interrogated 111 cell types, charting histone modifications,

DNA accessibility, DNA methylation and gene expression, to pro-

duce genome-wide maps of functional elements (Kundaje et al.,

2015). Previous works have demonstrated that principled integra-

tion of such data can aid fine-mapping performance in the context

of single and multi-population fine-mapping studies (Kichaev et al.,

2014; Kichaev and Pasaniuc, 2015). Since related traits have been

shown to share an underlying genetic basis (Bulik-Sullivan et al.,

2015) that localizes within similar functional classes (Finucane

et al., 2015), it is plausible that functional annotation data can also

augment cross-trait fine-mapping.

In this work we propose a unified framework to perform fast, in-

tegrative fine-mapping across multiple traits. We integrate the

strength of association across multiple traits with functional annota-

tion data to improve performance in the prioritization of causal vari-

ants. Our approach makes the assumption that the same variants at

the risk loci impact both traits though with potentially distinct effect

sizes. A key advantage of our approach is that it requires only sum-

mary association data for each trait, thus avoiding the restrictions

that arise from the sharing of individual-level data. To balance com-

putational efficiency and accuracy we propose an Importance

Sampling technique that provides guarantees for convergence, while

relaxing the assumption of the maximum number of causal variants

allowed at each risk locus.

Through simulations we show that our integrative method de-

livers well-calibrated probabilities for SNPs to be causal and im-

proves fine-mapping performance relative to current state-of-the-art

strategies. To our knowledge, the only existing method that per-

forms joint mapping for pleiotropy while incorporating functional

annotation data is GPA (Chung et al., 2014). We show that our ap-

proach provides superior accuracy to GPA, likely due to the explicit

modeling of LD in our framework. We illustrate the benefit of our

proposed methodologies by fine-mapping pleiotropic regions of lipid

traits in a GWAS of over 180K individuals (Global Lipids Genetics

Consortium et al., 2013).

2 Methods

2.1 Overview
Here, we introduce statistical methods for fine-mapping of pleio-

tropic loci with functional annotation data (see Fig. 1). We build

upon previous works (Hormozdiari et al., 2014; Kichaev et al.,

2014; Kichaev and Pasaniuc, 2015) that make use of a Multivariate

Normal (MVN) distribution to jointly model association statistics at

all SNPs at the locus. This not only allows for the possibility of mul-

tiple causal variants at any risk locus, but also avoids the need to ac-

cess individual level genotype data as LD can be approximated using

the appropriate population-matched reference panel (1000

Genomes Project Consortium et al., 2012). We integrate relevant

functional annotation data through a prior probability for SNPs to

be causal. We introduce an Importance Sampling procedure to im-

prove computational efficiency over methods that enumerate all

possible models of causal configurations. The primary output of our

Pleiotropic risk loci 249

Deleted Text: [
Deleted Text: )
Deleted Text: ); Okada <italic>et<?A3B2 show $146#?>al.</italic> (2014)
Deleted Text: ); Locke <italic>et<?A3B2 show $146#?>al.</italic> (2015
Deleted Text: ]
Deleted Text: [
Deleted Text: Visscher <italic>et<?A3B2 show $146#?>al.</italic> (2012); 
Deleted Text: )
Deleted Text: )]. 
Deleted Text: [
Deleted Text: )
Deleted Text: Kote-Jarai <italic>et<?A3B2 show $146#?>al.</italic> (2013); 
Deleted Text: ]
Deleted Text: [
Deleted Text: )
Deleted Text: ]
Deleted Text: [
Deleted Text: Hormozdiari <italic>et<?A3B2 show $146#?>al.</italic> (2014)
Deleted Text: )
Deleted Text:  Benner <italic>et<?A3B2 show $146#?>al.</italic> (2015)
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: )
Deleted Text: Chen <italic>et<?A3B2 show $146#?>al.</italic> (2015); 
Deleted Text: )
Deleted Text: ]
Deleted Text: -
Deleted Text: [
Deleted Text: )
Deleted Text: Chen <italic>et<?A3B2 show $146#?>al.</italic> (2015); 
Deleted Text: )
Deleted Text: )].
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text:  &hx2013; 
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: )
Deleted Text: ]
Deleted Text: -
Deleted Text: [
Deleted Text: ]
Deleted Text:  &hx2013; 
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: Zhou <italic>et<?A3B2 show $146#?>al.</italic> (2011); 
Deleted Text: )
Deleted Text: ]
Deleted Text: ,
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: )
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: Figure 
Deleted Text: [
Deleted Text: )
Deleted Text: ); Hormozdiari <italic>et<?A3B2 show $146#?>al.</italic> (2014
Deleted Text: ]
Deleted Text: [
Deleted Text: ]


approach are posterior probabilities for SNPs to be casual in both

traits which can subsequently be used to prioritize SNPs individually

(Kichaev et al., 2014) or used to compute fine-mapping credible sets

(Maller et al., 2012).

