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SUMMARY

Marginal structural models (MSMs) are a general class of causal models for specifying the average effect
of treatment on an outcome. These models can accommodate discrete or continuous treatments, as well as
treatment effect heterogeneity (causal effect modification). The literature on estimation of MSM parame-
ters has been dominated by semiparametric estimation methods, such as inverse probability of treatment
weighted (IPTW). Likelihood-based methods have received little development, probably in part due to the
need to integrate out confounders from the likelihood and due to reluctance to make parametric modeling
assumptions. In this article we develop a fully Bayesian MSM for continuous and survival outcomes.
In particular, we take a Bayesian nonparametric (BNP) approach, using a combination of a dependent
Dirichlet process and Gaussian process to model the observed data. The BNP approach, like semipara-
metric methods such as IPTW, does not require specifying a parametric outcome distribution. Moreover,
by using a likelihood-based method, there are potential gains in efficiency over semiparametric methods.
An additional advantage of taking a fully Bayesian approach is the ability to account for uncertainty in
our (uncheckable) identifying assumption. To this end, we propose informative prior distributions that
can be used to capture uncertainty about the identifying “no unmeasured confounders” assumption. Thus,
posterior inference about the causal effect parameters can reflect the degree of uncertainty about this
assumption. The performance of the methodology is evaluated in several simulation studies. The results
show substantial efficiency gains over semiparametric methods, and very little efficiency loss over correctly
specified maximum likelihood estimates. The method is also applied to data from a study on neurocogni-
tive performance in HIV-infected women and a study of the comparative effectiveness of antihypertensive
drug classes.
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1. INTRODUCTION

Marginal structural models (MSMs; Robins, 2000) are a class of marginal (not conditional on confounders)
causal models. The causal effect parameters represent contrasts between population average causal out-
comes. The models are flexible enough to allow discrete or continuous treatments and interactions with
baseline covariates. A variety of semiparametric estimation methods have been developed for these mod-
els. The most widely used method involves inverse probability of treatment weighted (IPTW; Robins,
Hernán, and Brumback, 2000) estimation or augmented IPTW estimation (Scharfstein and others, 1999;
van der Laan and Robins, 2003). The latter has the advantage of having the double robustness property—
only one of the outcome model or propensity score model needs to be correctly specified in order for the
causal effect estimator to be consistent. Other semiparametric methods include those based on empirical
likelihood (Tan, 2010) and targeted maximum likelihood (TMLE; Rosenblum and van der Laan, 2010).

Likedhood-based approaches to estimation of MSM parameters can potentially result in efficiency
gains over semiparametric approaches. Among likelihood-based approaches, Bayesian methods have
some additional appealing features, including obtaining full posterior distributions rather than simply point
estimates and standard errors and the ability to capture uncertainty in assumptions via prior distributions;
the final point is particularly important since all causal inference approaches require the analyst to make
data-uncheckable assumptions. Despite these potential advantages, few maximum likelihood or Bayesian
approaches have been developed for MSMs. A general framework for estimating causal effects using
likelihood-based methods is the g-formula (Robins, 1986). Several recent papers have demonstrated the
g-formula approach, though using fully parametric models in the different context of estimation of causal
effects of dynamic treatment regimes. (Young and others, 2011; Wahed and Thall, 2013). Saarela and
others (2015) recently proposed a Bayesian-like approach for MSM estimation. Their method differs
from ours in that they take a Bayesian approach for IPTW, but do not specify a fully Bayesian MSM in
general. As pointed out by Robins, Hernán, and Wasserman (2015), a fully Bayesian approach cannot be a
function of the propensity score. Karabatsos and Walker (2012) and Hoshino (2013) developed Bayesian
nonparametric (BNP) models for the narrower problem of estimating an average causal effect between
two treatment groups with no effect modification. Hill (2011) proposed the use of Bayesian adaptive
regression trees (BART) for estimating causal effects in the point treatment setting. BART allows flexible
modeling of the mean function (function of treatment and confounders). However, that work differed
from ours in that it focused primarily on conditional, rather than marginal effects, and required a normal
distribution assumption for the outcome. Our work is most similar to Xu and others (2015) in terms of
the BNP approach, but their method was developed for a different problem (dynamic treatment regimes).

There are several challenges with specifying a fully Bayesian MSM. One is that we would like to
minimize parametric assumptions about the distribution of the outcome given treatment and confounders.
Another is that the potential outcomes are assumed to be exchangeable given all confounders, but the
causal model is specified marginally (not conditional on confounders). Thus, the confounders have to be
integrated out from the likelihood in a way that preserves the assumed causal structure. We deal with these
challenges as follows. We specify a dependent Dirichlet process (DDP) for the outcome given confounders
(MacEachern, 1999). This DDP is set up in such a way to ensure compatibility between the conditional
distribution and assumed MSM and to facilitate “simple” computations. For the mean model, we use
a Gaussian process (GP; Neal, 1998). The GP model allows for nonparametric estimation of the mean
function of confounders.

