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Abstract

Motivation: The advent of high-throughput DNA methylation profiling techniques has enabled the

possibility of accurate identification of differentially methylated genes for cancer research. The

large number of measured loci facilitates whole genome methylation study, yet posing great chal-

lenges for differential methylation detection due to the high variability in tumor samples.

Results: We have developed a novel probabilistic approach, differential methylation detection

using a hierarchical Bayesian model exploiting local dependency (DM-BLD), to detect differentially

methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model

to capture both the local dependency of measured loci and the dependency of methylation change

in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive

structure; the dependency of methylation changes is modeled by a discrete Markov random field.

A hierarchical Bayesian model is developed to fully take into account the local dependency for dif-

ferential analysis, in which differential states are embedded as hidden variables. Simulation studies

demonstrate that DM-BLD outperforms existing methods for differential methylation detection,

particularly when the methylation change is moderate and the variability of methylation in samples

is high. DM-BLD has been applied to breast cancer data to identify important methylated genes

(such as polycomb target genes and genes involved in transcription factor activity) associated with

breast cancer recurrence.

Availability and Implementation: A Matlab package of DM-BLD is available at http://www.cbil.ece.

vt.edu/software.htm.

Contact: Xuan@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the most well-studied epigenetic mark, DNA methylation has

been demonstrated to play a crucial role in regulating gene expres-

sion without alterations to the DNA sequence (Bird, 2002).

Although the underlying mechanism is still not completely known,

DNA methylation is essential for cell differentiation and it is associ-

ated with various key biological processes such as embryonic devel-

opment and genomic imprinting (Meissner, 2010). Besides its

important role in normal cell development, recent studies show that

DNA methylation abnormalities are associated with various diseases
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including cancer (Baylin and Jones, 2011; Feinberg, 2007). There is

strong evidence that tumor-suppressor genes may be silenced be-

cause of hypermethylation; growth-promoter genes may be activated

due to hypomethylation, consequently inducing cancer development

(Feinberg and Tycko, 2004). Therefore, the identification of abnor-

malities in DNA methylation is of increasing interests in the field of

cancer research. Moreover, DNA methylation is heritable and re-

versible (Ramchandani et al., 1999), which makes it a promising tar-

get for new therapeutic approaches in cancer treatment (Kulis and

Esteller, 2010).

In the past decade, the development of high-throughput technolo-

gies provides the opportunity to obtain whole genome-wide DNA

methylation mapping with high resolution. Illumina Infinium

HumanMethylation450 BeadChip Kit (Illumina 450k) is one of the

most popular, high-quality, cost-effective techniques for DNA methy-

lation study. Illumina 450k measures>485000 CpG (50-C-phosphate-

G-30) sites per sample at single-nucleotide resolution, which covers

99% of RefSeq genes with multiple sites in the functional regions,

such as promoter, 5’UTR, 1st exon, gene body, and 3’UTR. The high

coverage and low cost of the Illumina 450k array (Bibikova et al.,

2011; Sandoval et al., 2011) make it a very powerful platform for

exploring genome-wide DNA methylation landscape. By virtue of the

high-throughput techniques, the methylation level of each gene is

measured at multiple CpG sites across the genomic location, providing

more comprehensive measurements for a methylation event.

Despite the advantage of high-throughput profiling, the high

resolution poses challenges to computational analysis for detecting

differentially methylated genes from the huge number of measured

CpG sites. Early approaches attempt to identify differentially methy-

lated sites by statistic tests. However, the statistical power is limited

due to the problem of multiple hypothesis testing; moreover, it is

biologically difficult to interpret individual CpG sites without con-

sidering the neighbors. Thus, the detection of differentially methy-

lated regions (DMRs) is of prime interest, and several methods have

been proposed, falling into two categories: annotation based meth-

ods and de novo methods. In the annotation based methods, the re-

gions are predefined according to the annotation of CpG site

location. IMA (Illumina Methylation Analyzer) (Wang et al., 2012)

is a well-known annotation-based pipeline, which first generates an

index of the methylation value of predefined regions, and then uses

statistical tests, such as limma, to identify differentially methylated

regions. The index of the methylation value of a region is derived

from the methylation value of the involved CpG sites with metrics

such as mean, median, and so on. As an alternative, de novo meth-

ods do not rely on predefined regions for DMR detection.