2.2 A statistical framework for fine-mapping
The standard approach to connect genotype to phenotype is through a

linear model. For individual i, let yi be the trait value and gi be their

vector of genotypes spanning m SNPs. The trait can be modeled as

yi ¼ gT
i bþ �i, where �i � Nð0;r2

e Þ is random environmental noise.

The vector, b, represents the allelic effects whose entries will be non-

zero only at the causal SNPs. Given N individuals with measured geno-

types and trait values, the effect size at SNP j is typically estimated

using standard linear regression as bbj ¼ ðgT
j gjÞ

�1gT
j Y. The strength of

association is then quantified using the Wald statistic (Buse, 1982):

Zj ¼
bb j

SEðbb j
Þ

(1)

which asymptotically follows a normal distribution Zj � Nðkj;1Þ
with mean

kj ¼ bj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var gjð Þ

p
re

ffiffiffiffiffi
N
p

: (2)

Here, kj, is referred to as the Non-Centrality Parameter (NCP)

and dictates of power of finding a significant association and, by ex-

tension, the power to distinguish causal from non-causal SNPs (i.e.

bj 6¼ 0 versus bj ¼ 0). When the jth SNP is causal, the effect sizes are

non-zero and therefore the association statistic (Z-score) corres-

ponding to that SNP will be drawn from a non-central Normal dis-

tribution. However, LD (i.e. correlations between SNPs at each

locus) will induce non-zero NCPs at non-causals variants through

tagging. Therefore, neighboring non-causal SNPs will appear to be

significantly associated to a trait indirectly through LD. Previous

works (Hormozdiari et al., 2014; Kichaev et al., 2014; Kichaev and

Pasaniuc, 2015) have shown that the NCPs at any SNP can be

approximated from the NCPs at the causal SNPs:

Kj ¼
X

c

rj;ck
c (3)

where rj;c denotes the Pearson correlation between SNP j and causal

SNP c. If we collect all the pairwise correlations into a matrix, R,

and let kC be the vector of standardized effects sizes at the causal

SNPs given by the indicator vector C, the entire set of regional sum-

mary statistics, Z, can be approximated by a Multivariate Normal

distribution (MVN)) (Hormozdiari et al., 2014; Kichaev et al.,

2014):

ZjkC;R � N RkC;Rð Þ (4)

However, the causal effect sizes (kC) are typically unknown a

priori and must be either approximated (Kichaev et al., 2014;

Kichaev and Pasaniuc, 2015) or integrated out (Hormozdiari et al.,

2014). Leveraging the standard infinitesimal model (Yang et al.,

2011), Hormorzdiari et al. (2014) proposed to use a normal prior

on the causal NCPs which, due to conjugacy, can be conveniently

integrated analytically as follows:

kCjC;r2 � N 0;RCð ÞÞ (5)

RC ¼ r2Diag Cð Þ þDiag �ð Þ (6)

ZjR;C �
ð
N RkC;Rð ÞN 0;RCð ÞdkC

� �
P Cð Þ (7)

¼ N 0;Rþ RRCRð ÞP Cð Þ (8)

Here the prior probability of the causal set vector (PðCÞ) can be

set to be uniform (Maller et al., 2012), hypergeometric

(Hormozdiari et al., 2014), or can be estimated empirically using

more sophisticated approaches that incorporate functional genomic

data(Kichaev et al., 2014; Kichaev and Pasaniuc, 2015; see Section

2.4). Chen et al. (2015) made the observation that the marginal like-

lihood in (Eq. 8) is approximately proportional to a Bayes Factor

comparing a causal and null model which depends on the Z-scores

and LD only at the causal SNPs. This effectively reduces the compu-

tational burden from cubic in the number of SNPs to cubic in the

number of causal variants considered at each likelihood evaluation.

This not only improves efficiency, but also improves numerical sta-

bility since a much smaller matrix is inverted thus alleviating the

need for stringent regularizations. In this work, we follow the Chen

Fig. 1 Example of input and output of fastPAINTOR at locus chr4:35Mb for

LDL and TG. As input, fastPAINTOR receives an LD matrix, functional annota-

tions and multiple sets of Z-scores at the given locus. fastPAINTOR performs

inference and outputs posterior probabilities for each SNP that quantifies the

likelihood that the SNP is causal for both traits (Color version of this figure is

available at Bioinformatics online.)
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et al. implementation of the likelihood computations (Benner et al.,

2015; Chen et al., 2015).

