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SUMMARY

In a randomized clinical trial (RCT), it is often of interest not only to estimate the effect of various treatments
on the outcome, but also to determine whether any patient characteristic has a different relationship with the
outcome, depending on treatment. In regression models for the outcome, if there is a non-zero interaction
between treatment and a predictor, that predictor is called an “effect modifier”. Identification of such
effect modifiers is crucial as we move towards precision medicine, that is, optimizing individual treatment
assignment based on patient measurements assessed when presenting for treatment. In most settings,
there will be several baseline predictor variables that could potentially modify the treatment effects. This
article proposes optimal methods of constructing a composite variable (defined as a linear combination
of pre-treatment patient characteristics) in order to generate an effect modifier in an RCT setting. Several
criteria are considered for generating effect modifiers and their performance is studied via simulations.
An example from a RCT is provided for illustration.
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1. INTRODUCTION

Precision medicine focuses on making treatment decisions for an individual patient based on the patient’s
measures (e.g., clinical and biological features). The idea underlies a long history of attempts to identify
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characteristics that exhibit interaction with treatment assignment in a regression model for the outcome
of interest. Such baseline characteristics, called “treatment effect modifiers”, indicate that the outcome
under one treatment compared to another treatment depends on these characteristics. Measures with such
interactions can aid decisions about which treatment to prescribe (Gail and Simon, 1985; Wellek, 1997;
Song and Pepe, 2004; Wang and Ware, 2013).

Interest in precision medicine is growing rapidly, both in clinical research and in statistical methodology.
An important component of precision medicine is the notion of an “optimal treatment regime”, first
formalized by Murphy (2003) and Robins (2004). Given a vector x of baseline covariates, a treatment
decision can be based a decision function d(x) that maps x to a treatment indicator, say A. Treatment
decisions can be compared using the “value” of a decision d, denoted V (d). The value of a decision is the
expected value of an outcome variable y (with respect to the joint distribution of (y, x)) when all patients
are treated according to a decision function d and Qian and Murphy (2011) show that the value can be
expressed as

V (d) = E[E(y|x, A = d(x))], (1.1)

where (y|x, a) is the outcome of a patient given treatment A = a with covariates x. Here we consider
outcome variables y that are continuous, where higher values of y are preferred, as per convention.
Determining optimal individual treatment decisions using data from RCTs is a topic that is the subject of
active research (see Robins and others, 2008; Zhao and others, 2012; Zhang and others, 2012b; Kang and
others, 2014; Zhao and others, 2015, among others). The “optimal treatment decision” is the one that,
when applied to the target population, has the largest value.

It has long been recognized that features that are important for predicting outcome might not be
necessarily be useful for making treatment decisions (e.g., Wellek, 1997; Song and Pepe, 2004). Much
recent research has focused on identification of individual baseline covariates related to the treatment effect
(i.e., variables that exhibit interactions with the treatment indicator in predicting treatment outcome) in
contrast to being important in the baseline model. A major challenge in precision medicine is that most
baseline measures typically have small moderating effects and individually contribute little to informed
treatment decisions. Unconstrained regression models with p predictors (plus treatment and predictor-
by-treatment interactions) become unwieldy, unstable and difficult to interpret when p is moderate to
large. Various strategies have been proposed to deal with the problem (see Qian and Murphy, 2011;
Gunter and others, 2011; Lu and others, 2011, among others). Extensions of the methodology that allow
functional data objects to be incorporated as baseline features have also been developed (e.g., McKeague
and Qian, 2014; Ciarleglio and others, 2015).

A parsimonious alternative to these previous methods that has received little attention is to use a simple
model with only a single “composite” predictor. Herein, a methodology is developed for combining
several baseline predictors into a single treatment effect modifier in the context of the classic linear model,
which we call a generated effect modifier (GEM). Given a vector of p predictors x = (x1, . . . , xp)