Bumphunter (Jaffe et al., 2012) first estimates the association be-

tween the methylation level and the phenotypes for each site, and

then identifies DMRs after a smoothing operation. DMRcate (Peters

et al., 2015) is another approach agnostic to predefined regions. It

first calculates a statistic from differential test for each site, and then

uses a Gaussian kernel to incorporate the neighboring information

for DMR detection. Comb-P (Pedersen et al., 2012) combines spa-

tially assigned P-values to find regions of enrichment. Probe Lasso

(Butcher and Beck, 2015) is a window based approach that detects

DMRs using neighboring significant-signals. The region-based

methods have demonstrated their capability in detecting biologically

meaningful differential methylation events. However, most of the

existing DMR detection methods are based on statistic tests, and the

neighboring information is not jointly considered when estimating

the methylation change of CpG sites.

In this article, we develop a novel method, differential methyla-

tion detection using a hierarchical Bayesian model exploiting local

dependency (DM-BLD), to identify differentially methylated genes

based on a Bayesian framework. In DM-BLD, CpG sites are first

mapped or linked to genes according to their location information.

For each gene, we then use a Gaussian Markov random field (MRF)

model, Leroux conditional autoregressive (CAR) structure (Leroux

et al., 2000), to capture the varying degree of dependency among

nearby CpG sites. Based on the local dependency, it is reasoned that

genes involving a sequence of CpG sites with methylation change

are more likely to exhibit abnormal methylation activity. We use a

discrete Markov random field (Wei and Pan, 2010) to model the de-

pendency of methylation change (differential states) of neighboring

CpG sites. A hierarchical Bayesian model is developed to fully take

into account the local dependency for differential analysis, in which

differential states are embedded as hidden variables. A Gibbs sam-

pling procedure is then developed to estimate the methylation

change of CpG sites jointly with other model parameters based on

their conditional distributions, respectively. The proposed DM-BLD

approach is a fully probabilistic approach with a hierarchical

Bayesian model to account for the local dependency in both methy-

lation level and differential state, capable of detecting less differen-

tially methylated genes accurately and effectively.

2 Methods

2.1 Framework of the DM-BLD approach
Based on the observation that nearby CpG sites are significantly cor-

related (Supplementary Section S1), we propose to develop a prob-

abilistic model incorporating the local dependency of CpG sites to

identify differentially methylated genes. In our proposed method,

CpG sites are mapped to genes according to their genomic locations.

As is provided by the annotation file of Illumina 450k array, the

probes/CpG sites are assigned to RefSeq genes of the reference gen-

ome hg19. For each gene, all of the CpG sites located within 1500bp

from TSS to 3’UTR are used for differential analysis. Three major

steps of the proposed method, DM-BLD, are summarized as follows

(see Fig. 1): (i) within each gene, estimating the true methylation

level of CpG sites by modeling the local spatial correlation of methy-

lation level and the dependency of methylation change among neigh-

boring CpG sites; (ii) calculating the differential methylation score

of genes from the estimated methylation change of CpG sites; (iii)

performing permutation-based significance tests on potential differ-

entially methylated genes. Specifically in the first step, we use the

Leroux model (Leroux et al., 2000), an advanced CAR structure, to

capture the dependency of methylation level among neighboring

CpG sites. Comparing with the intrinsic conditional autoregressive

model (Clayton and Kaldor, 1987), the Leroux model is capable of

accounting for different levels of correlation (Lee, 2011), which

helps improve the accuracy in estimating the true methylation level

of CpG sites. We then use a discrete Markov random field (Wei and

Pan, 2010) to model the dependency of methylation changes (via dif-

ferential states) of neighboring CpG sites. With differential states

embedded as hidden variables, we use a hierarchical Bayesian model

to take into account the local dependency fully for differential ana-

lysis. A Gibbs sampling procedure, based on conditional distribu-

tions, is designed to estimate the true methylation level and other

model parameters. In the second step, the differential methylation

score of a gene is calculated from the estimated methylation change

of involved CpG sites. Genes can be prioritized according to the dif-

ferential methylation score for further biological validation. Finally

in the third step, permutation-based hypothesis tests are imple-

mented and performed to assess the significance of the identified
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differentially methylated genes for real data analysis. More details

of the three steps will be given in the following subsections.