2.3 Fine-mapping pleiotropic loci
Next, we extend the framework to exploit pleiotropy across related

traits. Given multiple phenotypic measurements across T traits, one

can compute Z-scores for each trait independently. If a locus har-

bors a significant association for multiple traits, a reasonable as-

sumption would be that the underlying causal variants driving this

association are shared. It follows that the vectors of association stat-

istics are conditionally independent given the causal variants (C),

thus the joint distribution for all T sets of Z-scores decomposes into

product:

P Z1 . . . ZT jR;Cð Þ ¼
YT
t¼1

P ZtjRt;C; r
2
t

� �
(9)

To simplify notation we hereafter refer to the collection of

Z-scores at a fine-mapping locus as Z� ¼ fZ1 . . . ZTg. We assume

that all trait measurements have been performed in a single popula-

tion and therefore assume that Rt;¼ R for all t. Importantly, we

note that our formulation makes no assumptions on the coupling be-

tween effect sizes at causal SNPs across traits which allows for arbi-

trary levels of heterogeneity. Accommodating this effect size

heterogeneity could be important for related traits that have oppos-

ing phenotypic consequences.

Under the assumption that causal variants are shared across

pleiotropic loci, the marginal likelihood of the data can be written

as a summation across all possible causal sets, C:

L Z�jR; r2
� �

¼
X
C2C

YT
t¼1

P ZtjR;C; r2
t

� �
P Cð Þ (10)

We can now use this to obtain the posterior probability of any

causal set with a straightforward application of Bayes’ rule:

P CjZ�;Rð Þ ¼

QT
t¼1

P ZtjR;C; r2
t

� �
P Cð Þ

L Z�jR; r2ð Þ (11)

which can be marginalized to yield per-SNP posterior probabilities:

P Cj ¼ 1jZ�;R; c
� �

¼
X

C:Cj¼1

P CjZ�;Rð Þ (12)

2.4 Incorporating functional genomic data
To integrate functional annotation data within this framework, we

use a logistic function to connect a SNP’s functional genomic con-

text to its causal status as follows:

P Cj ¼ 1jc;A
� �

¼
exp c0Aj

� �
1þ exp c0Aj

� � (13)

P Cjc;Að Þ ¼
Ym
j¼1

P Cjjc;A
� �Cj

1� P Cjjc;A
� �� �1�Cj

(14)

The vector Aj is the set of annotations corresponding to the jth SNP

and ck is the prior-log odds that a SNP in annotation k is causal. We

note that c can be estimated directly from the data through an

Empirical Bayes approach first described in Kichaev et al. (2014).

However, this restricts functional enrichment estimation to only the

fine-mapping loci under investigation. Alternatively, one could ex-

ploit potentially more powerful, genome-wide approaches such as

stratified LD-score regression (Finucane et al., 2015) that can infer

global functional genomic enrichments using only summary data.

Our framework is amenable to both approaches, and we allow the

user to estimate c from all the fine-mapping loci jointly using the

EM algorithm proposed in Kichaev and Pasaniuc (2015) or supply it

from external analyses.

2.5 Model inference via Importance Sampling
The marginal likelihood in (Eq. 10) requires enumeration of Oð2mÞ
possible causal sets ðC). This rapidly becomes intractable as the num-

ber of SNPs grows large, and strategies for dealing with this compu-

tational bottleneck need to be considered. Earlier frameworks (Chen

et al., 2015; Kichaev et al., 2014; Kichaev and Pasaniuc, 2015)

avoided this problem by simply restricting the total number of po-

tential casual variants to a small number (k� m), thus reducing the

computational burden to OðmkÞ. However, even in this reduced

model space, enumerating over all possible combinations is ineffi-

cient as most causal configurations will contribute minimally to the

overall likelihood of the data. Recent works have shown that sam-

pling can circumvent brute-force enumeration by efficiently explor-

ing likely causal configurations through stochastic search (Benner

et al., 2015)—though this still requires pre-specifying a subjective

prior that explicitly upper-bounds the maximum number of causal

variants considered at the locus.

In this work, we make use of Importance Sampling, a variance

reduction technique commonly used in Monte Carlo integration

(Glynn and Iglehart, 1989), to provide an efficient approximation of

the marginal likelihood (Eq. 10). Unlike other recently proposed

sampling techniques, Importance Sampling comes with asymptotic

convergence guarantees and allows us to drop the hard cutoff on the

maximum number of potential causal variants considered. The sum-

mation given in (Eq. 10) could naively be approximated by sampling

directly from the prior and computing a simple Monte Carlo

average:

Cj � Bern P Cjjc;A
� �� �

(15)

L Z�jR;r2
� �

� 1

S

XS

s¼1

YT
t¼1

P ZtjR;C sð Þ; r2
t

� �
(16)

However, this is inefficient as highly probable causal sets in the

posterior may not necessarily be reflected in the prior. To better

guide the sampling of highly probable causal sets, we build off the

intuition that SNPs with stronger associations (i.e. large Z-scores)

are more likely to be casual than ones with weak associations. We

can thus construct a discrete proposal distribution, G, to take this

into account by simulating causal sets (CðsÞ) at iteration s as inde-

pendent Bernoulli draws with probabilities given by:

G CjjZ�
� �

� Bern

P
t Zj

t

� �2

P
i

PT
t

Zi
t

� �2

0BBB@
1CCCA (17)

