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Abstract

Motivation: The biological regulatory system is highly dynamic. The correlations between many

functionally related genes change over different biological conditions. Finding dynamic relations on

the existing biological network may reveal important regulatory mechanisms. Currently no method is

available to detect subnetwork-level dynamic correlations systematically on the genome-scale net-

work. Two major issues hampered the development. The first is gene expression profiling data usu-

ally do not contain time course measurements to facilitate the analysis of dynamic relations, which

can be partially addressed by using certain genes as indicators of biological conditions. Secondly, it is

unclear how to effectively delineate subnetworks, and define dynamic relations between them.

Results: Here we propose a new method named LANDD (Liquid Association for Network Dynamics

Detection) to find subnetworks that show substantial dynamic correlations, as defined by subnet-

work A is concentrated with Liquid Association scouting genes for subnetwork B. The method

produces easily interpretable results because of its focus on subnetworks that tend to comprise

functionally related genes. Also, the collective behaviour of genes in a subnetwork is a much more

reliable indicator of underlying biological conditions compared to using single genes as indicators.

We conducted extensive simulations to validate the method’s ability to detect subnetwork-level dy-

namic correlations. Using a real gene expression dataset and the human protein-protein interaction

network, we demonstrate the method links subnetworks of distinct biological processes, with both

confirmed relations and plausible new functional implications. We also found signal transduction

pathways tend to show extensive dynamic relations with other functional groups.

Availability and Implementation: The R package is available at https://cran.r-project.org/web/pack

ages/LANDD.

Contacts: yunba@pcom.edu, jwlu33@hotmail.com or tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput expression data, such as gene expression, metab-

olomics and proteomics data, comprehensively profile the expression

levels of thousands of biological units. Such data can reveal complex

regulatory patterns in the biological system. Methods to explore pat-

terns in high-throughput expression data include clustering, dimension
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reduction, sparse factorization, etc. Such methods are mostly based on

pairwise relations between the biological units. However, the expres-

sion levels of the biological units are the outcome of complex biolo-

gical regulatory networks, the links of which may be turned on and off

in response to certain biological conditions (Barzel and Barabasi,

2013; Ideker and Krogan, 2012; Luscombe et al., 2004; Ocone et al.,

2013). As a result, at the gene expression level, many correlations are

dynamic, changing from positive correlation in some biological condi-

tions to negative or no correlation in other biological conditions. Such

conditions may not be major phenotype changes, e.g. disease/non-

disease in case-control studies, but they may be more subtle and unob-

served within each phenotype group (Li, 2002; Li et al., 2004).

To analyze dynamic correlations in gene expression profiling

data, the expression levels of certain genes are treated as indicators

of cellular states, and correlation changes conditioned on such genes

are computed (Boscolo et al., 2008; Chen et al., 2011; Li, 2002).

The selection of such genes may be ad hoc and subjective, and the re-

sulting gene pairs with dynamic correlation may be functionally di-

vergent and difficult to interpret. To address such issues, we

consider the existing biological networks, such as protein-protein

interaction (PPI) network and signal transduction network. Such

networks provide known functional links between the biological

units. Integrating expression data with existing biological networks

has proven to be an effective approach to reduce spurious findings

and achieving more interpretable results (Barab�asi, 2007; Barab�asi

et al., 2011; Chan and Loscalzo, 2012). By allowing genes to bor-

row information from those of related biological functions, such

methods can better resist the tendency of generating false positive re-

sults in the presence of measurement noise. So far such work has

been solely focused feature selection—finding subnetworks that as-

sociate with certain disease outcomes (Chen et al., 2013; Ciriello

et al., 2012; Nie and Yu, 2013; Sanguinetti et al., 2008; Su et al.,

2010; Taylor et al., 2009; Wei and Pan, 2010; Wei and Pan, 2012;

Yang et al., 2014; Zhao et al., 2014). Not much attention has been

paid to the behavior of the network itself. In this work, our purpose

is to develop a new method that can find sub-regions of the genome-

scale network that show dynamic relationships between each other.

We utilize Liquid Association (LA) for gene-level dynamic correl-

ation detection (Li, 2002), and the ego-network concept to define

subnetworks (Yang et al., 2014).

An ego-network is a sub-network that involves a particular node

that is called ego, and a neighborhood around this node (Borgatti

et al., 2009). The ego node is the focal point, and a K-step ego-

network includes the ego node itself, and all nodes to which the ego

node has a connection at path length �K, as well as all the edges be-

tween them. Every node in the overall network can be an ego node.