′, we
consider linear combinations of the predictors z = α′x for α ∈ �p as potential GEMs. The idea of
combining covariates was proposed by Tukey (1991, 1993) for balancing and increasing the precision of
the estimates of treatment effect in RCTs. A closely related approach was proposed by Tian and Tibshirani
(2011) who developed a method of constructing binary “markers” from continuous variables (via cut-off
values) and forming an index to detect treatment–marker interactions. Emura and others (2012) introduced
a compound covariate approach for predicting survival time in the case when there are too many covariates,
for example, gene expression data. In contrast to this work, we propose to combine covariates with the
goal of obtaining a single moderating variable, a GEM, that would aid in deciding which treatment is
appropriate for any particular patient. Although the GEM model is more restrictive than an unconstrained
model, it provides a parsimonious single index approach for making individualized treatment decisions.
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Alternative approaches to optimal treatment decision estimation have been proposed that fall in the
realm of machine learning and can often be framed in the context of classification problems (Zhang
and others, 2012a). Examples are the outcome weighted learning (OWL) (e.g., Zhao and others, 2015;
Song and others, 2015) based on support vector machines, tree-based classification (e.g. Laber and Zhao,
2015), and the Kang and others (2014) method based on adaptive boosting. Although these approaches
can be appealing options in many settings, we base our general approach on the linear model as it is
most frequently utilized in practice and lends itself very well to interpretability. This paper fulfills the
practical need of providing a simple treatment effect modifier methodology in the classic linear model
setting for making precision medicine decisions. Also, the GEM approach provides the benefit of a visual
presentation that is familiar to clinicians.

In efficacy studies, after the primary analysis of treatment efficacy has been performed, the usual
practice is to seek individual effect modifiers (single patient baseline characteristics) with the ultimate
goal of informing treatment decisions. When no single variable has a strong modifying effect, the GEM
is an appealing and novel approach for secondary exploratory analysis to find a strong treatment effect
modifier. The GEM can be particularly useful for analysis of studies designed to discover biosignatures
for treatment response.

2. CRITERIA FOR CHOOSING A GEM

Here we introduce several optimality criteria for defining a GEM z = α′x. For notational simplicity, we
present the model in terms of the centered (at zero within treatment group) outcomes yk and predictors
matrix X k . The unrestricted linear model for the K treatment groups is

E(yk |X k) = X kβk , with βk = (βk1, . . . , βkp)
′, for k = 1, . . . , K , (2.2)

while the GEM model under consideration can be parameterized as

⎛
⎜⎜⎜⎝
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...

yK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
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...

...
. . .

...
0 0 . . . X K

⎞
⎟⎟⎟⎠ γ ⊗ α +

⎛
⎜⎜⎜⎝

ε1

ε2
...

εK

⎞
⎟⎟⎟⎠, (2.3)

where ⊗ denotes the Kronecker product. The vector γ = (γ1, γ2, . . . , γK)′ is the vector of the scaling
coefficients for the GEM model (2.3). Because the predictors might be measured on different scales, a
natural constraint that ensures identifiability is that the GEM α′x has a unit variance constraint

α′�xα = 1, (2.4)

where �x denotes the predictor covariance matrix (assumed equal across treatment groups as in a RCT).
An unrestricted multiple regression model for K treatment groups (e.g. model (2.2)) with p predictors and
all interactions between treatment indicators and predictors, has pK regression coefficients (not count-
ing intercepts), whereas the restricted GEM model (2.3) is more parsimonious with only K + p − 1
parameters (constraint (2.4) reduces the number of free parameters in α by one). Model (2.3) was consid-
ered by Follmann and Proschan (1999), but from a different perspective, where the vectors of regression
coefficients βk from (2.2) are all equal under the null hypothesis and (2.3) is the alternative hypothe-
sis model. In addition to being more parsimonious and providing an intuitive interpretation with easy
visualization, GEMs can also be used for making straightforward treatment decisions. When K = 2,
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for a new subject with covariates xnew, the estimated treatment decision based on an unrestricted regres-
sion model is dUnR(xnew) = I {β̂02 + β̂

′
2xnew > β̂01 + β̂

′
1xnew} + 1, where I is an indicator function

and β̂0k and β̂k , k = 1, 2 are the least squares (LS) estimates of the regression coefficients of model
(2.2) written for the uncentered outcomes and predictors. Under a GEM model, the treatment decision is
dGEM (xnew) = I {γ̂02 + γ̂2α̂

′xnew > γ̂01 + γ̂1α̂
′xnew} + 1, where γ̂0k and γ̂k , k = 1, 2 are the LS estimates of

the scaling coefficients in model (2.3) for non-centered outcomes and predictors.
Since the GEM is defined as a linear combination of predictors, the GEM model lends itself most

naturally to continuous predictors. In the results that follow, there is nothing that precludes the use of
discrete predictors; only care must be taken in how discrete predictors are coded and how the corresponding
GEM is to be interpreted. It is very common in clinical practice that categorical variables are actually
discretized versions of continuous variables. If this is the case, we recommend that the original variable
is used in the GEM instead of its discretized version.