G C sð ÞjZ�
� �

¼
Ym
j¼1

G CjjZ�
� �Cj

1�G CjjZ�
� �� �1�Cj

(18)

Accumulating evidence across multiple traits by summing the chi-

square statistics (i.e ðZjÞ2), and normalizing by the total sum across

all SNPs and traits, creates a probability distribution with the desir-

able property that it will favor selecting SNPs that have strong evi-

dence of association in multiple traits. By operating in the space of
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the chi-square statistics (as opposed to Z-scores), we have additional

flexibility that allows for strongly associated SNPs to have opposing

directional effects in different traits. We can then compute import-

ance weights and re-adjust the bias introduced by sampling from G

as follows:

L Z�jR; r2
� �

�

PS
s¼1

QT
t¼1

P ZtjR;C sð Þ;r2
t

� �
W C sð Þ
� �

PS
s¼1

W C sð Þ
� � (19)

W C sð Þ
� �

¼
P C sð Þjc;A
� �

G C sð ÞjZ�
� � (20)

Which we can then use to approximate the per-SNP probabilities

using the same S samples:

P Cj ¼ 1
� �

�

PS
s¼1

1 Cj sð Þ ¼ 1
� � QT

t¼1

P ZtjR;C sð Þ; r2
t

� �
W C sð Þ
� �

PS
s¼1

QT
t¼1

P ZtjR;C sð Þ;r2
t

� �
W C sð Þ
� � (21)

2.6 Simulation setup
To mimic real genotype data, we used HAPGEN2 (Su et al., 2011)

and the 1000 Genomes (1000 Genomes Project Consortium et al.,

2012) European samples, to simulate 20 000 haplotypes for a num-

ber of randomly selected 25KB loci from chromosome 1. We filtered

rare SNPs (MAP < 0.01) and normalized genotypes to be mean-

centered with unit variance. We overlapped our simulated regions

with DNase Hypersensitivity (DHS) sites spanning 217 cell types

and tissues (Gusev et al., 2014). Using these annotations, we drew

causal status for each SNP according to the logistic model described

previously, setting the DHS enrichment to 5.1 to reflect what was re-

ported in (Gusev et al., 2014). Each locus harbored one causal vari-

ant in expectation, though the random assignment of causal status

could yield zero or multiple casual variants for a given locus. In ex-

periments that were done over 50 loci simultaneously, this typically

resulted in an average of 18 loci with a single causal variant and 14

loci with multiple causals. Once we established the causal SNPs, we

simulated phenotypes under a linear model such that for individual

i, their phenotype value Yi was given by Yi ¼
PNc

j¼1 bj � gj
i þ �i, where

Nc is the number of causal variants, bj is the effect size of the jth

causal SNP, and gj
i is number of copies of the risk allele j for individ-

ual i. We drew �i for each individual from a normal distribution

Nð0; r2
e Þ, where r2

e was given by the formula h2
g ¼

r2
g

r2
gþr2

e
, setting r2

g

to the empirically observed genetic component.

We computed Z-scores for all the SNPs within causal loci by re-

gressing the phenotype vector Y on each genotype vector Gj and

then taking the Wald statistic. To simulate correlated traits, the ef-

fect sizes ðbc
1; b

c
2Þ at the shared causal variants were drawn from an

MVN distribution:

bc
1

bc
2

" #
� N 0;

h2
g=Nc qh2

g=Nc

qh2
g=Nc h2

g=Nc

24 350@ 1A (22)

where q represents the desired genetic correlation. We chose a q of

0.4, consistent with typical correlations for lipids data reported in

(Bulik-Sullivan et al., 2015).

For computational efficiency, we also performed simulations in

which the vectors of association statistics where drawn directly from

an MVN distribution (Eq. 4). In this scenario the NCP ðkCÞ was set

to 5 at all causal SNPs.

2.7 Existing methods
We compared our approach to several existing fine-mapping meth-

ods. For single-trait fine-mapping, we compared to FINEMAP and

CAVIARBF (Benner et al., 2015; Chen et al., 2015), two methods

based on the CAVIAR (Hormozdiari et al., 2014) model that do not

incorporate functional annotation data. We ran CAVIARBF v1.4

using the default settings, setting prior variance explained to be 0.05

and the maximum number of causal variants in the model to 3.

After CAVIARBF computed Bayes factors for each SNP, we ran

their model search algorithm, which outputs posterior probabilities

based on Bayes factors. In this step, we set the prior probability of

each SNP being causal to 1=m, where m is the number of variants in

the locus. We ran the FINEMAP v1.1 software using default set-

tings, allowing for 3 causal SNPs per locus with prior probabilities

of (0.6, 0.3, 0.1) for 1, 2 and 3 causals respectively.