Using the ego network concept, it is straightforward to delineate

subnetworks. Biologically, an ego node itself may not exhibit certain

behavior at the expression level, while other nodes in its

neighborhood can provide evidence that the ego node is in fact

relevant, which is valid because the activities of many proteins are

regulated in a post-translational manner, and may not be reflected

by measurements of gene expression. Moreover, focusing on one

ego node at a time means the computation can be conducted effi-

ciently using deterministic iterations (Yang et al., 2014).

Liquid Association (LA) is a method that detects three-way inter-

actions between genes (Li, 2002), which has been shown to reveal

dynamic relations in gene expression that are not found by trad-

itional correlation-based methods (Chen et al., 2012; Li et al.,

2007). LA reveals the change of co-expression pattern for a pair of

genes. A third gene called LA-scouting gene is used to indicate the

cellular state change (Li, 2002). Focusing on LA relations between

regions of the existing biological network can greatly improve the

interpretability of the results. By combining LA with the ego-

network approach, and using mixture models for LA scores through

local false discovery rate (lfdr) inference (Efron and Tibshirani,

2002), our method finds network regions where the LA scouting

genes to a given ego-network are concentrated. Using real data, we

show that the method not only recovers existing knowledge about

regulatory relations between the biological functions represented by

the subnetworks, but also discovers new and plausible relations that

could help future biological studies.

2 Methods

2.1 Calculating liquid association (LA) score
The goal of LA is to reveal the dynamics of co-expression patterns

for a pair of genes. There are different methods to detect LA activ-

ities between a pair of genes X and Y, and here a third gene Z called

LA-scouting gene is used following the original work by Li (2002).

Specifically, between the three random variables (genes), Li defined

LA XYð jZÞ ¼ EðXYjZÞ as the LA score to measure the dynamic cor-

relation between X and Y, with Z as the biological state indicator,

and derived the theory that LA XYð jZÞ ¼ EðXYZÞ following proper

data standardization to have mean 0 and variance 1 (Li, 2002). The

sample version of the LA score is LA XYð j ZÞ ¼
P

ixiyizi=n, where

n is the sample size.

The LANDD algorithm takes an existing network and gene ex-

pression data matrix as input data (Fig. 1a). In the network data,

each node represents a gene, and each edge represents a biological

link, e.g. physical interaction or signal transduction, depending on

the choice of the network. Our method assumes the network is

given, and does not attempt to modify the network. We further dis-

cuss the choice of network in the Discussions section. In the gene ex-

pression matrix, each row represents a gene and each column is a

specific sample. First, data cleaning is performed to find common

genes between the network and the expression matrix. Second, the

n�m expression matrix is normalized using normal score trans-

formation for every row. This is to simplify the calculation of LA

scores as recommended in (Li, 2002).

2.2 Selecting scouting genes for ego-networks
The algorithm then iteratively scans through all genes in the network

as gene X (Box 1). For each X, it finds the K-step ego-network.

Every gene in the ego-network is connected to gene X at a certain

path length ranging from 1 to K. The algorithm iterates through all

genes in the ego-network as gene Y. All other genes in the network

are treated as gene Z for the calculation of LA score (Fig. 1b).

After LA scores for all possible Z’s are calculated for a pair of gene

X and gene Y. We need to determine which gene, among all the nodes

of the network, have significant LA relationship with the (X, Y) pair.

We achieve this goal by fitting a mixture model to all the LA scores

for the X–Y pair. When X, Y and Z all follow normal distribution,

and when Z is unrelated to X and Y, the LA score LA(XYjZ) approxi-

mately follows a normal distribution, even if X and Y are correlated

(Supplementary Fig. S1). A true scouting gene Z will bring the LA

score to more extreme values compared to the normal distribution.

Thus we can consider all the LA scores between an X–Y pair and all

the potential Z’s to follow a mixture model of two components:

f LAð Þ ¼ p0f0 LAð Þ þ ð1� p0Þf1 LAð Þ;

where f is the mixture density for the observed LA score, f0 and f1

are the respective densities of the statistic of the null (non-scouting)
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and non-null (scouting) genes, and p0 is the proportion of true null

genes. Here f0 is a normal distribution with unknown parameters

that depend on the joint distribution of X and Y, and f1 is an un-

known distribution. This setup follows exactly the literature on local

false discovery rate (lfdr) (Efron and Tibshirani, 2002). Based on the

mixture model, the local fdr methods can estimate the probability of

each candidate Z gene belongs to the null (non-scouting) category

by density estimation procedures. In this study we used the R pack-

age fdrtool (Strimmer, 2008) to fit the LA scores and separate LA

scouting genes from the rest (Fig. 1c).

Each ego node X may have multiple neighbors in the K-step

neighborhood that can serve as Y. The above procedure is repeated

for every Y. The null distribution of each (X, Y) pair may be differ-

ent from others. As long as a gene is found to be a scouting gene for

one (X, Y) pair, it is considered a scouting gene for the ego-network

centered at X (Fig. 1c).