We apply the methods to data from two studies—one with continuous outcomes and one with a sur-
vival outcome. The first example is a study of neurocognitive performance of human immunodeficiency
(HIV)-sero positive women after being treated with either a highly active antiretroviral therapy (HAART)
drug regimen or a non-HAART drug regimen (Cohen and others, 2001). The participants of this study
were a subset of the prospective HIV Epidemiology Research (HER) Study (Smith and others, 1997) who
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had severely impaired immune function and who had at least two neurocognitive exams in 1993–1999.
The outcome was the change in score on various neurocognitive tasks over time. Previous analyses of
the data relied on parametric assumptions about the mean function of covariates (Roy and others, 2003)
or the outcome distribution (Cohen and others, 2001). However, there is no prior reason to believe that
the outcome distribution will be normal. In addition, there are several important confounding variables,
including age, depression score, and intravenous drug use, and it is not apparent what kind of relation-
ships with the outcome are reasonable to assume. Our BNP model allows for flexible modeling of these
distributions and estimation of effect modification by recent alcohol use.

In the second example, we analyzed data from a study of the comparative effectiveness of angiotensin-
converting enzyme inhibitors (ACEI) versus angiotensin II receptor blockers (ARBs) for treatment of
hypertension (Roy and others, 2012). The data are from Geisinger Clinic electronic health records of an
incident cohort of patients who were prescribed either an (ACEI) or ARB between 2001 and 2008. The
outcome is all cause mortality, modeled as a (possibly censored) survival time.

In Section 2 we review MSMs for the point treatments setting. The BNP method is developed in Section
3, including Gibbs sampling steps and sensitivity analysis. Section 4 presents several simulation studies
that are used to evaluate the BNP approach and compare its performance with other approaches. The
methods are applied to the two studies in Section 5. Finally, there is a discussion in Section 6.

2. MSMS FOR POINT TREATMENTS

We consider the situation where there is treatment A, confounders L, and an outcome Y . Treatment is
measured at one time and could be continuous or discrete. Treatment assignment might have depended
on baseline, pretreatment, variables L. The outcome Y is measured sometime after baseline, and for this
article we restrict it to continuous or survival cases.

Denote by Y a the potential outcome if the subject had been assigned to treatment level a. For example,
in the binary treatment case each subject would have two potential outcomes Y 1 if they receive treatment
and Y 0 if they do not.

MSMs are a popular class of causal models (Robins, 2000; Robins, Hernán, and Brumback, 2000).
They are models for the marginal mean of potential outcomes (or for the mean given a subset of covariates).
Let L = (V , W ) so that V and W are subsets of the covariates L. The covariates V are covariates that we
want to condition on as part of the causal model, possibily from the perspective of effect modification.
Covariates W are simply other covariates that we need to control for. The full set of covariates L are
necessary to control for confounding, and can be selected using standard methodology (Sauer and others,
2013). We consider MSMs of the form

E(Y a|V = v;ψ) = h0(v;ψ0)+ h1(a, v;ψ1), (2.1)

for all a, v, where h0(·) and h1(·) are known functions and ψ0 and ψ1 are unknown parameters. The ψ1

parameters represent causal treatment effects and are of primary interest.
For example, consider the special case of a linear model with binary treatment and no covariates V

that we wish to condition on. We could write model 2.1 as E(Y a|ψ) = ψ0 + ψ1a, for a = 0, 1. Thus, the
average causal effect (ACE) is ψ1 = E(Y 1)− E(Y 0).

As an alternative example, consider a continuous treatment (e.g., dose of a drug) and a single binary
effect modifier V . Here we might assume E(Y a|V = v;ψ) = ψ00 +ψ01v +ψ10a+ψ11a×v. Thus, among
subjects with V = 0, each unit increase in a would increase the mean of the potential outcome by ψ10.
This causal slope would differ between subjects with V = 1 and V = 0 by ψ11.

To identify the causal parameters, we make three standard causal assumptions. The first is consistency,
which is that Y a = Y among subjects with A = a, for all a. This assumption implies that p(Y a|A = a, L) =
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p(Y |A = a, L). The next assumption is positivity p(a|V , W ) > 0, which states that each treatment level has
nonzero probability for every confounder level. The final assumption is ignorability: {Y a : ∀a ∈ A} ⊥⊥ A|L.
This assumption implies that p(Y a|A = a, L) = p(Y a|A = a′, L). In other words, given confounders L,
treatment can be thought of as randomly assigned. This is also known as the “no unmeasured confounders”
assumption. Because this assumption is not checkable and might be violated in practice, it is important to
carry out a sensitivity analysis. We develop a sensitivity analysis method in Section 3.3 and demonstrate
its application in Section 5.1.2.

3. THE MODEL AND INFERENCE

Our goal is to develop a flexible model for p(ya|l) that enforces the MSM structure. The model we propose
has flexibility both in terms of the mean function and the residual distribution.