2.2 Estimation of methylation change of the CpG sites

within each gene
We first estimate the true methylation level of CpG sites by taking

into account the neighboring CpG sites. Beta-value is conventionally

used as the measure of the methylation level of CpG sites; beta-value

is the ratio of the methylated probe intensity and the overall inten-

sity (sum of the methylated and unmethylated probe intensity)

(Bibikova et al., 2011). Beta-value is thus represented as a propor-

tion value bounded by zero and one, which can be modeled by a

logit-normal distribution. (Atchison and Shen, 1980)

Assume that there are N genes and gene n has Mn CpG sites. Let us

denote Betai;j as the beta-value of the ith (i ¼ 1; 2; . . . ;Mn) CpG site of

gene n (n ¼ 1; 2; . . . ;N) in sample j (1 � j � J), which follows a

logit-normal distribution. J ¼ J1 þ J2 is the total number of samples

associated with two biological phenotypes (or conditions), where J1

and J2 are the number of samples for phenotype 1 and phenotype 2, re-

spectively. For gene n, denote yi,j as the logit transform of Betai;j, as

shown in Equation (1). yi,j (also called M-value) follows a normal dis-

tribution with mean ci and precision se (Equation (2). ci (as defined by

Equation (3) represents the true methylation level of CpG site i in gene

n, where hi represents the basal methylation level of CpG site i, while

l0 represents the methylation level change of gene n between two con-

ditions. di is a binary value representing the differential state of site i.

If site i is differentially methylated, di ¼ 1; otherwise, di ¼ 0. The

above-mentioned equations are listed as follows:

yi;j ¼ log
Betai;j

1� Betai;j

� �
; (1)

yi;j � Nðci; 1=seÞ; (2)

cð1Þi ¼ lð1Þ þ hi; and cð2Þi; ¼ lð2Þ þ hi; (3)

where

lð1Þ ¼ lð2Þ ¼ 0; if di ¼ 0;

lð1Þ ¼ 0; lð2Þ ¼ l0; if di ¼ 1:

Thus, for non-differentially methylated CpG sites, the methylation

levels under two phenotypes are the same, cð1Þ ¼ cð2Þ ¼ h; for differ-

entially methylated CpG sites, cð2Þ ¼ cð1Þ þ l0 ¼ hþ l0.

Within each gene, we use a Markov random field to capture the

dependency among neighboring CpG sites. Leroux (CAR) structure

(Leroux et al., 2000) is used to specify the between-site correlation

of h ¼ ½hi; i ¼ 1; 2; . . . ;Mn�, where the methylation level of a CpG

site depends on that of its neighbors but is independent of that of all

other CpG sites. Denote @i as the set of the neighboring sites of CpG

site i. Under the Leroux model, the conditional distribution of hi

given h@i is defined by

hijh@i; q; s � N

q
PMn

k¼1

wk;ihk

q
PMn

k¼1

wk;i þ 1� q

;
1

s q
PMn

k¼1

wk;i þ 1� q

 !
0BBBB@

1CCCCA; (4)

where q controls the dependency level among the nearby CpG sites

and s controls the variance. w is a predefined design matrix for the

neighborhood structure. wi;j ¼ 1, if CpG site i and CpG site j locate

within a neighborhood; wi;j ¼ 0, otherwise.

Differential state d ¼ ½di; i ¼ 1; 2; . . . ;Mn� is modeled by a dis-

crete Markov random field (DMRF), which can be defined by the

following equation (Besag, 1986; Wei and Pan, 2010):

di ¼ 1jd@i; a; b �
exp aþ b nið1Þ � nið0Þð Þ=

PMn

k¼1

wk;i

 !

1þ exp aþ b nið1Þ � nið0Þð Þ=
PMn

k¼1

wk;i

 ! ; (5)

where

nið1Þ ¼
XMn

k¼1

ðwk;idkÞ; and nið0Þ ¼
XMn

k¼1

ðwk;ið1� dkÞÞ:

In Equation (5), a and b are model parameters. Parameter b controls

the consistency of differential state in DMRF. The larger b is, the

more consistent the differential state is in a neighborhood. Note that

in our implementation, we set a ¼ 0 and b ¼ 3 as default values for

DMRF to control the neighborhood consistency of differential state.

nið1Þ (nið0Þ) is the number of neighboring CpG sites of site i with

differential state 1 (0).