There are several principled criteria one can use for choosing α for optimizing the GEM. A natural
choice obviously, in terms of moderator analysis, is to maximize the magnitude of interaction in the
GEM model. Alternatively, α can be choosen to provide the best fit to the data using a GEM model
which is consistent with the classic goal in linear models of minimizing the error sum of squares. A third
approach, also consistent with the linear model framework, is to determine α that maximizes the statistical
significance of the interaction effects via an F-test. Summarizing, we consider the following three criteria,
which we refer to as the “numerator” (N), “denominator” (D) and “F-ratio” (F) criteria, respectively:

(N) Maximizing the interaction effect: Maximize the variability in the GEM scaling coefficients
γk ’s in (2.3), corresponding to maximizing the Numerator of an F-test for significance of interaction
effects. When there are K = 2 treatment groups, this is the same as maximizing the squared
difference between the scaling coefficients γ1 and γ2 in the GEM model.

(D) Fidelity to the data: Minimize the sum of squared residuals in the GEM model (2.3). This
corresponds to the Denominator of an F-test for significance of interaction effects.

(F) F-ratio: Combine the first two criteria and maximize the ratio of the variability of the GEM
scaling coefficients relative to the sum of squared residuals for the GEM model. This criterion
corresponds to choosing α to maximize the F-test statistic when testing significance of interactions
in the GEM model.

The method of LS is used to estimate the parameters of models (2.2) and (2.3). The common covariance
matrix �x can be estimated by the pooled estimate of the predictor covariance matrix:

�̂x =
K∑

k=1

X ′
kX k/(N − K), (2.5)

where N = ∑K
k=1 nk , where nk is the sample size in group k . The following notation will be used: let �xyk

denote the vector of covariances between x and the yk and σ 2
yk

denote the variance of yk in the kth group.
Then the usual unconstrained vector of slope coefficients in the kth treatment group in terms of population
parameters and the weighted average coefficient vector are respectively

βk = �−1
x �xyk and β̄ =

K∑
k=1

πkβk . (2.6)
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With a randomized experiment, equal weights (πk = 1/K) are used for β̄ and that is the convention used
in this article (although more flexible choices for weights are also possible). The GEM scaling coefficients
γk in (2.3) can be expressed equivalently, using (2.4), as

γk = cov(X kα, yk)

var(X kα)
= α′�xyk

α′�xα
= α′�x�

−1
x �xyk

α′�xα
= α′�xβk .

2.1. The “numerator” criterion: maximizing the interaction effect

This section derives the expression for α in the GEM model that maximizes the variance of a discrete
random variable taking values γ1, . . . , γK with respective probabilities π1, . . . , πK (i.e., the variance of the
GEM slopes) which is given by

K∑
k=1

πk

(
α′�x(βk − β̄)

α′�xα

)2

=
α′�x

[∑K
k=1 πk(βk − β̄)(βk − β̄)′

]
�xα

(α′�xα)2
. (2.7)

Denote the “between” group covariance matrix for the unconstrained slope coefficients as

B =
K∑

k=1

πk(βk − β̄)(βk − β̄)′. (2.8)

Using (2.4), we seek α that maximizes α′�xB�xα = α′�1/2
x

[
�1/2

x B�1/2
x

]
�1/2

x α, where �1/2
x is the

symmetric square-root of �x. The solution is αN = �−1/2
x e1, where e1 is the eigenvector of �1/2

x B�1/2
x

that is associated with the largest eigenvalue. To obtain an estimator α̂
N , we can apply the plug-in principal,

use the pooled estimator �x from (2.5) and the usual unrestricted LS estimators β̂k in place of the βk ’s.
The GEM γk ’s and intercepts can be estimated via LS.

In the case of K = 2 groups, B = ∑K
k=1 πk(βk − β̄)(βk − β̄)′ = π1π2(β1 − β2)(β1 − β2)

′, is a rank
one matrix with eigenvector proportional to (β1 − β2), in which case

αN = β1 − β2√
(β1 − β2)

′�x(β1 − β2)
. (2.9)

Section 1.1 of the supplementary material shows that for K = 2, in terms of population parameters, the
treatment decision based on the unrestricted regression is equivalent to the treatment decision based on
the numerator GEM model. Minor differences in the empirical decision rules from these two methods are
due to differences in the LS estimates using the GEM predictor versus using the original predictors in the
unrestricted model.