We model the conditional distribution p(Y a|L) and constrain it to ensure that the MSM in (2.1) holds.
We consider a dependent DP (DDP; MacEachern, 1999; Gelfand and others, 2005; Xu and others, 2015)
that accommodates the MSM constraint. Specifically, we assume

p(ya|l) =
∞∑

k=1

γkN (y;�(a, v;ψ , γ )+ θk(l), σ 2), (3.1)

where θk(l) (a function of covariates) and σ are the mean and standard deviation of the kth component of
the mixture model. We will derive �(a, v;ψ , γ ) below, but for now we can think of it as a function of a
and v, but not w. Notice that this is an infinite mixture of normals, with weight γk corresponding to the
kth mixture component,

∑∞
k=1 γk = 1. The prior distribution for the weights, γk = γ ′

k

∏
j<k(1 − γ ′

j ), is
specified as γ ′

k ∼Beta(1,α). Given a correctly specified mean function,�(a, v;ψ , γ )+ θk(l), we have an
ordinary DP mixture for the outcome ya. This specification should be flexible enough to handle multiple
modes, skewness, etc.

We next specify a flexible model for the mean function θk(l). We assume the following GP prior for
θk(l), θk(l) ∼ GP(μk(w), C(l; η, ρ)) (Neal, 1998; Xu and others, 2015). A GP is a distribution over a
function, here θk(l). For any set of points l, the joint distribution θk(l) is multivariate normal. We specify
the prior mean function as a linear regression μk(w) = wTβk where the β’s are unknown regression
coefficients, but more complex forms of this prior mean are also possible. Next, we define the covariance
function as follows. The ith row and jth column of C(l; η, ρ) is η exp

(−ρ||li − lj||2
)+ δijJ 2, where ||x||2

is the squared Euclidean distance of x, δij, Kronecker’s delta, takes a value of 1 if and only if i = j, η > 0
and ρ > 0 are unknown parameters, and J is set to a small value (we use 0.1). To help understand the
model, imagine that the β’s have a prior mean of 0 with variance σ 2

β and that the l’s have mean 0. Then,
the prior covariance between the mean function at l and l′ is

cov(θk(li), θk(lj)) =
p∑

m=1

lml′mσ
2
β + η exp

(−ρ||li − lj||2
)+ δijJ

2,

where p is the number of covariates in L. The first term allows for nonstationarity. The second term is a
function of the squared distance between li and lj, leading to a larger covariance for smaller distances.
The size of η determines how much the mean function varies from linearity. Finally, the last term is
necessary simply to ensure a positive definite matrix (variance larger than the covariance between two
subjects who have same l’s). We will assume informative prior distributions for η and ρ. Because inversion
of C will be necessary, it will be important for ρ to not be too small (small values of ρ lead to higher
correlations between θ ’s). In general, larger values of η lead to more variation of the mean away from the
linearity assumption. Essentially, large values of η will lead to better a fit, but the log|C| that is part of
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the likelihood will act as a penalty term (preventing overfitting). The θk(l) for the data is an n × 1 vector
(θk(l1), · · · , θk(ln)), where lj is the p × 1 vector. Note that more complicated forms of C(l; η, ρ) could be
specified, providing added flexibility. Some of these forms are described in Neal (1998). However, having
additional parameters in the covariance function can greatly increase computing time.

We next derive the form of �(a, v;ψ , γ ). Note that E(Y Ai
i |Li) = �(ai, vi;ψ , γ )+∑∞

k=1 γkwT
i βk . This

implies that

E(Y Ai
i |Vi) = �(ai, vi;ψ , γ )+

∫
w

∞∑
k=1

γkwTβk dF(w|vi),

where F(w|v) is the conditional distribution of w given v. This equation along with (2.1) imply

�(ai, vi;ψ , γ ) = h0(vi;ψ0)+ h1(ai, vi;ψ1)−
∫

w

∞∑
k=1

γkwTβk dF(w|vi). (3.2)

For solving the integral in�(a, v;ψ , γ ), we use the empirical distribution of p(w|v). This should work
well if, as is usually the case, v is discrete and of low dimension. Specifically, we can write∫

w

∞∑
k=1

γkwTβk dF(w|vi) =
∞∑

k=1

γk

{∫
w

wT dF(w|vi)

}
βk (3.3)

and then approximate the integral ∫
w

w dF(w|v) ≈ 1

nv

∑
i:Vi=v

wi = w̃v,

for all v, where nv = ∑n
i=1 I (Vi = v). Finally, denote by θ̃k = (w̃T

v1
βk , · · · , w̃T

vn
βk)

T the corresponding
n × 1 vector. The form of (3.3) greatly simplifies posterior computations (details in Section 1 of the
supplementary materials).

Prior distributions. For the coefficients of w in the GP model, βk , we assume normal priors βk ∼
N (β0,�β

0 ), where β0 and �β

0 are known. These can be chosen following recommendations by Taddy
(2008). We assume diffuse normal priors for the MSM parametersψ ∼ N (0,�ψ

0 ), where�ψ

0 is a diagonal
matrix with large values on the diagonal. For the DP precision parameter α, we assume α ∼inv-Gam(1, 1).
This prior is centered at a relatively low value, but has a longer tail than a Gam(1, 1) distribution. For
the prior correlation-like parameter in the GP ρ, we assume ρ ∼Gam(a, b). The values we choose here
depend on the application, but in some cases it is computationally beneficial to have less prior weight near
0 (as ρ very close to 0 leads to a near singular covariance matrix). For the variance parameters, we assume
the following: σ−2 ∼Gam(λ1 = 1, λ2 = 1) and η ∼Gam(1, 1).