Fig. 1. Flowchart of the proposed DM-BLD approach. DM-BLD consists of the

following three major steps: (1) methylation level estimation; (2) differential

methylation score calculation and (3) permutation-based significance tests

(Color version of this figure is available at Bioinformatics online.)
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For differential methylation analysis, we devise a Bayesian ap-

proach to estimate the methylation levels (cð1Þ and cð2Þ) in two pheno-

types, respectively. A hierarchical Bayesian model is used to model the

dependency of random variables h (basal methylation level), l0

(methylation level change if differential) and d (differential state),

which fully determine the methylation levels (cð1Þ and cð2Þ). The de-

pendency graph of the model is shown in Figure 2, where the differen-

tial state is embedded as hidden variables in the model. According to

Bayes’ rule, the joint posterior distribution is given by

pðh;d;l0;se;q;sjyÞ

�pðyjh;d;l0;se;q;sÞ�pðhjq;sÞ�pðqÞ�pðsÞ�pðdÞ�pðseÞ�pðl0Þ
(6)

where se, s and q are termed model parameters. For mathematical

convenience, we further assume conjugate prior distributions

(Gelman, 2004) for model parameters se, s and variable l0, and dis-

crete uniform distribution as the prior distribution of parameter q.

The prior distributions (set as non-informative with hyper-

parameters a, b, s0, and q¼½qi;i¼1;2; . . . ;r�) are defined by the fol-

lowing equations:

se; s � Gammaða; bÞ; q � discrete uniformðq1; . . . ;qrÞ; (7)

l0 � Nð0;1=s0Þ: (8)

Due to the complexity of the probabilistic model, we have de-

veloped a Markov Chain Monte Carlo method to jointly estimate

the variables (h, l0 and d) and model parameters (se, s and q). In

particular, we use Gibbs sampling to iteratively draw samples from

the conditional distributions of the model variables/parameters. By

virtue of the sampling process, the marginal posterior distribution

can be approximated by the samples drawn. The conditional poster-

ior distributions of the model variables/parameters can be found in

Supplementary Section S2. The Gibbs sampling procedure can be

summarized as follows:

2.3 Calculation of the differential methylation score for

each gene
We further assume that gene is more likely to have abnormal methy-

lation activity, if it involves a sequence of CpG sites with methyla-

tion change. Thus, a searching method is used to determine the

region of the sequence of CpG sites with methylation change, and

the differential methylation score of the detected region represents

the differential level of the corresponding gene.

With the estimate Dbc ¼ ½Dbc1;Dbc2; . . . ;DbcMn
�, the differential

methylation score Vn of gene n is defined by Equation (9), which

contributes to highlighting the genes with more neighboring CpG

sites with methylation change.

Vn ¼ max
j
P

i2Sn
Dbc ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sizeðSnÞ
p( )

; (9)

where Sn denotes a subset of sequential CpG sites in a neighboring

area within the genomic location of gene . Finally, genes are ranked

according to their differential methylation scores.

2.4 Significance test on differentially methylated genes
When applying our proposed DM-BLD approach to real data, the

confidence of the identified genes is a critical problem. In order to

assess the significance of identified differentially methylated genes,

we perform permutation-based significance tests. Specifically, we

first rearrange the sample labels as well as the location of the CpG

sites, and then apply DM-BLD onto the perturbed methylation data.

The permutation of sample label disrupts the association between

samples and phenotypes; the permutation of CpG site location dis-

rupts the dependency among neighboring CpG sites. We generate

the ‘global’ and ‘local’ null distributions of the differential methyla-

tion score of genes, from which the P-values of differentially methy-

lated genes can be calculated. The ‘global’ null distribution is

generated from all the genes in consideration, while the ‘local’ null

distribution is generated for each individual gene; more details can

be found in Supplementary Section S5.2. Finally, multiple testing

corrections are used to calculate the adjusted P-values (Benjamini

and Hochberg, 1995).

Fig. 2. Dependency graph of the hierarchical Bayesian model in DM-BLD

INPUT: methylation data y, neighborhood structure w, num-

ber of iterations N

OUTPUT: Estimates of true methylation level in each group

and other parameters in the probabilistic model

Algorithm:

Step 1. Initialization: each parameter is set an arbitrary value

and non-informative prior knowledge is used for the

parameters

Step 2. Draw samples iteratively from conditional distributions

of the parameters using Gibbs sampling:

• Sample h from Gaussian distribution;

• Sample s and se from the corresponding Gamma

distribution;

• Sample discrete variable d and q by first calculating

the conditional probabilities and then random gener-

ating new samples according to the probabilities;

• Sample l0 from Gaussian distribution.