For multi-trait fine-mapping, we compared to GPA (Chung

et al., 2014). To our knowledge, GPA is the only other method that

performs multi-trait fine-mapping while leveraging functional anno-

tation data. As GPA requires P-values as input, we converted Z-

scores from our simulations to P-values for each SNP. We provided

GPA with the same DHS annotation data as we did for our ap-

proach. On multi-trait analyses, GPA outputs 4 posterior probabil-

ities for each variant, indicating the probability that the SNP is

causal for neither trait, Trait 1, Trait 2, or both traits. When evalu-

ating accuracy, we considered the SNP to be deemed causal by GPA

if it was implicated in both traits. In addition, we explored trad-

itional meta-analysis techniques to combine information across

traits by computing inverse variance fixed effects association statis-

tics (Evangelou and Ioannidis, 2013). We then used these Z-scores

in fine-mapping under the assumption of a single causal variant

(Maller et al., 2012) as well as within our framework as a single

trait.

2.8 Empirical lipids data
We downloaded GWAS summary data across four blood lipids

phenotypes: High Density Lipoprotein, Low Density Lipoprotein

and Triglycerides (Global Lipids Genetics Consortium et al., 2013).

For each of the traits, we used Imp-G summary (Pasaniuc et al.,

2014) to impute Z-scores up to the latest version (V3) of the 1000

Genomes European reference panel (1000 Genomes Project

Consortium et al., 2012) yielding approximately 7.6 million SNPs

per trait in total. We then compiled a list of 24 pleiotropic regions

which we defined as a GWAS hit that was observed in least two

traits of the three traits. For each of these regions, we centered a

250KB window around the lead SNP and overlapped these regions

with two functional marks derived from the Roadmap Project: Liver

H3K4me1 and Liver H3K27ac (Kundaje et al., 2015).

3 Results

3.1 Fast and reliable performance in single trait

fine-mapping
We first sought to empirically assess how our sampling-based ap-

proach compared to fine-mapping methods CAVIARBF and

FINEMAP. These previous approaches can model multiple causal

variants, but were not designed to exploit pleiotropy. As such, in

order to make the comparisons fair, we conducted our initial investi-

gation in the context of a single trait. Furthermore, because these
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methods, as well as our proposed approach, are faster generaliza-

tions of the underlying CAVIAR model, we chose not to compare to

CAVIAR nor PAINTOR, both of which would predictably have

slower computational performance but similar accuracies.

We first assessed performance on the basis of CPU runtime. The

number of samples that are drawn to approximate the posterior dis-

tribution is invariably connected to the resulting runtime for our

method, fastPAINTOR. Therefore, we determined the number of

samples required to yield approximately unbiased credible sets and

find that one million samples was typically sufficient across a wide-

range of locus sizes (Supplementary Fig. S1). We then compared to

existing approaches and, not surprisingly, discover that methods

that approximate the posterior model space through sampling vastly

outperform methods that enumerate over all possible combinations

(Supplementary Fig. S2). For example, both fastPAINTOR and

FINEMAP scale favorably with the size of the locus, with average

run times of (11.5 s, 10.8 s) per 25KB locus and (186 s, 31 s) per

250KB locus. The added computational overhead of fastPAINTOR

is due to the fact that functional enrichments must be iteratively esti-

mated using an EM-algorithm. If these estimates are supplied from

external analyses, running fastPAINTOR* takes an average of 75 s

per 250KB locus to produce probabilities.

We next evaluated the accuracy of these methods in resolving

causal variants to ensure that our sampling approximation did not

deflate performance. We simulated 100KB regions with various lev-

els of DHS enrichment to reflect a wide diversity of potential func-

tional genetic architectures. In general, we see that leveraging

functional annotation data improves fine-mapping resolution rela-

tive to non-integrative approaches (Fig. 2)—particularly as causal

variants localize within smaller fractions of the genome (i.e. increas-

ing enrichment). For example, the average rank of the causal SNPs

was around 21.9 and 21.4 for CAVIARBF and FINEMAP across all

functional genetics architectures. On the other hand, when causal

variants are diffusely enriched within DHS, their average rank based

on fastPAINTOR probabilities is 21.4 while strong functional en-

richment yields an average rank of 15.0. Taken together, these re-

sults suggest that sampling-based, integrative methods are both

scalable and achieve greater accuracy than current state-of-the-art

methodologies.

3.2 Multi-trait fine-mapping
Having established that our new computationally efficient approach

compared favorably in standard fine-mapping scenarios, we next

sought to investigate how leveraging information across related

traits as well as functional annotation data affected fine-mapping

performance. We simulated two genetically correlated traits with

10K individuals where the causal variants are shared between the

traits but have heterogeneous effects sizes (see Methods section). To

control for the effect of sample size, we also simulated a single trait

with 20K individuals. We find that by borrowing information across

related traits, we are able to improve fine-mapping performance

with greater efficiency than just simply increasing sample size for

any single trait (see Fig. 3). In our multi-trait analysis with

fastPAINTOR, we required (1.4, 12.4) SNPs per locus for follow-up

in order to capture (50%, 90%) of the true causal variants, as com-

pared with (1.9, 23.1) SNPs in a single-trait analysis. Intuitively, this

is due to the fact that power to detect causal variants grows with the

square root of the sample size, while growing linear with the allelic

effects (see Eq. 2). Therefore leveraging multiple genetically corre-

lated traits (i.e. traits that share casual effects) will, on average

across multiple loci, be more beneficial than simply increasing the

sample size for one of the traits.