2.2. The “denominator” criterion: minimizing the residual error

This subsection gives the LS expression for α that minimizes the sum of squared residuals in a GEM
model, that is, that provides the best fitting GEM model. Under the assumption of normality, the LS
estimator coincides with the maximum likelihood estimator in the GEM linear model.

The sum of squared residuals from a standard linear model using LS can be written as y′(I − H )y,
where H is the hat matrix and I is an identity matrix. This sum of squared residuals (when divided by its
associated degrees of freedom) is an estimate of the quantity σ 2

y − � ′
xy�

−1
x �xy. In the GEM model (2.3)

with K treatment arms, the hat matrix in the kth group is H k(α) = (X kα)(α′X ′
kX kα)−1(X kα)′. Letting

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
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D = ∑K
k=1 πkβkβ

′
k = B + β̄β̄

′
, Section 1.2 of the supplementary material available at Biostatistics online

shows that the α minimizing the “denominator” criterion is given by αD = �−1/2
x e2, where e2 is the leading

eigenvector of �1/2
x D�1/2

x . As before, αD can be estimated by plugging in the LS estimators for βk in the
expression for D and using the sample covariance matrix of the pooled predictors (2.5) to estimate �x.

2.3. The “F-criterion”: maximizing the F-statistic

This section determines α that maximizes the strength of the statistical evidence for the interaction effect in
the GEM model (2.3) via an F-test. With γ = (γ1, . . . , γK)′, we can consider the general linear hypothesis
of H0 : Lγ = 0. If K = 2 and L = (1/2, −1/2), the null hypothesis above states that the two groups
have the same coefficients with respect to the GEM Z = Xα (i.e., no interaction). Thus, the goal is to
determine α that maximizes the F-ratio for testing H0. From the two previous subsections, the F-ratio
is proportional to the ratio with (2.7) in the numerator and a denominator corresponding to the residual
sum-of-squares. The value of α satisfying the “F-ratio” criterion is αF = �−1/2

x e3, where e3 is the leading
eigenvector of

[(
K∑

k=1

πkσ
2
yk

I p

)
− �1/2

x D�1/2
x

]−1

�1/2
x B�1/2

x . (2.10)

The derivation is in Section 1.3 of the supplementary material. Once again, αF can be estimated by
plugging parameter estimates into (2.10) and extracting the leading eigenvector.

3. FITTING A GEM WHEN THE GEM MODEL IS MISSPECIFIED

The GEM model allows us to combine several predictors into a single linear combination that has good
treatment effect moderator properties. Generally, we do not expect the GEM model to be the true data
generating model and (based on the above expressions), the “true” α for the three criteria would differ.
Consider two cases with K = 2 groups and p = 2 predictors (x1, x2) from a Gaussian distribution with
means 0, variances 1 and 2, respectively, and a covariance 0.2:

Case 1: β1 =
( −0.4

2.0

)
, β2 =

( −0.6
2.5

)
; Case 2: β1 =

(
1.5
2.5

)
, β2 =

( −2.5
2.5

)
.

The deviation from a GEM model is measured by the angle θ between the coefficient vectors βk , k = 1, 2,:

θ = arccos
(

β
′
1β2

‖β1‖‖β2‖

)
. In Case 1, θ = 0.012π , and in Case 2, θ = 0.422π , so Case 1 is very “close” to

a GEM model (θ = 0 or π ), while Case 2 is almost as far away from GEM as possible (θ = 0.5π ). The
“true” α’s are:

Case 1:
αN = (0.283, −0.707)′

αD = (0.160, −0.714)′

αF = (0.160, −0.714)′
Case 2:

αN = (1.000, 0.000)′

αD = (0.143, −0.714)′

αF = (1.000, 0.000)′
.