Step 3. Estimate true methylation level c as well as all the

other parameters from the samples (after the burn-in

period) generated from the sampling procedure. Then, for each

CpG site, the estimated methylation change is calculated by

Dbc i ¼ bcð2Þi �bcð1Þi , which will be used in the next step to calcu-

late the differential methylation score of the genes
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3 Results

3.1 Performance evaluation using simulation data
To systematically evaluate the performance of DM-BLD, we simu-

lated multiple DNA methylation data sets with different scenarios

(as detailed in Supplementary Section S4). In each experiment, the

methylation values of all 450K probes were generated for 20 sam-

ples in two conditions, each with 10 samples. 30% out of the

20 758 genes with CpG sites in the promoter region were randomly

selected as true differentially methylated genes, half hypermethy-

lated and half hypomethylated. For each differentially methylated

gene, a promoter-associated region was randomly selected as dif-

ferentially methylated. The neighbors of each CpG site were

defined as the CpG sites of both sides located within 1000bp from

its location. The methylation values of CpG sites were simulated

in two different ways: the first one is based on the simulation

scheme used in DMRcate; the second one is based on our proposed

Leroux model.

We compared the performance of DM-BLD in detecting differen-

tially methylated genes with six existing region-based approaches,

which are briefly described as follows:

1. Student’s t-test on mean value: the mean methylation value of all

involved CpG sites was calculated as the methylation value of

the gene; Student’s t-test was used for differential analysis.

2. Student’s t-test on median value: the median methylation

value of all involved CpG sites was calculated as the methylation

value of the gene; Student’s t-test was used for differential

analysis.

3. Bumphunter: default settings with the null distribution and cut-

off generated from 100 times of resampling, lambda ¼ 1000.

4. DMRcate: default settings with the bandwidth of Gaussian ker-

nel¼1000 and the scaling factor ¼ 2.

5. Probe Lasso: default settings with lassoRadius ¼ 1000 and

adjPval ¼ 1.

6. comb-P: default settings with P-value from limma as the input,

seed ¼ 0.5 and dist ¼ 1000.

To map the differentially methylated regions detected by

Bumphunter, DMRcate, Probe Lasso and comb-P to genes, we used

the associated region of the most significant adjusted P-value to

represent the corresponding gene. Area-under-the precision-recall

curve (AUCpr) was used to assess the overall performance on dif-

ferentially methylated gene identification. Moreover, we calculated

signal-to-noise ratio (SNR) to show the differential level of the

generated simulation data in different scenarios. SNR measures

the differential level of CpG sites taking into account both the

methylation difference and the variance of the data, calculated as

follows:

SNR ¼ 20 log10

jmeanðyð1ÞÞ �meanðyð2ÞÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyð1ÞÞ þ varðyð2ÞÞ

p !
;

where yð1Þ and yð2Þ are methylation values in the two conditions,

respectively.

We first generated the methylation values of CpG sites following

the simulation scheme used in DMRcate. For the CpG sites in each

DMR, two base beta levels were randomly chosen with a pre-

defined difference, and the beta values within the DMR were ran-

domly generated from a beta distribution with its mode equal to the

base beta level and with pre-defined variance. The methylation lev-

els of the CpG sites outside DMRs were randomly selected from two

pre-defined beta distributions to mimic unmethylated and methy-

lated sites, respectively. Following this simulation scheme, we gener-

ated multiple simulation data sets to evaluate the performances of

the competing methods at different noise levels (see Supplementary

Sections S4.2 and 4.3 for more details).

Figure 3A and B shows the performances of the competing meth-

ods in two scenarios with different noise levels. For each scenario,

the SNRs of the differentially and non-differentially methylated sites

were compared to show the differential level of the simulation data,

as shown in Figure 3C and D. The differential levels of the true dif-

ferentially methylated sites, indicated by SNR, decreased in the se-

cond scenario. We can see from the figure that DM-BLD

outperformed the other six methods on both simulation data, espe-

cially when the differential level was lower (as shown in Fig. 3B).

The competing methods, such as Bumphunter and comb-P, were

quite effective in detecting a subset of DMRs with multiple sites of

high differential level, yet missed the others (including many of less

differential). DM-BLD was specifically designed based on an MRF

framework, where the differential level was estimated considering

the differential status of neighboring CpG sites. Hence, DM-BLD

was more effective than other competing methods on data with high

level of noise.