We next explored principled strategies for assembling data span-

ning multiple traits. Our main comparator was GPA—a method spe-

cifically proposed to use pleiotropy and functional data to prioritize

variants. In addition, we ran two meta-analysis approaches using

fixed effects association statistics—a standard meta-analysis that as-

sumes a single causal variant (Maller et al., 2012), as well as running

fastPAINTOR using these fixed effects association statistics as a sin-

gle trait, which allows for multiple causal variants. In general, our

approach is more accurate and robust than previously proposed

methods, requiring (1.4, 12.4) SNPs per locus for follow-up in order

to identify (50%, 90%) of the causal variants compared to (2.3,

25.1) for fastPAINTOR with FE or (11.6, 32.3) for GPA (Fig. 3).

Furthermore, our approach outperforms competing strategies at loci

that contain both a single and multiple casual variants (see

Supplementary Fig. S3) as well as varying effect size distributions

(see Supplementary Fig. S4). One of the critical model assumptions

of GPA is that SNPs are independent. Clearly, in the context of fine-

mapping, this assumption is strongly violated which explains the

sub-optimal performance. Alternatively, FE can be viewed as simply
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Fig. 3 Integrative methods improve fine-mapping resolution in multiple traits.

We simulated fifty 25KB loci for two traits with shared causal variants at each

locus. We measure accuracy as the proportion of causal variants identified as

we increase the size of our candidate SNP set
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a weighted-average of the effect sizes. In the extreme, though not im-

plausible, scenario where causal effects are going in opposite direc-

tions, FE will provide weak evidence that a SNP is causal. We

validated this hypothesis in simulations by examining scenarios

where the FE assumption was met and when it was strongly vio-

lated. In simulations where the effect size of the causal SNPs were

identical in both traits (q¼1) our the multi-trait framework gives

identical performance to fastPAINTOR with FE. However, when ef-

fect sizes are anti-correlated, fastPAINTOR with FE statistics leads

to severely deflated fine-mapping accuracy (see Supplementary Fig.

S5), highlighting the benefit of the multi-trait joint-MVN

formulation.

Finally, we developed our framework with the assumption that

causal variants are shared across traits. This may not always hold in

practice and we wanted to understand how our method responds to

violations of this assumption. We performed simulations in which

causal variants for the two traits were drawn independently leading

to potentially distinct causal SNPs and uncorrelated effect sizes. We

find that our joint fine-mapping method is robust to pleiotropic loci

with differing causals, yielding relatively small mis-calibration of the

credible sets on the order of 10% (see Table 1). We predict that, in

cases where the effect sizes among distinct causal variants are corre-

lated, the disparity between the shared causal and distinct causal

cases would be even less. We can thus conclude that our proposed

framework that jointly models sets of association statistics, expli-

citly accounts for local correlation structure, and integrates func-

tional data prioritizes variants robustly and accurately.

3.3 Multi-trait fine-mapping in lipids data
In order to demonstrate that the gains in our multi-trait fine-map-

ping approach are realized in real data, we analyzed summary asso-

ciation data from a large-scale GWAS of lipids (Global Lipids

Genetics Consortium et al., 2013). High Density Lipoprotein

(HDL), Low Density Lipoprotein (LDL) and Total Triglycerides

(TG) are prototypical pleiotropic traits, sharing 24 GWAS hits for at

least two. To showcase our pleiotropic fine-mapping framework, we

obtained GWAS data over these traits spanning 180K individuals

(Global Lipids Genetics Consortium et al., 2013) and did integrative

fine-mapping across putative pleiotropic regions. Functional annota-

tion selection was guided by the genome-wide heritability-based

functional enrichments reported in Finucane et al. (2015). The au-

thors analyzed HDL, LDL and TG and found that the H3K4me1

mark in liver tissue had the strongest enrichment of heritability

across all three traits. Their result provides strong support for the

key assumption that causal variants are shared across traits in our

model. In addition to liver H3K4me1, we also used the liver

H3K27ac mark, which displayed strong enrichment for multiple

traits. In addition to a joint analysis, we applied our framework

with and without functional data as well as on each trait independ-

ently. To quantify fine-mapping resolution we use 99% credible sets

(Maller et al., 2012; Kichaev et al., 2014) which are defined as the

set of variants that aggregate to capture 99% of the posterior prob-

ability mass. Consistent with simulations, pleiotropic fine-mapping

provided a reduction in the size of the credible set as compared with

investigating individual traits alone (see Table 2). Additional func-

tional data helps refine the signal, though only marginally, since ex-

ceedingly strong associations at these regions dominate the prior

evidence. Moreover, we show that the 99% credible sets obtained

from the cross-trait analysis contained 13 novel SNPs not found in

any of the single-trait analyses alone (See Supplementary Fig. S6).