From (2.10), αF depends on the error variance; the results above are for a coefficient of determination
R2 = 0.8. As expected, the αF is closer to αD when the data is from a GEM model since the GEM
regression fits the data well in this case, while when the model is far from a GEM model, αF is closer to
αN . This observation together with results from simulations suggest the use of the F-criterion in practice.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1


Generated effect modifiers in RCTs 111

4. PERMUTATION TESTING FOR THE INTERACTION IN A GEM MODEL

The GEM model estimation seeks to determine a linear combination of predictors that maximizes the
evidence of an interaction effect using one of the three criteria described above. If there are no interaction
effects between predictors and treatment indicators, then the GEM procedure would tend to generate
anti-conservative p-values. A straightforward remedy to this problem is to fit the GEM model on many
data sets with permuted treatment labels. A permutation p-value for testing an interaction effect can then
be calculated as

Permutation p value = {Proportion of “permuted” p values < original p value}.

Theoretical details for using permutation tests for interaction effects in the presence of possible main
effects have been investigated previously in the literature (e.g., Wang and others, 2015, p. 2046).

5. SIMULATION STUDIES

An appealing feature of the GEM model is its utility for making individual treatment decisions, especially
when p is large. In this subsection we investigate the value (1.1) of treatment decisions based on the
three GEM criteria for both GEM and non-GEM generating models. Data sets were simulated under a
variety of parameter settings. We varied the coefficient of determination R2 to be small (0.2), medium
(0.5), and large (0.8). Another useful measure in the “effect size” (ES) of a moderator. For a regression
model y = γ0 + γ1A + γ2z + γ3(Az) + ε, with var(z) = 1 and a treatment indicator A (= ± 1

2 ), the ES
(Kraemer, 2013) of Z as an effect modifier is the proportion of the outcome variance (after removing
the variance due to treatment) that is explained by the different relationships between y and z in the two
treatment groups, that is,

ES =
√

(γ3/2)2

(γ2 + γ3/2)2 + (γ3/2)2 + σ 2
, (5.11)

where σ 2 is the error variance (assuming equal error variances for all values of A). The simulations are
similar for the GEM and non-GEM settings, except that the GEM models are characterized with respect
to the effect size of α′x (using ES = 0.1 and 0.3), while the non-GEM cases are characterized with respect
to the angle between the vectors of regression coefficients as described in Section 3; we use a small
(θ = 0.15π ) and a large (θ = 0.48π ) deviation from GEM.

The sample sizes per treatment group considered are n : n1 = n2 = 100, 300, and 1000, mimicking
typical situations in medical research. For each sample size, the number of predictors used were p = 10
and p = 200 (except when p > n, namely n = 100 and p = 200). The predictors are generated from
p-variate normal distributions with mean zero and variances equal to 1, and small pairwise correlations
(from −0.2 to 0.2) randomly selected, while ensuring a positive definite correlation matrix. For each p,
β1 = (1, 1

2 , . . . , 1
p ). Under GEM, β2 is computed to satisfy the respective R2 and ES. Under non-GEM, β2

is obtained by adding random noise to the p coefficients in β1 and computing the angle θ between β1 and
β2. More details about the values of β2 are given in Section 3.2 of the supplementary material. For each
combination of p and the βk ’s (k = 1, 2), a large sample (N = 106) is generated with known outcome
values under both treatments and it is used to evaluate the “true” optimal population average outcome V +,
which is the highest achievable value of any decision.

For each simulation configuration (n, p, β1, β2, R2 and ES), B = 1000 data sets are generated and
estimates of αN , αD, and αF are computed, as well as β1 and β2 coefficients of the unrestricted regression
model (2.2). These estimates are used to define treatment decisions as described in Section 2. These

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
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Fig. 1. GEM data generation model. Mean and 95% Monte Carlo (MC) confidence intervals (based on the B = 1000
MC runs) of the values V of the decisions, as a proportion (V − V −)/(V + − V −), for p = 10 (left half of panels)
and 200 (right half of panels), and for ES = 0.1 (top half of panels) and ES=0.3 (bottom half of panels). The three
panels per (p, ES) combination correspond to R2 = 0.2 on the left, R2 = 0.5 in the middle and R2 = 0.8 on the right.
The method based on the unrestricted regression and the three GEM approaches are denoted as: (i) unrestricted—red
color, most left; (ii) numerator criteria—green, second from left; (iii) denominator criterion—blue, third from left;
(iv) F criterion—purple, most right. The “Number of observations” on the bottom horizontal axis is the sample size
per group.

decisions are applied to the N = 106 cases in the large data set to obtain the estimated values V of the
respective decisions V (d(x; β̂1, β̂2)), V (dN (x; α̂N , γ̂ N

)), V (dD(x; α̂D, γ̂ D
)), and V (dF(x; α̂F , γ̂ F

)). For the
sake of comparison, these values are expressed as a proportion of the “true” optimal average outcome V +,
and also taking into account the the worst average outcome V −, which is obtained by choosing the worst
(lower) outcome for each subject in the large data set. For example, the values of the treatment decision

based on the “numerator” GEM approach are reported as
[
V
(

dN (x; α̂N , γ̂ N
)
)

− V −
]
/(V + − V −).