In the simulation data generated by the DMRcate scheme, the

methylation levels of the CpG sites outside DMRs were generated

randomly from two predefined beta-distributions. To better mimic

real methylation data where the methylation values of neighboring

CpG sites were dependent, we generated simulation data sets by the

following steps. First, using the Leroux model, the methylation lev-

els of all CpG sites in the control group were generated based on the

methylated levels of the neighboring sites. Second, for the case group

the methylation levels of the sites in DMRs were increased (or

decreased) by a difference l0 for hypermethylated (or hypomethy-

lated) genes. For the sites outside DMRs, the methylation values in

the case group are the same as in the control group. Third, the

methylation data for the ten replicates in each condition were ran-

domly sampled from a normal distribution with the methylation

value as mean and variance controlled by se. In each scenario, 10

random experiments were performed to assess the variance of per-

formance measure. More details can be found in Supplementary

Section S4.4.

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on
Precision-recall curveA

DM-BLD (AUCpr =0.995)
t-test on mean value (AUCpr =0.99)

t-test on median value (AUCpr =0.968)

DMRcate (AUCpr =0.957)

Bumphunter (AUCpr =0.862)

comb-P (AUCpr =0.895)

Probe Lasso (AUCpr =0.843)

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision-recall curveB

DM-BLD (AUCpr =0.974)
t-test on mean value (AUCpr =0.958)

t-test on median value (AUCpr =0.95)

DMRcate (AUCpr =0.925)

Bumphunter (AUCpr =0.853)

comb-P (AUCpr =0.89)

Probe Lasso (AUCpr =0.731)

-60 -50 -40 -30 -20 -10 0 10 20

SNR (dB)

C
Non-differentially methylated sites
Differentially methylated sites

-60 -50 -40 -30 -20 -10 0 10 20

SNR (dB)

D
Non-differentially methylated sites
Differentially methylated sites
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Parameter se and l0 control the differential level of the ground

truth differentially methylated CpG sites. Higher se indicates lower

variance among the samples in the same phenotype, resulting in

higher differential level; higher l0 indicates larger difference be-

tween two phenotypes, contributing to higher differential level. We

first varied parameter se to generate simulation data with different

variance (noise) levels. Figure 4A, B and C shows the precision-recall

curves at low, medium, and high variance levels, respectively, and

Figure 4D presents the AUCpr of the 7 competing methods with error

bar calculated from 10 random experiments. In the medium and high

variance scenarios, Probe Lasso could not detect any differentially

methylated regions, and thus, it was not included in those two scen-

arios. We can see that the performance of all methods dropped with a

decrease of se. However, DM-BLD consistently outperformed the

other methods. With decreasing se, the variance (noise) among the

replicates in the same phenotype increased, which makes it more diffi-

cult to estimate the true methylation levels as well as to detect differ-

entially methylated genes. The improved performance of DM-BLD

can be attributed to its dependency modeling that borrows informa-

tion from neighboring sites at estimated dependency level, thus

becoming more effective in dealing with noise in replicates.

We also varied parameter l0 to evaluate the performance on

varying differential levels between two phenotypes. Decreasing l0

lowered SNR of true differentially methylated sites, since the differ-

ence of differentially methylated CpG sites between two phenotypes

was reduced. The performance of all competing methods degraded

when l0 decreases, as shown in Supplementary Figure S6. However,

DM-BLD achieved a much better performance than that of all other

methods, even when the methylation change of genes was moderate.

DM-BLD, with the full probabilistic model in a Bayesian frame-

work, was evidently more effective in detecting moderate changes.

3.2 Identification of differentially methylated genes

associated with breast cancer recurrence
We applied the proposed method, DM-BLD, to breast cancer data

acquired from The Cancer Genome Atlas project (2012). The study

was designed for the identification of differentially methylated genes

associated with breast cancer recurrence. 61 estrogen receptor posi-

tive (ERþ) tumors were collected from patients for this study, where

41 patients were still alive with the follow-up time longer than 5

years, labeled as ‘Alive’; 20 patients were dead within 5 years,

labeled as ‘Dead’. The histogram of the survival time is shown in

Supplementary Figure S8. The ‘Dead’ and ‘Alive’ groups represent

the ‘early recurrence’ group and the ‘late recurrence’ group, respect-

ively. We applied our method to identify differentially methylated

genes by analyzing samples from the two groups. The significance of

the differential level was calculated from two permutation tests

(Supplementary Section S5.2). With adjusted P-value<0.05 in both

permutation tests, DM-BLD detected 1543 differentially methylated

genes.