Posterior computations. We develop a Gibbs sampler for obtaining draws from the marginal posterior
distribution of the parameters. Let Si denote a multinomial latent variable that can take values {1, . . . , K}
with probability {γ1, . . . , γK }. This variable represents allocation of the cluster of the mixture model (i.e.,
if Si = k then subject i is in cluster k). The Gibbs sampling algorithm alternates between drawing a cluster
value S for each subject and updating the parameters, given S. In practice we will approximate the infinite
sum in (3.1) with a finite sum up to K , p(ya|l) ≈ ∑K

k=1 γkN (y;�(a, v;ψ , γ ) + θk(l), σ 2), where K is
chosen using the method of Ishwaran and James (2001), and γ ′

K ≡ 1. Full details of the Gibbs sampler
steps are given in Section 1 of the supplementary materials.

Sensitivity analysis. Here we develop a sensitivity analysis for departures from the ignorability
assumption. Starting with the observed data likelihood and applying the consistency and ignrrability
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assumptions, we have p(Y , A, L) = p(Y a|A = a, L)p(A, L) = p(Y a|L)p(A, L). Thus, to assess sen-
sitivity to the ignorability assumption, we can modify model (3.1) to condition on A: p(Y a|A, L) =∑∞

k=1 γkN (y;�SA(a, v;ψ , γ ) + Aφ + θk(l), σ 2), where φ is a sensitivity parameter and the “SA” in �SA

is meant to distinguish the� function in the sensitivity analysis from the one previously defined. We now
need to integrate over both W and A to derive �SA(a, v;ψ , γ ),

E(Y ai
i |Vi) = �SA(ai, vi;ψ , γ )+

∫
w

∫
a

(
aφ +

∞∑
k=1

γkwTβk

)
dF(a, w|vi),

which implies

�SA(a, v;ψ , γ ) = h0(v;ψ0)+ h1(a, v;ψ1)−
∫

w

∫
a

(
aφ +

∞∑
k=1

γkwTβk

)
dF(a, w|vi).

We can estimate the above integrals using the empirical distribution:

∫
w

∫
a

(
aφ +

∞∑
k=1

γkwTβk

)
dF(a, w|vi) ≈ 1

nv

∑
i:Vi=v

(
Aiφ +

∞∑
k=1

γkwT
i βk

)
.

In the Gibbs sampler, we can use�SA(a, v;ψ , γ ) rather than�(a, v;ψ , γ ) and otherwise proceed with the
algorithm in Section 1 of the supplementary materials inserting the term, Aiφ, where necessary. If φ = 0,
then the ignorability assumption holds.

For binary A, φ can be thought of as the average difference in Y a (for a = 0, 1) among subjects
assigned A = 1 compared with subjects assigned A = 0, who have the same covariates L. We can assign
an informative prior distribution for φ (representing our expectation about unmeasured confounding, as
well as our uncertainty about it) and assess how that impacts inference about ψ . This is an important
advantage of the Bayesian approach.

To calibrate φ, we first calculate the total variance in Y explained by L (but not A). Denote this by
R2. We then assume that |φ| = |E(Y a|A = 1, L) − E(Y a|A = 0, L)| is less than

√
var(Y )(1 − R2)k (i.e.,

unmeasured confounding would account for less than k% of the remaining variance). We can then specify
a prior distribution for k .

4. SIMULATION STUDIES

We conducted simulation studies to examine the performance of the proposed BNP approach described in
Section 3 under three scenarios: (1) an outcome simulated from a normal distribution with a complicated
mean function of confounders; (2) an outcome simulated from a bimodal distribution with a simplified
mean function of confounders; and (3) a model with many confounders and a complicated relationship
with the outcome. In each scenario, the simulated data consisted of a binary treatment, A, a binary
effect modifier V , other confounders W or Z , and a continuous outcome Y . The true causal model was
E(Y a|v) = ψ00+ψ01v+ψ10a+ψ11a×v. Our primary interest was in the estimation ofψ , and in particular,
ψ10 and ψ11.

In each simulation scenario we compared the BNP approach to several other methods. The general
methods we compared were IPTW estimator with stabilized weights; IPTW with stabilized weights trun-
cated at 2nd and 98th percentiles (IPTWtr); augmented IPTW (IPTWaug); TMLE that used Super Learner
(van der Laan and others, 2007) in the outcome model. Super Learner is an ensemble machine learning
method that uses cross-validation to weigh different prediction algorithms. We used four algorithms (glm,
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step, gam, randomforest) and implemented TMLE using the R package tmle (Gruber and van der Laan,
2012). To compare the efficiency of the methods, we also fit a regression model relating the outcome to
the confounders (REG). For augmented IPTW, we used the estimation method specified (van der Laan
and Robins, 2003, p. 328).

For each scenario, we generated 1000 datasets. For the first 2 scenarios we used a small sample size of
n = 200. For scenario 3 we tested a larger sample size of n = 500. For the BNP approach, we estimated
the posterior distributions using the Gibbs sampling steps described in Section 1 of the supplementary
materials and determined that 1000 draws was a sufficient burn-in period and 14 000 additional draws
yielded sufficiently small Monte Carlo (MC) error for all three scenarios. Furthermore, under each scenario,
we first simulated a small number of datasets to determine a value for K and then used that value of K for
all simulated datasets in that scenario.