Figure 1 shows the means and the 95% Monte Carlo (MC) confidence intervals for the value of the
decisions in the case of data generation from GEM models. A general observation is that for small ES of
the GEM, the estimated decisions produce values that are about 10-20% lower than the “true” optimal
value V + for p = 10 and still lower for p = 200. How much worse the estimated decisions are compared
with the “true” optimal average population outcome depends on the sample size and R2 (performance
improves with increasing sample size and R2). The “denominator” method is superior to the other two
approaches, especially for larger p’s and smaller ES’s, which is not be surprising since the denominator
criterion is equivalent to the MLE objective when the error is normal and the true model is a GEM, as is
the case here.

Figure 2 presents information similar to that on Figure 1, but here the data are generated under a
general linear non-GEM model (2.2). It shows that even when the data is not generated from a GEM
model, the criteria perform quite well for relatively small number of covariates p. For larger p, larger
sample sizes and larger R2 are needed to achieve good performance. The values of the decisions based on
the denominator criterion are meaningfully inferior to the values of the decisions from the other methods
as the deviation from GEM becomes large. The denominator’s inferiority becomes more pronounced as
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Fig. 2. Non-GEM data generation model. Mean and 95% Monte Carlo (MC) confidence intervals (based on the
B = 1000 MC runs) of the values V of the decisions, as a proportion (V − V −)/(V + − V −), for p = 10 (left half of
panels) and 200 (right half of panels), and for small deviation from GEM (top half of panels) and large deviation from
GEM (bottom half of panels). The three panels per (p, deviation from GEM) combination correspond to R2 = 0.2 on
the left, R2 = 0.5 in the middle and R2 = 0.8 on the right. The method based on the unrestricted regression and the
three GEM approaches are denoted as: (i) unrestricted—red color, most left; (ii) numerator criteria—green, second
from left; (iii) denominator criterion—blue, third from left; (iv) F criterion—purple, most right. The “Number of
observations” on the bottom horizontal axis is the sample size per group.

R2, n, and p increase. Regardless of the data generating model, the values produced by the F method are
either the best or very close to the best values produced by either of the other methods compared here.
Additionally, simulations were run using the non-GEM generating model except that a subset of predictors
were discretized to be binary (5 out of 10 for p = 10 and 20 out of 200 when p = 200); the results are very
similar to those when all predictors are continuous—details are provided in the supplementary material.

Section 4 of the supplementary material available at Biostatistics online presents results on the perfor-
mance of the GEM methods in the case when the data generation is not from the linear model (2.2). There
we show simulation results based on a doubly-robust estimation procedure using an augmented inverse
probability weighted estimator (AIPWE) of the value V (d) (Robins and others, 1994; Zhang and others,
2012b). Although the GEM approach based on the AIPWE does marginally worse than the unrestricted
approach described in Zhang and others (2012b) using an example with p = 3 predictors, their approach
becomes computationally infeasible for larger values of p. In cases with large p, the GEM reduces the
dimensionality of the predictor space to 1 making the AIPWE approach fast and feasible.

6. APPLICATION TO DATA FROM A RCT

We illustrate the three GEM procedures using data from a RCT for the treatment of depression comparing
antidepressants of the class of selective serotonin reuptake inhibitors (SSRI) against placebo. In addition
to establishing the overall efficacy of the SSRI, the investigators were interested in finding biosignatures
for SSRI treatment response. The investigators defined “biosignature” as a baseline patient characteristic

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
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Table 1. SSRI Clinical biosignature: potential moderators of the efficacy of treatment with SSRI vs. placebo
with respect to change in HRSD from baseline to week 8. The 3rd column gives the p-values for the
interaction predictor-by-treatment term and the 4th column gives the effect size of the predictor as a
moderator of treatment effect from a regression model with only that variable as a predictor in addition to
treatment.The last two columns give the regression coefficients from models with all five baseline measures
as predictors for treatment A = 0 (placebo) and A = 1 (SSRI) respectively