We compared our DM-BLD method with Bumphunter,

DMRcate, and comb-P. Probe Lasso was not included since it did

not detect any DMR. The details of the implementation of

Bumphunter, DMRcate, and comb-P can be found in Supplementary

Section S5.3. With P-value<0.05, Bumphunter, DMRcate, and

comb-P detected 236, 3347, and 721 differentially methylated genes,

respectively. Consistent with the simulation studies and what re-

ported in (Peters et al., 2015), Bumphunter and comb-P are more

conservative than DMRcate and DM-BLD.

Among the 1543 differentially methylated genes detected by

DM-BLD, 720 (common) genes were also detected by other methods

yet 823 (unique) genes were detected by DM-BLD only. We com-

pared the CpG sites in the detected DMRs associated with the com-

mon genes with those associated with the unique genes in terms of

noise level and number of CpG sites. As a result, the absolute differ-

ence of beta value and SNR were significantly lower for the unique

set than those for the common set; the number of sites associated

with genes was significantly smaller for the unique set (P-val-

ue¼1.77e-7), while the number of sites in DMRs was significantly

higher for the unique set. This observation supported that DM-BLD

was more effective in detecting genes of less differentially methy-

lated by virtue of its capability in detecting regions consisting of a se-

quence of sites with moderate methylation change (resulted in part

from relatively large variance observed among tumor samples).

Moreover, DM-BLD was effective in detecting genes with fewer

measured CpG sites that might be missed by other methods biased

to dense CpG regions. More details can be found in Supplementary

Section S5.4.

As there was no ground truth of differentially methylated

genes for real data, we used the corresponding mRNA expression

change as the benchmark to assess the performance. We detected

differentially expressed genes from RNA-seq data of the same set

of tumor samples (as detailed in Supplementary Section S5.5).

Figure 5 shows the proportion of differentially expressed genes

among the top ranked differentially methylated genes detected by

the four competing methods, where genes were ranked by the P-

value obtained from each method. We can see from the figure

that DM-BLD detected more genes with mRNA expression

change, which were benchmarked as functional differentially

methylated genes.

Among the differentially methylated genes detected by DM-

BLD, 523 genes were hypermethylated in the promoter region.

From functional annotation clustering using the Database for

Annotation, Visualization and Integrated Discovery, http://david.

abcc.ncifcrf.gov/home.jsp, the set of hypermethylated genes was en-

riched in transcription factor activity (82 genes, P-value¼4.5E-20),

and homeobox (39 genes, P-value¼4.5E-19). The enrichment in

transcription factor activity may indicate the interplay between tran-

scription factor and DNA methylation. Methylation of homeobox

genes has been reported as a frequent and early epigenetic event in

breast cancer (Tommasi et al., 2009). Moreover, 159 genes out of

the 523 genes were polycomb target genes (hypergeometric P-val-

ue¼3.19E-29). The polycomb target genes were the common genes

detected from the ChIP-seq data of EZH2, SUZ12, H3K4me3 and
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performed (Color version of this figure is available at Bioinformatics online.)
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H3K27me3 in embryonic stem cells (which were acquired in the

ENCODE project (http://www.encodeproject.org/)) (Supplementary

Section S6). Polycomb group proteins are well known epigenetic

regulators that silence the target genes. The significantly large over-

lap between the identified hypermethylated genes in the promoter

region and the polycomb target genes indicates that the two key epi-

genetic repression systems jointly regulate gene expression (Vire

et al., 2006).

We further looked into functional differentially methylated

genes, which are differentially methylated genes that are also differ-

entially expressed. By incorporating the mRNA expression change

estimated from the corresponding RNA-seq data, we detected 158

functional differentially methylated genes, which are enriched in cell

adhesion, cell morphogenesis, cell to cell signaling, transcription fac-

tor activity, and so on. We also incorporated the protein–protein

interaction network (Keshava Prasad et al., 2009) to further study

the interaction of the functional differentially methylated genes.

Supplementary Figure S7 shows that the major connected network is

largely downregulated in the ‘Dead’ group as compared to that in

the ‘Alive’ group (more detailed submodules, potentially regulated

by DNA methylation, can be found in Supplementary Section S5.6).