2.3 Finding scouting ego nodes using kernel smoothing
Usually, there are several scouting genes Z for each gene X. Finding

network regions where scouting genes are enriched can shed light on

the functional implications on the LA relations, as well as reduce the

impact of false positives. We employ the truncated Gaussian kernel

to find nodes around which scouting genes for a given X is concen-

trated (Fig. 1d). We consider one X node at a time. For every scout-

ing node Z selected for X, we spread its signal to its network

neighborhood. Let k be the distance of a node in the neighborhood

to Z. We assign a weight of /ðkÞ to the node, where /ðÞ is the dens-

ity of standard Gaussian distribution. We only considered nodes up

to two steps from Z.

Given that the number of nodes around every Z is different, nor-

malization needs to be conducted. We provide three different ways

for users to choose from, which are normalizing with the total

weight, the square root of total weight, and no normalization. The

first normalization method results in the total weight of the neigh-

borhood of every Z, including Z itself, to be exactly 1. The other

two favor nodes around large hubs.

Similar to the ego-network approach, this procedure allows us to

find nodes around which scouting genes are concentrated, even

when the node itself is not a scouting gene. After this procedure,

every node on the network is assigned a value. Then we can use

thresholding to select the nodes with highest scores. As they may or

may not be the scouting nodes (Z) originally selected, we name such

nodes ‘scouting ego nodes’, and use W to denote them.

2.4 Finding network communities of scouting ego nodes
Up to this step, we can find a list of scouting ego nodes for every

ego-network. Data interpretation can be conducted at the scouting

ego node (W) level. In order to further simplify the result and pro-

vide a high-level summary, we further divide the scouting ego nodes

for each ego-network into dense sets, using the network connectivity

structure between them.

For this purpose, we apply a well-established method that detects

dense sub-graphs from a sparse graph by short random walks (Pons

and Latapy, 2005). The scouting ego nodes (W) are grouped into

communities. After detecting several communities among the W

nodes, we use the GOstats method to evaluate the biological

Fig. 1. The workflow of the LANDD method (Color version of this figure is

available at Bioinformatics online.)

Box 1. The pseudocode for conducting LA scouting gene

search on the network.

Finding scouting genes

Input: G (graph of gene network), M (expression matrix), K

(neighborhood order), T (local fdr threshold)

Output: Scouting genes: S

Standardize each row of M

n¼ the number of rows (genes) in M

m¼ the number of columns (samples) in M

for each node X in G do

Scouting genes SX¼U
N¼neighborhood within K steps of X

for each node Y in N do

for each node Zi in G do

LAi¼ (x1y1zi1þ. . .þxmymzim)/m

Fit {LAi}i¼1,. . .,n from all genes to mixture model

using fdrtool to find {lfdri}i¼1,. . .,n

SX ¼ SX [ Zi : lfdri � Tf
End for

End for

End for

Return S¼ {SX, for every gene X in G}
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functions of each community of W (Falcon and Gentleman, 2007),

based on the Gene Ontology biological processes. In the output ob-

ject, the significant biological processes for the W nodes are juxta-

posed side-by-side with the significant biological processes of the

corresponding ego-network (X and Y nodes) for the ease of results

interpretation. In addition, the median semantic distances on the

GO system between the communities of the W nodes and the X

node are calculated to facilitate the comparison (Yu et al., 2010).

3 Results

3.1. Simulation study
An R package of the method is available at https://cran.r-project.

org/web/packages/LANDD. We conducted a systematic study using

simulated data. In each simulation, (1) a scale-free network of 5000

nodes was generated using the Barabasi-Albert model (Barabasi and

Albert, 1999), with a connectivity level similar to the real network

used in the next section. (2) The expression data matrix was gener-

ated using multivariate normal distribution, in which the covariance

structure was determined by the network structure. The covariance

between any pair of genes was set to 0.4k, where k was the shortest

distance between the two nodes, and the variance of each gene was

set to 1. (3) We then randomly selected one ego node whose 2-step

ego network contained 20 to 40 nodes as the X node. (4) A portion

of the nodes in the 2-step ego-network were randomly selected as

the Y nodes. (5) For the W node, we randomly selected a node that

was at least 5 steps away from the X node, which also has more

2-step neighbors than the number of Y nodes, and randomly selected

a Z node in its two-step neighborhood for each Y node selected in

step 4. (6) For each Z node, the expression vector was replaced by

generating new expression values that are rank-correlated with the

X� Y values, such that LA relationships were established. Three

parameters were used to control the signal strength in the data: (a)

rho, which controls the strength of LA relationship. Three levels

were used: weak, medium and strong (rho¼0.3, 0.5, 0.8). (b) The

proportion of Y nodes among all nodes in the X ego network (z.per-

cent¼0, 0.25, 0.5, 0.75, 0.95). (c) Sample size in the simulated ex-

pression data (n.sample¼100, 200, 500).