We compared the BNP approach with the existing methods in terms of bias, coverage probability
and empirical standard deviation (ESD). For the BNP approach, we calculated the bias as the difference
between the true value and the median of the posterior distribution, the ESD as the standard deviation of
the posterior medians, and the coverage probability as the percentage of equal tail 95% credible intervals
that contain the true values.

Simulation 1: normal outcome, complex mean function. In scenario 1, we simulated data under some-
what simple conditions, that is a normally distributed outcome with a complicated but linear relation
between the outcome and confounders. We generated data as follows:

Wj ∼ N (0, 1), j = 1, . . . , 4, V ∼ Bern(0.5),

A ∼ Bern
{
logit−1(−0.3 + w1 − 0.5w2

2 − 0.8w3 + 1.2w4 − 0.2w1w4 + 0.5w2w3 + V )
}

Y ∼ N (�(a, v;ψ)+ g(w, a, v), 52)

where g(w, a, v) = w1 + 2w2 − w3 + 0.7w3
4 + 2w1w2 + vw3 + aw2 and�(a, v;ψ) = ψ00 +ψ01v +ψ10a +

ψ11av − ∫
g(w, a, v) dF(w|v) [note that here the integral is 0]. We set ψ = (5, 1, 1, −0.5).

In the BNP approach, the number of clusters, K , was set to 10 as the number of uniquely observed
values of S was 2 or 3 for the majority of draws. The correctly specified regression model (REG) was
a regression of Y on (V , A, AV , W1, W2, W3, W 3

4 , W1W2, VW3, AW2). While, in practice, it is unlikely that
anyone would have correctly specified this model, it is used to compare the other approaches with this
best performing model. The propensity score was correctly specified for IPTW, IPTWtr, IPTWaug, and
TMLE.

The bias, coverage probability, and ESD for the estimators ofψ comparing the existing estimators with
the BNP approach in scenario 1 are summarized in Table 1. For the causal parameter,ψ10, which describes
the average effect of treatment when V = 0, the BNP approach performs well relative to the other causal
methods with relatively low bias, coverage at approximately the nominal 95% level, and very small ESD
(second only to that of the correctly specified regression model). The ESDs from the BNP model are
in between those from the correctly specified regression model (which is the best one could achieve,
as it is obtained by maximizing the true likelihood) and IPTWtr, which was the best performing of the
semiparametric methods (much closer to the most efficient estimator). Of the existing methods, IPTWtr
exhibited the largest bias for ψ10, although this was a trade-off for the smaller ESD. The coverage of the
TMLE estimators was much lower. Because of this result, we decided to also report coverage based on
bootstrapping the TMLE estimators (TMLEboot). This fixed the undercoverage problem. For the causal
effect modification parameter ψ11, the results were similar, except the IPTW methods had smaller bias
than TMLE and BNP. Again, the ESD from the BNP approach was only slightly larger than from REG.

Simulation 2: bimodal outcome. In this scenario, we simulated a bimodal outcome distribution by gen-
erating data such that the error terms are from a mixture distribution consisting of two normal distributions
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Table 1. Results from simulation scenario 1 (1000 data sets, n = 200).

Parameter Method Bias Coverage ESD

ψ00: Intercept REG 0.01 0.93 0.72
IPTW −0.05 0.93 1.31
IPTWtr −0.14 0.93 1.06
IPTWaug 0.02 0.95 1.05
TMLE −0.05 0.90 1.08
TMLEboot −0.05 0.94 1.08
BNP −0.07 0.97 1.00

ψ01: V REG −0.03 0.94 1.05
IPTW −0.07 0.92 2.25
IPTWtr −0.13 0.93 1.67
IPTWaug −0.01 0.96 1.75
TMLE 0.14 0.86 1.93
TMLEboot 0.14 0.94 1.93
BNP 0.13 0.96 1.27

ψ10: A REG −0.04 0.95 1.16
IPTW 0.34 0.91 2.05
IPTWtr 0.74 0.91 1.52
IPTWaug −0.05 0.95 1.86
TMLE 0.42 0.70 2.22
TMLEboot 0.42 0.93 2.22
BNP 0.16 0.96 1.24

ψ11: A × V REG 0.04 0.95 1.53
IPTW −0.06 0.91 3.11
IPTWtr −0.17 0.94 2.31
IPTWaug 0.03 0.95 2.58
TMLE −0.39 0.71 3.28
TMLEboot −0.39 0.94 3.28
BNP −0.37 0.96 1.60

The true values were: ψ = (5, 1, 1, −0.5). REG is the correctly specified
regression model. IPTW and IPTWtr use a correctly specified propensity score.
IPTWaug uses a correctly specified outcome and propensity score model. TMLE
uses a correctly specified propensity score and Super Learner for the outcome
model. TMLEboot uses bootstrap confidence intervals, rather than asymptotic
intervals. BNP is the proposed method. Bias is the absolute bias and ESD is the
empirical standard deviation.