Literature has shown that hypermethylation in the promoter region

repressed gene expression, contributing to cancer development.

Thus, we focused on genes that are hypermethylated in the promoter

region and down-regulated in the ‘Dead’ group (N¼52). 18 genes

are also polycomb target genes, which may be regulated by poly-

comb group protein and DNA methylation jointly. Among the 18

genes, DBC1 and SLC5A8 are tumor suppressor genes. DBC1 has

been demonstrated participating in cell cycle control (Nishiyama

et al., 2001), and it was reported that the hypermethylation of

DBC1 was an effective biomarker in predicting breast cancer

(Hill et al., 2010; Li et al., 2015). SLC5A8, a putative tumor

suppressor, was found that it inhibited tumor progression

(Coothankandaswamy et al., 2013); the inactivation of SLC5A8

might result in tumor development (Elangovan et al., 2013).

HTRA3 was reported as a candidate tumor suppressor and TGF-

beta signaling inhibitor, which might be regulated by transcription

factor CREB3L1 to affect the development of breast cancer (Rose

et al., 2014). CMTM3, as a CMTM family protein linking chemo-

kines and the transmenbran-4 superfamily, exerted tumor-

suppressive function in tumor cells (Wang et al., 2009). The silenc-

ing of CMTM3 due to hyper-methylation would result in loss of

function in inhibiting tumor cell growth and inducing apoptosis

with caspase-3 activation. Note that DBC1, HTRA3 and CMTM3

were detected by our DM-BLD method only, yet missed by the other

methods.

4 Discussion

It is important to accurately detect differentially methylated genes,

yet with remarkable challenges, particularly in the field of cancer re-

search where the variability of methylation among replicates/samples

is high. We have developed a Bayesian approach, DM-BLD, for the

identification of differentially methylated genes. A hierarchical and

probabilistic model, with differential states as hidden variables, is

devised to account for the local dependency of CpG sites and the

variability among the samples/replicates of the same phenotype.

Specifically, the Leroux model, which is capable of capturing varying

degrees of local dependency, is used to model the unknown correl-

ation among the true methylation levels of CpG sites in the neighbor-

ing region. A discrete Markov random field is then used to model the

dependency of methylation change (via differential states) of neigh-

boring CpG sites. A hierarchical Bayesian model, with differential

states embedded as hidden variables, is then developed to take into

account the local dependency for differential analysis.

The main advantages of our proposed method, DM-BLD, can be

summarized as follows. First, it is a fully probabilistic approach that

jointly models the methylation level of CpG sites and the differential

state of methylation between two phenotypes. Rather than calculat-

ing the significance of the difference between two groups of samples

using statistical tests (e.g., DMRcate, comb-P), DM-BLD uses a

Bayesian framework to estimate the true methylation level and the

differential state in a probabilistic way. Second, the varying local de-

pendency among neighboring CpG sites is modeled by the Leroux

model, an advanced CAR structure that can account for different lev-

els of correlation. By virtue of using information from neighborhood

with local dependency, the accuracy of the estimated methylation

level is greatly improved, particularly when the variability among the

replicates is high. Third, the Leroux model is embedded into the

Bayesian framework. Thus, the posterior distributions of the true

methylation levels in each group as well as other parameters are esti-

mated jointly with the local correlation levels through a Gibbs sam-

pling procedure, which provides an improved performance in

detecting CpG sites of less differentially methylated. Finally, with the

estimated methylation change of CpG sites between two groups, we

detect differentially methylated genes as genes with a sequence of

CpG sites exhibiting methylation change, and calculate the signifi-

cance of differentially methylated genes by permutation tests.

We have compared the performance of DM-BLD with the exist-

ing methods using extensive simulation studies. DM-BLD consist-

ently outperforms the other methods, particularly when the

difference between two groups is less and the noise among the repli-

cates is high. Moreover, we have applied DM-BLD to breast cancer

data to identify differentially methylated genes associated with

breast cancer recurrence, and demonstrated the advantage of DM-

BLD as evaluated by the consistency with the differential expression

of mRNA. The differentially methylated genes identified by DM-

BLD are enriched in transcription factor activity and consisted of a

significant portion of polycomb target genes. Moreover, several dif-

ferentially methylated genes such as DBC1, HTRA3, and CMTM3,

revealing the underlying biological mechanism related to breast can-

cer recurrence, have been uniquely identified by our DM-BLD

method.
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