After data generation, we analyzed the data using LANDD at

different parameter settings. They include the size of the ego net-

work (K¼1, 2), normalization methods (method 1, method 2,

method 3), normalization Gaussian kernel standard deviation (ker-

nel.sd¼1, 1.5). Every parameter combination was run 50 times. We

evaluated the results by the receiver-operating characteristic (ROC)

analysis, which evaluates the capability of all X–W scores to differ-

entiate true W genes from the rest. The area under the curve (AUC)

of ROC was used to summarize the results.

The simulation results showed that when no true LA relation is

present (z.percent¼0 in each plot), the AUC is close to the theoret-

ical minimum of 0.5 in all cases (Fig. 2). When z.percent (left to

right of each sub-plot) or the LA strength (left to right columns) in-

creases, the AUC also increases. The three normalization methods

exhibit the same trend, while the normalization methods that favor

nodes with higher degrees (blue and green curves) showed slightly

better performance. However, this could be due to the generation

Fig. 2. Simulation results. In each sub-plot, the X-axis represents the proportion of Y nodes among all nodes in the X ego network; the Y-axis represents the area

under the curve (AUC) of the receiver-operating characteristic (ROC) curve that measure the association between W node scores with the true W node locations.

Line colors represent normalization methods, and line types represent sample sizes. The columns of sub-plots represent different LA association strengths, and

the rows represent combinations of K values, i.e. ego network size, and kernel standard deviations used in the kernel smoothing to calculate W scores
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process of the simulations, which favored the selection of higher-

degree nodes when selecting the true W nodes. The K value (1st row

versus 2nd row; 3rd row versus 4th row) did not impact the results

much, while the smoothing kernel standard deviation (top two rows

versus bottom two rows) impacted the results substantially, with

kernel.sd¼1 performing better than kernel.sd¼1.5. Higher sample

size yielded higher AUC (different line types). In summary, the cap-

ability of LANDD to rank the correct W genes higher, i.e. sensitiv-

ity, increases with the sample size and LA relation strength. When

the LA strength is medium to strong, and LA relation is pervasive

between two sub-networks, LANDD has a high likelihood to give

high score to the correct W genes.

3.2. Real data analysis
To assess the performance of LANDD, we conducted real data ana-

lysis of an expression dataset. The data we used in this study is the

GSE10255 dataset downloaded from the Gene Expression Omnibus

(GEO). The data contained gene expression in diagnostic bone mar-

row leukemia cells in patients with primary acute lymphoblastic leu-

kemia (ALL). ALL is a blood cancer with the typical outcome of the

accumulation of abnormal leukemia cells that can’t mature prop-

erly. We selected the probesets with known ENTREZ Gene IDs. For

genes represented by more than one probesets, we merged the cor-

responding probesets by taking the mean expression levels. The data

matrix contained 12 704 rows (genes) and 161 columns (samples).

Although the original study was focused on associating gene expres-

sion with methotrexate (MTX) treatment, the data was generated at

baseline and feasible to study general gene expression patterns in

diagnostic bone marrow leukemia cells (Sorich et al., 2008). In this

study we consider the general interaction patterns between genes on

the known biological network. For the network, we used the

protein-protein interaction (PPI) network from the HINT database

(Das and Yu, 2012), which combines data from several databases

and filters the interactions manually to remove erroneous inter-

actions. The network we used contained 8292 proteins and 27 493

binary interactions. After finding overlaps between the expression

data and the network, 6856 common nodes remained.

We applied the new method LANDD to the data, using ego net-

work size limit K¼2, lfdr cutoff value 0.2 to select Z nodes, and W

node selection threshold 0.2. Over all the ego-networks, the distribu-

tion of the number of Z nodes and the number of W nodes are highly

skewed, which indicates LA relations are important only for a portion

of genes (Fig. 3). Because of the heavy skewness of the data (Fig. 3a,

b), median values better summarize the results than mean values. The

median number of Z nodes detected for any X node is 9; for 1910 X

nodes, no Z node was detected (Fig. 3a). The median number of W

nodes detected for any X node is 4; for 2459 X nodes, no W node

was detected (Fig. 3b). Figure 3(c) shows the distribution of median

network distance between X and its W nodes. The overall median for

all X’s is 4.5. The number of W nodes detected didn’t have much rela-

tion with the connectivity (degree) of X nodes (Fig. 3d).