with different means. We first generated A, V, and W1, . . . , W4 in the same way as in scenario 1. Then the
outcome was generated from Y = �(A, V ;ψ)+ g(W )+ 5(B − B)+ N (0, 1), where B is Bernoulli(0.5),
g(W ) = W1 + 2W2 − W3 − 2W4, �(a, v;ψ) = ψ00 + ψ01v + ψ10a + ψ11av − ∫

g(w, a, v) dF(w). Note
that this is a simplified mean function compared with scenario 1. For example, there is no squared or
cubic term for W4. The reason for this is we wanted to focus on the error distribution, rather than the mean
function. We set ψ = (10, 1, 1, −0.5). For all of the analyses, B is treated as unobserved. For the BNP
approach, K = 10 was sufficient as the majority of the observations fell into two clusters. We compared
the same estimators as in scenario 1.

The performance of the BNP approach and the existing methods is summarized in Table 2. Of note is
the very small ESD of the BNP approach compared with the existing methods, especially for the causal
parameters. Note that in this scenario, for the REG method, the error distribution was assumed to be
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Table 2. Results from simulation scenario 2: outcome sim-
ulated from a bimodal distribution with simplified mean
function of confounders.

Parameter Method Bias Coverage ESD

ψ00: Intercept REG −0.02 1.00 0.38
IPTW −0.01 0.97 0.51
IPTWtr 0.00 0.97 0.50
IPTWaug −0.02 0.97 0.45
TMLE −0.02 1.00 0.45
BNP −0.01 0.99 0.44

ψ01: V REG 0.04 1.00 0.61
IPTW 0.05 0.94 0.99
IPTWtr 0.10 0.94 0.95
IPTWaug 0.03 0.95 0.81
TMLE 0.05 1.00 0.80
BNP 0.02 0.96 0.60

ψ10: A REG 0.02 1.00 0.55
IPTW 0.01 0.98 0.81
IPTWtr 0.04 0.98 0.75
IPTWaug 0.01 0.95 0.60
TMLE 0.01 0.93 0.58
BNP 0.00 0.97 0.38

ψ11: A × V REG −0.04 1.00 0.79
IPTW −0.05 0.95 1.37

. IPTWtr −0.07 0.95 1.29
IPTWaug −0.02 0.96 0.88
TMLE −0.04 0.93 0.87
BNP 0.00 0.96 0.53

The true values wereψ = (10, 1, 1, −0.5). Results are from 1000 simulated
datasets of size n = 200.

normal. In addition, while all of the methods had very low bias, the BNP approach has the smallest bias
for three of four parameters. The coverage was approximately the nominal 95% for all of the causal
inference methods, but was too large for REG.

Simulation 3: many covariates and complex outcome For this scenario, we simulated data for n = 500
subjects with 10 binary and 10 continuous covariates. The outcome is a complex mixture, with some
nonlinear components and interactions. Details of the data generation steps are given in Section 2 of the
supplementary materials. The true value of ψ was ψ = (10, −2, 2, 1).

For the semiparametric methods, a correctly specified propensity score was used. For the regression
method, the mean was specified as an additive linear function of the 20 covariates W , along with A, V ,
and AV . For the BNP approach, K = 10 was found to be sufficiently large.

The results are given in Table 3. For the causal main effect ψ10, BNP had the smallest bias. Coverage
for all of the methods were a little low (about 0.90 for all except TMLE, which was 0.79). The ESD was
smallest for REG (0.43) and IPTWaug (0.44) and largest for IPTW (0.75). For the causal interaction ψ11,
IPTW had the smallest bias. The absolute bias for REG, TMLE, and BNP were similar (0.23, 0.33, and
0.27, respectively). Coverage for REG, IPTWaug, and BNP were close to the nominal level. The ESD was
smallest for REG and BNP (1.39) and largest for TMLE (2.59).
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Table 3. Results from simulation scenario 3: many con-
founders and complex outcome.

Parameter Method Bias Coverage ESD

ψ00: Intercept REG −0.04 0.89 0.34
IPTW −0.02 0.94 0.62
IPTWtr −0.10 0.94 0.43
IPTWaug −0.18 0.92 0.34
TMLE 0.22 0.84 0.49
BNP −0.08 0.92 0.34

ψ01: V REG −0.29 0.90 1.29
IPTW 0.01 0.81 2.13
IPTWtr 0.08 0.86 1.69
IPTWaug 0.17 0.94 1.38
TMLE −0.33 0.73 2.47
BNP 0.25 0.89 1.25

ψ10: A REG 0.24 0.90 0.43
IPTW 0.31 0.91 0.75
IPTWtr 0.36 0.89 0.52
IPTWaug 0.27 0.91 0.44
TMLE −0.20 0.79 0.62
BNP 0.12 0.90 0.51

ψ11: A × V REG −0.23 0.94 1.39
IPTW −0.09 0.84 2.24
IPTWtr −0.14 0.89 1.79
IPTWaug −0.19 0.95 1.49
TMLE 0.33 0.61 2.59
BNP −0.27 0.92 1.39

The true values were ψ = (10, −2, 2, 1). Results are from 1000 simulated
datasets of size n = 500.