This suggests that, for some loci, leveraging association strength

across related traits may increase our power to detect more weakly

associated causal variants in the individual traits. In conclusion,

these encouraging results illustrate that carefully merging related

traits can improve the resolution of statistical fine-mapping.

4 Discussion

In this work, we introduced a fast fine-mapping method that inte-

grates several sources of genetic data to efficiently and accurately

prioritize causal variants. Our Importance Sampling strategy dra-

matically reduces runtime due to its ability to efficiently sample high

probability causal configurations, demonstrating that enumerating

over complex model spaces is not necessary for integrative fine-

mapping. We generalized this approach to leverage multiple traits

simultaneously and demonstrated, both in simulations and real

data, that this strategy can improve the ability to detect causal vari-

ants impacting both traits. As GWAS data accumulate and evidence

for the abundance of pleiotropic risk loci mounts, there is a need for

fine-mapping methods that can perform large-scale integrative ana-

lyses. Moreover, efforts by large consortia such as ENCODE will

continue to provide genomic annotation data that will improve the

accuracy of fine-mapping studies. A key advantage to our method is

that it requires only summary association data, overcoming the

issues that arise when sharing individual data that would otherwise

limit sample sizes. In light of these developments, our proposed

methodology will become increasingly applicable in the future, par-

ticularly where multiple genetically correlated traits show at least

suggestive evidence of association at a locus. Furthermore, our ap-

proach could even be applied to fine-map seemingly disparate traits

such as height and educational attainment, which, nonetheless,

share a genetic component (Bulik-Sullivan et al., 2015).

We conclude by highlighting some caveats and limitations of our

proposed framework. The power of our multi-trait fine-mappingTable 1. The performance of fastPAINTOR is largely sustained

when the assumption of shared causal variants across traits is

violated

Method Proportion of causals identified SNPs selected (s.e.)

Trait 1 0.96 46.01 (0.27)

Trait 2 0.96 45.54 (0.27)

Differing causals 0.86 28.42 (0.22)

Same causals 0.97 26.00 (0.17)

As compared with fine-mapping single traits independently, the reduction

in the 95% credible set size is sustained while still capturing a large propor-

tion of the causal variants. We define an 95% confidence set as the number of

SNPs we need to select in order to accumulate 95% of the total posterior

probability mass per locus.

Table 2. Pleiotropic fine-mapping is superior to single locus fine-

mapping

95% Credible Set 99% Credible Set

Annotations – þ – þ

HDL 4.6 4.6 4.8 5.1

LDL 5.9 5.9 14.3 11.4

TG 4.2 4.2 5.4 5.4

Multi-trait 3.7 3.7 4.7 4.7

Presented here are the mean number of SNPs that are in the 95 and 99%

fine-mapping credible sets.
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framework hinges on the assumption that causal variants are shared

at pleiotropic risk regions. While this notion is supported by the fact

that related traits have shared functional genetic architectures

(Finucane et al., 2015), it is unknown whether this holds in general

when doing fine-mapping. Reassuringly, we demonstrated in simula-

tions that the coverage of the resulting credible sets is reduced by a

modest 10% when this assumption is violated. Second, most large-

scale GWAS have overlapping samples and the conditional inde-

pendence assumption given in (Eq. 9) may be violated. However, it

is unclear whether this violation will bias the results dramatically if

the underlying causal variants are shared across traits. Finally, while

our Importance Sampling scheme does not explicitly upper-bound

the number of causal variants at a fine-mapping regions, it favors

exploring parsimonious models over complex ones. We therefore

advocate that fine-mapping using our approach be undertaken

where there is evidence of only moderate allelic heterogeneity.

Funding

This research has been supported by U01-CA194393, CA182821, and R01

GM053275 from the National Institute of Health. GK and MR are supported

by the Biomedical Big Data Training Program (NIH-NCI T32CA201160).

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. et al. (2012) An integrated map of genetic

variation from 1,092 human genomes. Nature, 491, 56–65.

Benner,C. et al. (2015) Finemap: efficient variable selection using summary

data from genome-wide association studies. bioRxiv, 027342.

Bulik-Sullivan,B. et al. (2015) An atlas of genetic correlations across human

diseases and traits. Nat. Genet., 47, 1236–1241.

Buse,A. (1982) The likelihood ratio, Wald, and Lagrange multiplier tests: an

expository note. Am. Stat., 36, 153–157.

Chen,W. et al. (2015) Fine mapping causal variants with an approximate

Bayesian method using marginal test statistics. Genetics, 200, 719–736.