The full results of the W genes found for each X, as well as their

main biological functions as defined by over-represented gene ontol-

ogy (GO) biological process terms found by the GOstats package

(Falcon and Gentleman, 2007) are listed in the supplementary file at

http://web1.sph.emory.edu/users/tyu8/LANDD%20Supplements/

Spt_2_all_W.xls.

For each X node, when a number of W nodes were found, we fur-

ther conducted community detection among the W nodes. The biolo-

gical functions of the detected communities are listed in the

supplementary file at http://web1.sph.emory.edu/users/tyu8/LANDD

%20Supplements/Spt_3_W_community.xls. We further selected a few

examples to illustrate the results.

Fig. 3. Summary plots of the results from GSE10255 and the HINT interaction database. (a) Histogram of the number Z genes found for each X; (b) histogram of

the number of W genes found for each X; (c) histogram of the median graph distance between W nodes and X nodes, for each X; (d) scatter plot of the number of

W nodes found against the degree of the X nodes. Insets: plots on log10 scale
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In the first example, the X gene, 26 119, encodes the low-density

lipoprotein receptor adaptor protein 1 (LDLRAP1, or ARH), which

contains a phosphotyrosine binding domain (Dvir et al., 2012). The

phosphotyrosine binding domain of LDLRAP1 binds to the tail of

low-density lipoprotein receptor (LDLR) in a sequence-specific man-

ner (He et al., 2002). The function analysis of the two-step ego-net-

work around 26 119 indicated that the major functions of

LDLRAP1 and its interacting proteins include immune effector pro-

cess (Hermansson et al., 2010) and cholesterol and sterol homeosta-

sis (Cohen et al., 2003; Garuti et al., 2005).

As shown in Figure 4, two W communities were identified for

gene 26 119, together with some individual W genes. The first W

community (W1) contains 15 genes (indicated as blue dots), which

are all related to tyrosine kinase superfamily. They include genes

ABL1, EGFR, ERBB2, YFN, GH1, GHR, GRB2, PIK3R1, PKD1,

PKD2, PTPN6, PTPRC, SRC and TEC. There are many studies indi-

cating that tyrosine kinase family regulates LDL receptor and LDL

adapter protein. For example, The estrogen-induced transcription of

the low-density lipoprotein receptor (LDL-r) depends on tyrosine

kinase (TK) and protein kinase C (PKC) activation (Distefano et al.,

2002). So the genes in W1 community are likely involved in the

regulation of the homeostasis of lipid, one of the major direct biolo-

gical functions of gene X, 26 119.

The second W community (W2) contains six genes, which are

indicated in green dots (Fig. 4). The proteins encoded by these genes

are involved in the major histocompatibility complex II molecules

(the class II MHC complex). MHC II are a family of molecules nor-

mally found only on antigen-presenting cells, including dendritic

cells, T cells and B cells and play important role in immune process

development. Studies have indicated that MHC II processing path-

ways are critically associated with the immune-related biological

function of gene X, 26 119. It has been shown that plasma LDL and

oxLDL levels constitute signals that can up-regulate MHC II in im-

mature dendritic cells (Zaguri et al., 2007), in which LDLRAP1 is

likely to play a role.

Given that a number of W nodes didn’t fall into any network

community (Fig. 4, red nodes), we also studied the biological func-

tions of all W nodes together using Gene Ontology. As shown in

Table 1, the most significant GO terms are concentrated in immune

system functions and immune-related signal transduction pathways.

Fig. 4. The two-step ego-network of gene 26 119, and the detected W genes

for the ego-network. The detected communities of W genes are colored

differently

Table 1. Top 25 over-represented GO biological processes for

genes 26 119 and 924.a

X gene: 26119

Leukocyte cell-cell adhesion: 5.4694e-16

T cell costimulation: 6.212e-14

T cell activation: 4.6677e-13

T cell aggregation: 4.6677e-13

T cell receptor signaling pathway: 5.1054e-10

Antigen receptor-mediated signaling pathway: 6.115e-10

Lymphocyte differentiation: 1.7846e-07

Antigen processing and presentation of exogenous antigen:

1.239e-06

Immune response-activating signal transduction: 1.2725e-06

Lymphocyte proliferation: 1.6325e-06

Response to interferon-gamma: 2.6283e-06

Interferon-gamma-mediated signaling pathway: 2.9274e-06

Leukocyte differentiation: 5.1616e-06

Response to cytokine: 7.4043e-06

Antigen processing and presentation: 8.9682e-06

T cell differentiation: 1.1261e-05

Cellular response to interferon-gamma: 1.2995e-05

Antigen processing and presentation of exogenous peptide antigen via

MHC class II: 2.5379e-05

Antigen processing and presentation of peptide or polysaccharide anti-

gen via MHC class II: 3.0822e-05

Thymic T cell selection: 3.4917e-05

Cellular response to cytokine stimulus: 4.3809e-05

Antigen processing and presentation of exogenous peptide antigen:

4.568e-05

Calcium ion transport: 5.0122e-05

Immune effector process: 5.5959e-05

B cell activation: 0.00010786

X gene: 924

Leukocyte cell-cell adhesion: 3.8768e�15

Leukocyte aggregation: 7.339e�15

Regulation of T cell activation: 2.0694e�13

T cell costimulation: 1.4367e�11

Antigen receptor-mediated signaling pathway: 2.3406e�09

Lymphocyte differentiation: 5.8768e�09

T cell proliferation: 1.0758e�06

T cell selection: 1.1524e�06

Regulation of immune response: 2.4014e�06

Immune response-regulating signaling pathway: 8.3202e�06

Antigen processing and presentation of exogenous peptide antigen via

MHC class II: 1.3205e�05

Interferon-gamma-mediated signaling pathway: 1.6072e�05

Phosphatidylinositol 3-kinase signaling: 2.3359e�05

Response to cytokine: 2.6589e�05

Positive regulation of intracellular signal transduction: 3.8474e�05

Hemopoiesis: 4.2317e�05

Phosphatidylinositol-mediated signaling: 4.6578e�05

Platelet activation: 6.6332e�05

Hematopoietic or lymphoid organ development: 8.1033e�05

Regulation of peptidyl-tyrosine phosphorylation: 0.00020249

Fibroblast growth factor receptor signaling pathway: 0.00024721

Response to fibroblast growth factor: 0.00045182

Regulation of ERK1 and ERK2 cascade: 0.00049142

Adenylate cyclase-modulating G-protein coupled receptor signaling

pathway: 0.00076589

Fc-gamma receptor signaling pathway involved in phagocytosis:

0.00082535

aGO terms are followed by P-value; some redundancies manually

removed.
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Another example ego (X) node is gene 924, which encodes CD7,

a member of the immunoglobulin superfamily. CD7 plays an essen-

tial role in T cell interactions and T-cell and B-cell interactions dur-

ing early lymphoid development. CD7 is an important

immunological marker in ALL. Aberrant expression of CD7 is asso-

ciated with acute myeloid leukemia (AML) (Cruse et al., 2005;

Rausei-Mills et al., 2008). The function analysis indicates that the

CD7 is involved in the pathways related to vesicle transport, fusion

docking and localization. A single community was found for 924.

As shown in Figure 5, there are 18 genes in the W community

(indicated as blue dots). The genes in W community include

ADRB2, B2M, CD3D, CD3E, CTNNB1, EGFR, FYN, GRB2,

NUBP1, PIK3R1, PTPN6, PTPRC, SRC, SYK, SPRY2, SEMA4D,

GNA15, CD1B. They regulate the aggregation, adhesion, activation

and differentiation of different immune cells including leukocyte,

lymphocyte, T cell and so on, which are closely related to the biolo-

gical function of the X gene 924.

Again we also studied the biological functions of all W nodes to-

gether using Gene Ontology (Table 1). Similar to gene 26 119, the

most significant GO terms are concentrated around immune system

functions and signal transduction pathways. Given the ego node 924

(CD7) is a member of the immunoglobulin superfamily, and is dir-

ectly involved in T cell interactions and T-cell and B-cell interaction,

the results clearly conform to existing knowledge.

On the other hand, some genes that have no obvious association

with leukemia and/or immune system were also found. As an ex-

ample, the gene 8192 (caseinolytic mitochondrial matrix peptidase

proteolytic subunit, CLPP) was found to be one of the LA scouting

ego nodes for 924 (CD7). The protein encoded by this gene is a

member of the peptidase family S14. It is located in the mitochon-

dria and hydrolyzes proteins in the presence of ATP and magnesium.

Recent work has found the inhibition of this protease has thera-

peutic effect on Acute Myeloid Leukemia (AML) (Cole et al., 2015;

Larkin and Byrd, 2015), indicating a potential functional relation-

ship between the W gene 8192 with the immune-related functions

surrounding CD7.

When we consider all X nodes together, we found some nodes

tend to serve as LA scouting ego nodes (W) for many X nodes. We se-

lected the top 50 nodes that have the highest frequency to be W nodes,

and analyzed their biological function using GOstats (Table 2).