Conclusions. Across the three scenarios, BNP had consistently good performance. It had the best
performance in scenario 2, where the outcome was bimodal. In the other scenarios, it was competitive
with the other causal methods in terms of bias and coverage. BNP had consistently smaller ESD than the
semiparametric methods, and not much larger than the ESD from correctly specified regression models.
It is important to emphasize that for both IPTW and TMLE, correctly specified propensity score models
were used, whereas for BNP we did not use knowledge about how the data were generated.

In Section 3 of the supplementary materials, we present one additional simulation study. Data were
generated following a model proposed by Kang and Schafer (2007). In that scenario, some treatments
have extremely high or extremely low probability for some subjects (i.e., near violation of the positivity
assumption—an assumption that is typically necessary for models that involve inverse probability of
treatment weighting). The BNP model had good coverage and was more efficient than IPTW and TMLE.

5. DATA ANALYSES

We applied the methods to two datasets. We present here the analysis of data from a study of the neurocog-
nitive effects of HAART. In the supplementary materials (Section 5), we present results from a study of
the comparative effectiveness of ACEIs and ARBs.
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We apply the BNP approach to estimate the average causal effect of a HAART drug regimen versus
a non-HAART regimen on neurocognitive outcomes in HIV-seropositive women with severely impaired
immune function (as measured by low CD4 cell count). In addition, we are interested in differences in
effect between women with a recent history of alcohol use and those without as Durvasula and others
(2006) have shown that recent heavy alcohol use is associated with decreased neurocognitive function in
HIV-seropositive African American US men.

The participants are a subset from the HER Study (Smith and others, 1997), a multisite study of the
natural history of HIV in US women. For women with CD4 cell count < 100 cells/μL, neurocognitive
exams were administered every 6 months beginning with a baseline exam at 3 months after this threshold
was reached (Cohen and others, 2001). Potential a priori confounders collected at enrolment are age
(continuous), intravenous drug use in the past six months (yes/no), any previous use of opiates, cocaine,
amphetamines, barbiturates, and/or hallucinogens (yes/no), depression severity measured using The Center
for Epidemiology Scale of Depression (continuous), and CD4 cell count (continuous). A potential effect
modifier of interest is alcohol use in the past 6 months (yes/no).

Treatment is the first initiation of a HAART drug regimen defined using the guidelines of the US Public
Health Service (Smith and others, 1997; Centers for Disease Control, 1999) as a combination of either
protease inhibitor plus two nucleoside analog reverse transcriptase inhibitors or a protease inhibitor plus
a nucleoside analog reverse transcriptase inhibitor plus a nonnucleoside reverse transcriptase inhibitor.
Non-HAART consisted of monotherapy or dual nucleoside therapy without the above combinations.

During the semiannual neurocognitive exam, multiple tasks were given including the Grooved Pegboard
total time (GPB), Color Trail Making 1 total time (CTM), and Controlled Oral Word Generation Test total
words (COWAT). The outcomes we consider are the changes in the scores (continuous) over time. We
define the observed outcomes: YGPB = GPB(last exam) – GPB(baseline exam), YCTM = CTM(last exam) –
CTM(baseline exam), and YCOW = COWAT(last exam) – COWAT(baseline exam). The potential outcomes
if a woman is put on a HAART drug regimen (a=1) are Y 1

GPB, Y 1
CTM, and Y 1

COW, and Y 0
GPB, Y 0

CTM, and Y 0
COW

if put on a non-HAART drug regimen (a = 0). Improvement is indicated by a negative change in time to
complete the task for GPB and CTM, but a positive change in total words for COWAT which measures
verbal fluency.

We consider the 126 women with CD4 cell count < 100 × 106cells/L who completed at least two
neurological exams in 1993–1996. We further excluded one woman with unknown treatment, four women
with unknown CD4 cell count, and one woman with a CTM change in time more than 21 standard
deviations from the median, for a final sample size of 120.

In this analysis, we model each of the potential outcomes separately. For each, our MSM consists of
main effects for recent alcohol use and a HAART drug regimen and an interaction term (e.g., E(Y 1 | V =
v;ψ) = ψ00 +ψ01v +ψ10a+ψ11a×v). The interpretation ofψ10 is the difference in mean of the potential
outcome comparing HAART versus non-HAART among women with no recent alcohol use (v = 0).
Furthermore, ψ11 indicates modification of this difference by recent alcohol use.