Mean St. dev. Interaction Effect Reg. coefs
p value size A = 0 A = 1

Anxiety 5.36 1.80 0.797 0.020 1.06 1.44
Anger attack 3.05 2.12 0.671 0.034 −0.59 −0.09
Suicide risk 5.42 2.37 0.155 0.113 1.00 −0.38
Medical comorbidity score 2.01 2.78 0.092 0.140 0.11 −0.58
Life pleasure score 33.17 5.51 0.065 0.148 −0.20 0.04

or a combination of such characteristics, that constitutes a moderator of the treatment effect of SSRI vs.
placebo.

Data from 76 and 72 subjects randomized to placebo and SSRI, respectively, were available. The
outcome was the change from baseline (week 0) to 8 week of treatment on the Hamilton Rating Scale for
Depression (HRSD). High values of HRSD indicate higher depression severity and thus positive change
(week 0–week 8) indicate reduction of depression. The following baseline clinical measures were proposed
as potential moderators: (i) level of anxiety (ii) severity of anger attack; (iii) suicidal risk; (iv) medical
comorbidity score; and (v) experience of pleasure score.

Outcome was modeled as a linear function of a baseline measure, treatment indicator (SSRI A = 1 vs.
placebo A = 0) and the interaction between them for each measure individually. None of the interaction
terms were statistically significant, see Table 1. A comparison of a full unrestricted model with all five
predictors and their interactions with treatment against a reduced model without the interactions, yielded
a non-significant F-test for the interactions (F(5,136) = 1.41, p value = 0.14). Thus, the usual approaches
of treating each predictor separately or a full unrestricted model for all predictors fail to find evidence for
heterogeneous effect of SSRI and consequently fails to identify patients who stand to benefit from or be
harmed by it.

Next, the linear combinations α for the 3 GEM criteria were estimated, see Table 2. The numerator and
F-criteria give similar results, but only the F-criterion has a statistically significant permutation p value
(p < 0.05). Note, that the effect sizes for the GEMs based on the numerator and the F-criterion (which
are very similar, both ES = 0.27), are double that of any individual predictor. The denominator GEM,
on the other hand, does not produce a significant interaction p value (and also has a very small estimated
ES), which is consistent with the observation that, since the angle between the unrestricted regression
coefficient vectors is relatively large (0.35π ), the model deviates quite a bit from a true GEM model.

For the sake of comparison, estimates of the value for the three GEM criteria were obtained using an

Inverse Probability Weighted Estimator (IPWE) IPWE = 1
n

∑n
i=1

C(d̂(xi))yi
πAi (1−π)1−Ai

, where C(d̂(xi)) = 1, if the

treatment assignment A and treatment decision d coincide for subject i with covariates xi. Here, πAi is the
probability of treatment assignment, which will be a constant for a RCT and is 0.5 in this example. Row
8 of Table 2 gives a 95% cross-validation bootstrap confidence interval (using 1000 bootstrap samples)
for the value of each GEM criterion. The CIs were computed using a 10-fold cross-validation on each
bootstrap sample, where treatment decisions were estimated by applying the respective GEM approach to
9 of 10 non-overlapping subsamples of equal size, and then applied to the remaining 10th subsample to
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Table 2. GEM Model for SSRI clinical biosignature. The estimated GEMs of the SSRI treatment effect on
change in HRSD. The bottom rows give the GEM effect sizes (row 6), permutation-adjusted p-values (row
7); the estimated value (1.1) of the decision based on GEM criteria along with a 95% cross-validated
bootstrap confidence interval (CI) (row 8); the difference in value and 95% cross-validated bootstrap CI
for the difference between the decision based on the respective GEM and the decision (i) give everyone
placebo (row 9), (ii) give everyone SSRI (row 10), and (iii) give everyone SSRI or placebo at random (row
11).