Among the top 25 significant GO terms, we can see the functions are

Fig. 5. The two-step ego-network of gene 924, and the detected W genes for

the ego-network. The detected communities of W genes are colored

differently

Table 2. Top 25 over-represented Gene Ontology biological process terms of the top 50 LA scouting ego genes (W genes), after manual re-

moval of overly broad and overlapping terms

GOBPID P-value Count Size Term

GO:0002768 5.59E�09 13 261 Immune response-regulating cell surface receptor Signaling pathway

GO:0045321 7.87E�09 16 447 Leukocyte activation

GO:0032386 1.76E�08 13 287 Regulation of intracellular transport

GO:0038093 2.17E�08 11 190 Fc receptor signaling pathway

GO:0032880 3.79E�08 14 366 Regulation of protein localization

GO:0002252 1.44E�07 14 407 Immune effector process

GO:0050776 1.51E�07 16 551 Regulation of immune response

GO:0002764 2.32E�07 13 357 Immune response-regulating signaling pathway

GO:0071495 4.44E�07 17 677 Cellular response to endogenous stimulus

GO:0006913 1.24E�06 11 283 Nucleocytoplasmic transport

GO:0031295 1.32E�06 6 56 T cell costimulation

GO:0048546 1.34E�06 5 31 Digestive tract morphogenesis

GO:0071822 1.42E�06 19 917 Protein complex subunit organization

GO:0044744 1.47E�06 9 177 Protein targeting to nucleus

GO:0043066 1.94E�06 14 504 Negative regulation of apoptotic process

GO:0000904 3.37E�06 14 528 Cell morphogenesis involved in differentiation

GO:0010647 4.41E�06 17 797 Positive regulation of cell communication

GO:0048699 5.23E�06 17 807 Generation of neurons

GO:0071214 5.42E�06 8 155 Cellular response to abiotic stimulus

GO:0009719 5.74E�06 18 907 Response to endogenous stimulus

GO:0042060 7.21E�06 13 484 Wound healing

GO:0042177 8.06E�06 5 44 Negative regulation of protein catabolic process

GO:0042325 9.17E�06 17 841 Regulation of phosphorylation

GO:0048565 9.36E�06 6 78 Digestive tract development

GO:0071363 1.01E�05 13 499 Cellular response to growth factor stimulus
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clustered around three themes: immune system function, signal trans-

duction (mostly in relation to immune system), as well as differenti-

ation and development. 17 of the 50 genes fall into enzyme linked

receptor protein signaling pathways. Because LA relationship implies

potential regulative relations, the excess of signal transduction related

genes in the top W nodes is expected.

4 Discussion

In this manuscript we present a method LANDD, which finds sub-

networks with concentrated Liquid Association relationships. The

calculation of Liquid Association scores is done one gene triplet at a

time, independent from other genes. The network structure is then

imposed to select LA scouting genes and LA scouting ego nodes for

each ego-network. For each X–Y pair, a mixture model was fit by

the local fdr approach to best separate LA scouting and non-

scouting genes. We note that between the LA scores of different Z

genes for each X–Y pair, and more broadly between different X–Y

pairs, correlations exist. Thus the local fdr results are only used as

heuristics to separate the mixture and select scouting genes, but can-

not be taken as posterior probabilities.

LANDD is a heuristic method that combines several approaches.

Thus several parameters can impact the results. There are three key

parameters. The parameter K, i.e. the size of the ego network to con-

sider, reflects the user’s belief of how wide a neighborhood on the

network is considered to be ‘local’ to the ego node. In other words,

how close do two nodes need to be for their biological function to

be related and their dynamic correlation to be meaningful. Another

important parameter is the normalization method, which reflects the

consideration of whether to favor nodes with a higher number of

connections. In the biological system, often hub nodes play import-

ant roles. The third key parameter is the standard deviation of the

kernel. Similar to the parameter K, it reflects our belief of how con-

centrated on the network the scouting signal should be. In our simu-

lation studies (Fig. 2), we have shown these parameters could

change the sensitivity to detect true LA relationships. We next con-

duct a comparison using the real data.

First fixing K¼2, we varied the normalization method and the

kernel SD, and made pairwise comparisons between parameter set-

tings with regard to the median column-wise correlation of the raw

LA relation scores in the n by n matrix with X genes in the row and

W in the column, the overlap of all selected X–W pairs, and the

overlap between the selected top 50 scouting egos (Fig. 6a–c).

Because the score distribution, hence the selection threshold, de-

pends on the parameter settings, to simplify the comparison, we

fixed the quantile for selecting X–W pairs to the same as reported in

Section 3.2, such that roughly the same number of X–W pairs were

selected at every parameter setting.