Results. In Figure 1, we compare the posterior medians and 95% equal tail credible intervals of the
causal parameters fit using the BNP approach with the point estimates and 95% confidence intervals
fit using IPTW with stabilized weights truncated at 2nd and 98th percentiles (IPTWtr) and TMLE. The
estimates from the BNP approach are also given in Table 4 in the row labeled φ = 0. For the CTM
task (Figure 1(a)), the estimates of ψ10 from all three approaches are similar and indicate that treatment
with a HAART drug regimen was significantly associated with faster times in women without recent
alcohol use. The estimates of ψ11 indicate that recent alcohol use counteracted this improvement though
not significantly. Similar results were found for ψ10 and ψ11 using the BNP approach for the GPB task
(Figure 1(b)). For the GPB task, the distribution was not Gaussian and the payoff of using the BNP
approach, even for small datasets, can be seen in the smaller credible intervals which do not include the
null for ψ10. For the COWAT task (Figure 1(c)), the results from all three approaches show an association
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(a)

(b)

(c)

Fig. 1. Results for example on neurocognitive effects of a HAART versus non-HAART drug regimen. Comparison
of point estimates and 95% confidence intervals of causal parameters (ψ10,ψ11) from IPTW with stabilized weights
truncated at 2nd and 98th percentiles (IPTWtr) and TMLE, compared with posterior median and 95% credible intervals
from the proposed BNP approach. Models were fit separately for three outcomes: change in score on (a) Color Trail
Making 1 total time (CTM), (b) Grooved Pegboard total time (GPB), and (c) Controlled Word Association Test total
words (COWAT) tasks. For CTM and GPB tasks, a negative change in time (s) indicates improvement while for the
COWAT task, a positive change (words) indicates improvement. Restricted to 120 HIV seropostive women with CD4
cell count < 100 cells/μL, ≥ 2 neurocognitive exams, known drug regimen, known baseline CD4 cell count, and
nonoutlying CTM change.

between treatment with a HAART drug regimen and increase in number of words in women without recent
alcohol, although all of the intervals included the null.

Sensitivity Analysis. For sensitivity to the ignorability assumption, we use the method described in
Section 3.3. We consider two uniform priors for k: U (0, bk), with bk = {0.1, 0.2}, which represent our
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prior belief that up to 10 or 20%, respectively, of the remaining unexplained variance is explained by
unmeasured confounding, and that any value between 0% and the upper bound, bk , are equally likely. In
addition, because we require that |φ| < √

var(Y )(1 − R2)k , we consider both positive and negative values
of φ. A negative value, for example, would indicate that subjects in the HAART group had a lower value
of each potential outcome than did subjects in the non-HAART group.

The estimates ofψ = (ψ00,ψ01,ψ10,ψ11) for four combinations of the sensitivity parameters are shown
in Table 4 along with the estimates fit under the ignorability assumption (φ = 0). For both the CTM and
GPB tasks, under the ignorability assumption, the estimate of ψ10 was negative and the credible interval
did not include 0. If we relax this assumption and assume φ is positive, the posterior distribution of ψ10

is more negative, indicating treatment with HAART is associated with a stronger improvement in women
without alcohol use; however, if we assume φ is negative, the posterior median is still negative but the 95%
credible interval for ψ10 includes zero for both values of bk . For the COWAT task, under ignorability, the
estimate of ψ10 was positive but the credible interval included 0. If we assume φ is positive, the estimate
of ψ10 decreases, although the posterior median is still positive; while, if we assume φ is negative, the
posterior distribution of ψ10 increases farther away from 0, resulting in credible intervals that no longer
include 0. Overall this agrees with the results of the other tasks, since positive values of change in words
on the COWAT task indicate improvement. Focusing on the GPB outcome, the credible intervals for all of
the parameters were wider in each of the sensitivity analyses. For ψ01 in particular, under the ignorability
assumption, the 95% credible interval was entirely below 0; however, in each of the sensitivity analyses,
the interval widened to include 0.

6. DISCUSSION

In this article we proposed a BNP approach to MSM inference in the point treatment setting.Advantages of
the approach include efficiency gains due to using a likelihood-based approach, the ability to incorporate
prior information into the model, and obtaining full posterior distributions for the causal parameters
of interest. Simulation studies showed good performance of our approach under a variety of scenarios.
We also developed and demonstrated a sensitivity analysis approach, that allows for uncertainty in the
ignorability assumption to be accounted for via informative prior distributions.

While the proposed BNP approach requires more computation resources, there are several ways that
this can be improved. One option is to assume a limited, discrete space for the parameters ρ and η, invert
C(l; η, ρ) for each unique ρ, η, store those inverted matrices and recall them as needed. Another option is
to use an alternative to the GP model, such as treed GP models (Gramacy and Lee, 2008).

In this article we focused on the common situation of continuous outcomes (including censored survival)
and point treatments. An appealing aspect of semiparametric methods, such as IPTW and TMLE, is
estimation of MSM parameters in longitudinal and discrete outcome situations is realtively straightforward
(with the cost of having to correctly specify a propensity score model or an outcome model). BNP
extensions to these settings need to be developed. In the common situation where the treatment variable
is categorical, a BNP approach could be used to model the joint distirbution of observed data, with the
g-formula used to obtain posterior distributions for the causal effect parameters. This is an area of ongoing
research.

The BNP approach developed here does not require explicit specification of interactions between the
confounders in the outcome model (this is handled via the Gaussian process). However, as pointed out
by a referee, the model implicitly assumes no interactions between treatment (a) and confounders (w).
This is in contrast to IPTW, where any interactions between treatment and confounders are automatically
averaged over. If treatment is categorical (not continuous), then the BNP approach proposed here can be
refined to eliminate the assumption of no interactions between a and w. We describe this approach in
Section 4 of the supplementary material.
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SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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