Chung,D. et al. (2014) GPA: a statistical approach to prioritizing GWAS

results by integrating pleiotropy and annotation. PLoS Genet., 10,

e1004787.

Claussnitzer,M. et al. (2015) FTO obesity variant circuitry and adipocyte

browning in humans. N. Engl. J. Med., 373, 895–907.

ENCODE Project Consortium. et al. (2012) An integrated encyclopedia of

DNA elements in the human genome. Nature, 489, 57–74.

Evangelou,E. and Ioannidis,J.P. (2013) Meta-analysis methods for genome-

wide association studies and beyond. Nat. Rev. Genet., 14, 379–389.

Finucane,H.K. et al. (2015) Partitioning heritability by functional annotation

using genome-wide association summary statistics. Nat. Genet., 47,

1228–1235.

Global Lipids Genetics Consortium. et al. (2013) Discovery and refinement of

loci associated with lipid levels. Nat. Genet., 45, 1274–1283.

Glynn,P.W. and Iglehart,D.L. (1989) Importance sampling for stochastic

simulations. Manag. Sci., 35, 1367–1392.

Gusev,A. et al. (2014) Partitioning heritability of regulatory and cell-type-

specific variants across 11 common diseases. Am. J. Hum. Genet., 95,

535–552.

Hormozdiari,F. et al. (2014) Identifying causal variants at loci with multiple

signals of association. Genetics, 198, 497–508.

Kichaev,G. and Pasaniuc,B. (2015) Leveraging functional-annotation data in

trans-ethnic fine-mapping studies. Am. J. Hum. Genet., 97, 260–271.

Kichaev,G. et al. (2014) Integrating functional data to prioritize causal vari-

ants in statistical fine-mapping studies. PLoS Genet., 10, e1004722.

Kote-Jarai,Z. et al. (2013) Fine-mapping identifies multiple prostate cancer

risk loci at 5p15, one of which associates with TERT expression. Hum.

Mol. Genet., 22, 2520–2528.

Kundaje,A. et al. (2015) Integrative analysis of 111 reference human epige-

nomes. Nature, 518, 317–330.

Lindström,S. et al. (2014) Genome-wide association study identifies multiple

loci associated with both mammographic density and breast cancer risk.

Nat. Commun., 5, 5303.

Liu,J.Z. et al. (2015) Association analyses identify 38 susceptibility loci for in-

flammatory bowel disease and highlight shared genetic risk across popula-

tions. Nat. Genet., 47, 979–986.

Locke,A.E. et al. (2015) Genetic studies of body mass index yield new insights

for obesity biology. Nature, 518, 197–206.

Maller,J.B. et al. (2012) Bayesian refinement of association signals for 14 loci

in 3 common diseases. Nat. Genet., 44, 1294–1301.

Meyer,K.B. et al. (2013) Fine-scale mapping of the fgfr2 breast cancer risk

locus: putative functional variants differentially bind foxa1 and e2f1. Am.

J. Hum. Genet., 93, 1046–1060.

Musunuru,K. et al. (2010) From noncoding variant to phenotype via sort1 at

the 1p13 cholesterol locus. Nature, 466, 714–719.

Okada,Y. et al. (2014) Genetics of rheumatoid arthritis contributes to biology

and drug discovery. Nature, 506, 376–381.

Pasaniuc,B. et al. (2014) Fast and accurate imputation of summary statistics

enhances evidence of functional enrichment. Bioinformatics, btu416.

Solovieff,N. et al. (2013) Pleiotropy in complex traits: challenges and strat-

egies. Nat. Rev. Genet., 14, 483–495.

Su,Z. et al. (2011) Hapgen2: simulation of multiple disease SNPs.

Bioinformatics., 27, 2304–2305.

Type,A.G.E.N. et al. (2014) Genome-wide trans-ancestry meta-analysis pro-

vides insight into the genetic architecture of type 2 diabetes susceptibility.

Nat. Genet., 46, 234–244.

Visscher,P.M. et al. (2012) Five years of GWAS discovery. Am. J. Hum.

Genet., 90, 7–24.

Wood,A.R. et al. (2014) Defining the role of common variation in the genomic

and biological architecture of adult human height. Nat. Genet., 46,

1173–1186.

Wu,Y. et al. (2013) Trans-ethnic fine-mapping of lipid loci identifies

population-specific signals and allelic heterogeneity that increases the trait

variance explained. PLoS Genet., 9, e1003379.

Yang,J. et al. (2011) Genome partitioning of genetic variation for complex

traits using common SNPs. Nat. Genet., 43, 519–525.

Zhou,V.W. et al. (2011) Charting histone modifications and the functional or-

ganization of mammalian genomes. Nat. Rev. Genet., 12, 7–18.

Pleiotropic risk loci 255

Deleted Text: [
Deleted Text: ]

	btw615-TF1
	btw615-TF2