Changing the normalization methods and kernel SD, we

observed that the correlation of X–W pair scores were relatively

high across all settings (Fig. 6a), ranging from 0.77 to 0.99. After

thresholding the scores to obtain the top X–W pairs, we observed

relatively high overlap rate between normalization methods 2 and 3,

as well as between kernel SD 1 and 1.5 (Fig. 6b). The selection of

Fig. 6. Comparisons of the results generated from different parameter combinations. Top row: fixing K¼2 and vary the normalization method and kernel stand-

ard deviation (SD). (a) Median correlation of each node’s W score; (b) proportion of overlap between the selected lists of X–W pairs; (c) proportion of overlap be-

tween the selected lists of top 50 scouting ego nodes. Bottom row: fixing normalization Gaussian kernel SD¼1, and vary K and normalization method. (d)

Median correlation of each node’s W score; (e) proportion of overlap between the selected lists of X–W pairs; (f) proportion of overlap between the selected lists

of top 50 scouting ego nodes (Color version of this figure is available at Bioinformatics online.)
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top 50 W scouting egos appears to be more consistent across differ-

ent parameter settings (Fig. 6c). This is expected as the selection of

top 50 scouting egos is an aggregation over the selected X–W pairs.

We then fixed the kernel SD at 1, and varied the value of ego net-

work size K and the normalization method (Fig. 6 d–f). With regard

to the X–W score correlation (Fig. 6d), and the selected X–W pair

overlap (Fig. 6e), clearly K had a much bigger impact than the nor-

malization method. Within each K value setting, normalization

methods 2 and 3 agreed better with each other. Overall, between

K¼2 and K¼3, the agreement was reasonably high. On the other

hand, the agreement of the top 50 scouting egos was much less im-

pacted by the K value, especially between normalization methods 2

and 3 (Fig. 6f).

Overall, we observed reasonable agreement when changing the

parameters. The parameter that showed the largest impact was K, the

size of the ego network. The biological network can have varying

characteristics in different sub-regions. One set of parameter may not

be optimal for all sub-regions of the networks. Thus the differences in

the results using different parameter settings may partially reflect dif-

ferent sensitivity each parameter setting has on different sub-regions

of the network. We will explore methods for adaptive parameter tun-

ing across the whole network in future studies.

Multi-gene relationships can be difficult to discover and inter-

pret. However when correctly identified, they can bring deeper

understanding to the high dimensional data. Approaches similar to

LA, such as likelihood-based methods and those using information

theory, have also been proposed (Boscolo et al., 2008; Chen et al.,

2011). In this study, we anchored LA relations on existing biological

network, and pooled information from network neighborhoods

using the ego-network concept. Such a procedure limits the search

space of gene triplets, and hence the computing cost. In addition,

genes in ego-networks tend to be functionally related. Focusing on

ego networks and ego scouting nodes makes the results easily

interpretable.

Our method relies on an existing biological network. There are a

number of databases available on protein-protein interaction net-

works, signal transduction networks, etc. We point the reader to

some recent reviews (Chowdhury and Sarkar, 2015; Szklarczyk and

Jensen, 2015). Characteristics of the network, such as the degree dis-

tribution, the diameter of the graph, etc., and more importantly, the

local functional consistency of the network, are expected to impact

optimal parameter setting. To fully understand their impacts, a sys-

tematic study will be necessary, which should include large scale

simulations and more importantly, analysis of the characteristics of

existing biological networks. This is out of the scope of the current

work. We plan to conduct the study in the near future.

LANDD limits the computation of LA scores to gene pairs that

are within a certain path length on the network. Suppose the net-

work consists of N nodes, and there are in total Mk node pairs that

are within K steps of distance. Because the network structure can

vary, we cannot express MK as a function of N and the average de-

gree. However given that we use a K that is small, we expect

MK�N2. The step of calculating LA scores to find the Z genes has

a computing complexity of O(NMK). In the following step of kernel

smoothing and finding the W genes, we used a truncated kernel that

only spread the signal up to 2 steps, then the complexity is O(NM2).

Supplementary Figure S2 shows the computing time at different net-

work size and K values, under the setting of the simulation study

(Section 3.1), using a laptop computer with a 2.8 GHz Intel core i7

CPU and 16 Gb memory. With 5000 nodes and K¼2, and sample

size of 500, the computation takes 4.3 min. With K¼3, the compu-

tation takes 21 min, because the M3 is much larger than M2.

There are certain caveats to our method. The first is some truly

related gene triplets may not be close on the existing network, given

the limitations of current knowledge of the biological network. They

will be missed by the method. Secondly, although ego-network is a

very convenient concept to use in generating subnetworks, it has its

limitations, the most critical of which is the fact that different ego-

networks can be partially overlapping. Nonetheless, it has been dem-

onstrated that with some expert input and targeted examination of

the results, methods using the ego-network concept yield easily inter-

pretable results. In addition, using the ego-network concept allows

users to easily focus on pre-selected genes of biological relevance.

Overall, the method LANDD (Liquid Association for Network

Dynamics Detection) extracts new dynamic correlation relations on

the genome-scale network that are not detected using existing meth-

ods. It can help to generate new biological insights and testable

hypotheses.
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