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Abstract

Summary: Most RNA molecules form internal base pairs, leading to a folded secondary structure.

Some of these structures have been demonstrated to be functionally significant. High-throughput

RNA structure chemical probing methods generate millions of sequencing reads to provide struc-

tural constraints for RNA secondary structure prediction. At present, processed data from these ex-

periments are difficult to access without computational expertise. Here we present FoldAtlas, a

web interface for accessing raw and processed structural data across thousands of transcripts.

FoldAtlas allows a researcher to easily locate, view, and retrieve probing data for a given RNA mol-

ecule. We also provide in silico and in vivo secondary structure predictions for comparison, visual-

ized in the browser as circle plots and topology diagrams. Data currently integrated into FoldAtlas

are from a new high-depth Structure-seq data analysis in Arabidopsis thaliana, released with this

work.

Availability and Implementation: The FoldAtlas website can be accessed at www.foldatlas.com.

Source code is freely available at github.com/mnori/foldatlas under the MIT license. Raw reads

data are available under the NCBI SRA accession SRP066985.

Contact: yiliang.ding@jic.ac.uk or matthew.norris@jic.ac.uk.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA structure plays an important role in all steps of gene expression

and regulation (Mortimer et al., 2014; Sharp, 2009). Earlier studies

inferred the secondary structures of individual RNA sequences using

low throughput in vitro probing or in silico prediction approaches.

More recently, genome-wide in vivo structure probing methods have

emerged, allowing structures to be determined across the transcrip-

tomes of living cells (Ding et al., 2014; Rouskin et al., 2014; Spitale

et al., 2015; Talkish et al., 2014; Tang et al., 2015).

Chemical probing methods can be used to determine RNA sec-

ondary structure in living cells (Kwok et al., 2013; McGinnis and

Weeks, 2014; Spitale et al., 2013). These methods include dimethyl

sulfate (DMS) probing and selective 2’-hydroxyl acylation analyzed

by primer extension (SHAPE). In DMS probing, the N1 position of

adenine and the N3 position of cytosine are methylated when the

base is not involved in Watson–Crick base pairing. In SHAPE, all

unpaired bases are modified.

Chemically modified bases lead to stalling of reverse transcriptase.

With reverse transcription, PCR, deep sequencing and normalization,

reactivities can be assigned to individual RNA sequence positions.

These reactivities describe the extent of exposure of a nucleotide to

solution, and can be exploited as pseudo-free energy constraints for
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RNA secondary structure prediction. At present, raw and processed

reactivity data are hard to access without computational expertise.

Here we introduce FoldAtlas, a repository and web interface for

accessing genome-scale RNA structure probing data. We also pro-

vide visualization of data-constrained RNA structures across the gen-

ome. The data included with FoldAtlas are from a new high-depth

Structure-seq DMS analysis in Arabidopsis thaliana, covering over

11 000 transcripts.

2 Results

FoldAtlas allows a researcher without computational expertise to se-

lect a transcript of interest and retrieve its corresponding raw and

processed structure probing data, along with pre-generated RNA

structure predictions. FoldAtlas is the first tool that provides this

functionality across the genome. When a transcript is selected and

loaded, the d3nome genome browser (Fig. 1A) released with this

work, displays the splicing configuration of the selected transcript,

along with alternative splice isoforms, where relevant. An overview

of the normalized chemical reactivities (Fig. 1B) is also shown, which

can be expanded to show detailed nucleotide-resolution chemical

reactivities. The reactivities are generated as described in the

Supplementary Results section of the Supplementary Material.

Tab delimited text files containing normalized chemical reactivities

are available for download. We also provide corresponding raw read

termination counts from 3 independent biological replicates, allow-

ing the significance of structure probing data to be estimated by as-

signing errors to reactivities.

For each transcript, we include the 20 lowest free energy uncon-

strained in silico and data-constrained in vivo structures generated by

using the Fold program, from version 5.7 of the RNAstructure pack-

age (Reuter and Mathews, 2010), with default slope and intercept

parameters of 1.8 and -0.6kcal/mol respectively. The structure predic-

tion set includes the MFE structure alongside suboptimal low free en-

ergy structures. Differences and similarities between these structures

are visualized using a Principal Components Analysis (PCA) view

(Fig. 1C). PCA plots were generated using a previously described

method (Halvorsen et al., 2010). Each structure can also be visualized

using both circle plots (Fig. 1D) and structure diagrams (Fig. 1E) gen-

erated using the ViennaRNA package (Hofacker, 2013; Kerpedjiev

et al., 2015, Lorenz et al., 2011). The corresponding MFE structures

can be downloaded as tab-delimited text files.

The FoldAtlas chemical reactivity data are from a DMS chemical

modification experiment in Arabidopsis thaliana. These data were

generated by using a previously established Structure-seq method

(Ding et al., 2014, 2015), but with two rounds of poly-A selection

to enrich the proportion of mRNA. Detailed analysis of this experi-

ment is provided in the Supplementary Results section of the

Supplementary Material.

3 Conclusions and future work

FoldAtlas provides convenient access to in vivo RNA structure probing

data across thousands of transcripts. The current release, 1.1, includes

data from a high depth genome-scale probing experiment in

Arabidopsis thaliana. To predict structure for a transcript, we generated

up to 20 secondary structures using the RNAstructure Fold tool, and

visualized the structure ensemble using PCA plots. In this work, our

preference to use RNAstructure is due to the ability to specify experi-

mental constraints, and is consistent with the approach taken in our ear-

lier work (Ding et al., 2014). In future versions of FoldAtlas, we plan to

also provide options to visualize structure predictions made using other

methods, including SeqFold (Ouyang et al., 2013), and Vienna

RNAfold, which now allows experimental constraints (Lorenz et al.,

2011, 2015). We are also considering including SHAPE probing data,

in vitro data, reactivities calculated using alternative normalization

methods, data from other organisms, and data from other studies.
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in red, whilst green indicates little or no reactivity
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