Estimated α

α̂
N

α̂
D

α̂
F

Anxiety 0.12 0.55 0.12
Anger attack 0.15 −0.15 0.15
Suicide risk −0.42 0.14 −0.42

Medical comorbidity score −0.21 −0.10 −0.21
Life pleasure score 0.07 -0.04 0.07

Effect size 0.27 0.01 0.27
Permutation p-value 0.061 0.895 0.048

Value of GEM 8.03 7.60 8.03
(95% CI) (6.28, 9.78) (5.62, 9.43) (6.21, 9.68)

Value of GEM − Value of placebo 2.02 1.57 2.00
(95% CI) (1.97, 2.06) (1.52, 1.62) (1.96, 2.05)

Value of GEM − Value of SSRI 0.52 0.07 0.50
(95% CI) (0.48, 0.55) (0.04, 0.10) (0.46, 0.54)

Value of GEM − Value of random 1.29 0.84 1.27
(95% CI) (1.25, 1.32) (0.80, 0.87) (1.24, 1.31)

Fig. 3. The relationship between the GEMs obtained from the three criteria and the change in depression (HRSD)
from baseline to week 8 for the SSRI (blue) and placebo (red) interventions. The GEMs corresponding to each of the
criteria are plotted on the horizontal axis. The lines are the LS lines and the shaded areas indicate the 95% pointwise
CIs. The densities of the respective GEMs for the two treatment groups are indicted at the lower part of each panel.
The vertical lines indicate the cut-off point on the linear combinations of predictors above which a depressed patient
would benefit from treatment with SSRI.
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obtain an estimate of the value of the treatment decision and finally averaging those estimates across the
10 folds of the cross-validation. As Table 2 shows, the F and numerator approaches produce very similar
bootstrap confidence intervals for the value of the decision, while the denominator criterion results in a
lower decision value that has a wider 95% CI. The last three rows of Table 2 show the differences between
the values of the treatment decisions derived from each the three GEM approaches and the value of three
commonly used comparison decisions (i) give everyone placebo; (ii) give everyone SSRI; and (iii) give
placebo and SSRI at random estimated by the same cross-validation approach based on 1000 bootstrap
samples.

The results from the GEM approaches are visually presented in Figure 3. The GEM analysis using
the F-ratio criterion (similar to the numerator criterion) results in the conclusion that 30.4% of the target
population (to the left of the vertical lines at GEM = 0.44) does not benefit from SSRI treatment. The
decision based on the F GEM could be not to prescribe SSRI to those subjects with GEMF < 0.44;
alternatively, one might choose to give SSRI only to patients with a GEMF scores in the range where
the 95% CIs for placebo and SSRI GEM regressions do not overlap, that, GEM≥ 1.4. These results are
consistent with the fact that many antidepressant trials fail to show efficacy, or show only small benefits,
for example, about 25–30% difference in response rates of the antidepressants vs. placebo (60–65% vs.
30–35% respectively).

7. DISCUSSION

This article has shown how to combine several baseline characteristics into a single generated effect moder-
ator in the context of the classic linear model. Closed-form expressions have been derived for these GEMs
that do not require complex iterative computations. The GEM offers a straightforward approach to deter-
mine beneficial treatments for patients. From this perspective, GEMs can be viewed as indices for treatment
decisions. Of the three criteria, we generally recommend the F-criterion, because it simultaneously max-
imizes the interaction effect (the numerator) and also minimizes the prediction error (denominator) in the
class of GEM models. Additionally, from our results, the F-criterion’s performance is either optimal or
very close to optimal with respect to making rules for treatment decisions with highest values.

In practice, after conducting the main hypotheses testing in efficacy studies, investigators attempt to
discover baseline patient features that moderate the effect of treatment. Given that (if present) variables
with large moderating effects of treatments for most illnesses have already been discovered, it is not
surprising that researchers regularly fail to discover other moderators in studies where the primary goal
is to establish efficacy. The proposed methods show that combining patient characteristics with little to
no moderating effects of a treatment can result in a strong treatment effect modifier that can help with
making treatment decisions. Of course, any treatment decision has to be validated in properly designed
studies; for example, a 3-arm RCT where the experimental treatment, the control treatment and treatment
according to the investigated treatment decision are compared. The proposed methodology is expected to
be of particular utility in studies specifically designed to discover biosignatures for response to treatment,
as discussed in the Introduction.

Several generalizations of the GEM procedure are currently under development, such as extending
the GEM to generalized linear models and longitudinal outcomes. Work is also underway to allow the
outcome to depend on nonparametric functions of GEMs, similar to generalized additive models. It will be
useful to compare the linear GEM model developed here and a more flexible nonparametric GEM model
to other methods for precision medicine for providing guidance in making treatment decisions.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw035/-/DC1
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