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SUMMARY

The development of next-generation sequencing technologies has allowed researchers to study com-
prehensively the contribution of genetic variation particularly rare variants to complex diseases. To date
many sequencing analyses of rare variants have focused on marginal genetic effects and have not explored
the potential role environmental factors play in modifying genetic risk. Analysis of gene–environment
interaction (GxE) for rare variants poses considerable challenges because of variant rarity and paucity of
subjects who carry the variants while being exposed. To tackle this challenge, we propose a hierarchical
model to jointly assess the GxE effects of a set of rare variants for example, in a gene or regulatory region,
leveraging the information across the variants. Under this model, GxE is modeled by two components. The
first component incorporates variant functional information as weights to calculate the weighted burden of
variant alleles across variants, and then assess their GxE interaction with the environmental factor. Since
this information is a priori known, this component is fixed effects in the model. The second component
involves residual GxE effects that have not been accounted for by the fixed effects. In this component, the
residual GxE effects are postulated to follow an unspecified distribution with mean 0 and variance τ 2. We
develop a novel testing procedure by deriving two independent score statistics for the fixed effects and
the variance component separately. We propose two data-adaptive combination approaches for combining
these two score statistics and establish the asymptotic distributions. An extensive simulation study shows
that the proposed approaches maintain the correct type I error and the power is comparable to or better
than existing methods under a wide range of scenarios. Finally we illustrate the proposed methods by a
exome-wide GxE analysis with NSAIDs use in colorectal cancer.

Keywords: Burden and variance component tests; Colorectal cancer; Kernel machine; Rare genetic variants; Score
test.

1. INTRODUCTION

Both genetic and environmental factors contribute to the development of complex diseases. Under-
standing the interplay between genes and environment is of great interest in genetic epidemiology, as
it may help researchers elucidate the underlying biology and devise effective clinical prevention and
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intervention strategies. Many methods have been proposed to enhance power for detecting genome-wide
gene-environment interaction (GxE) effects for individual common variants (Thomas, 2010; Hsu and oth-
ers, 2012 and references therein). However, these methods do not provide adequate power for GxE testing
on rare variants. In some instances, because few individuals carry variant alleles and have environmental
exposure, the asymptotic-based inference becomes unreliable. To improve both type I error and power,
variants are aggregated by a priori defined sets (e.g., genes and functional classes). Instead of testing
GxE variant-by-variant, the GxE testing will be performed set-by-set. The idea is then to combine several
signals in the set that would otherwise be difficult to detect individually.

Limited work has been done on testing for the interaction between a set of rare genetic variants and an
environmental factor. A natural approach is to test for the overall association of the set with the outcome
by standard P-degrees of freedom likelihood ratio or score tests. However, when the genetic variants are
rare, such tests may not keep the correct type I error and the power is also limited. To improve type I
error and power, Lin and others (2013) used the kernel machine regression framework by imposing the
GxE effects to follow an arbitrary distribution with mean 0 and variance τ 2 and test H0 : τ 2 = 0 for
heterogeneity of GxE effects with an extension that allows for correlated GxE effects (Lin and others,
2016). Tzeng and others (2011) developed a set-based GxE test for continuous traits based on similarity
matrices, similar to the variance component test as in Lin and others (2013). We also proposed a set-based
GxE test where the variant alleles are summed over the set of genetic variants with weight informed by the
screening statistics (burden) (Jiao and others, 2013), and recently extended it to allow for heterogeneous
GxE effects (Jiao and others, 2015). However, our works treated genetic main effects as fixed, and the
type I error may be inflated when the variants are rare. Generally speaking, the variance component-based
test is powerful when both positive and negative directions of GxE effects exist, whereas the burden test
is powerful when the variants in the set have the same direction of GxE. Since the pattern of the GxE
effects for a set of variants is typically complex and unknown, it is important to devise a unified approach
that combines test statistics that capture a particular feature of GxE effects, where a feature can be a priori
defined variant functions or some generic distributional assumption of GxE effects. By this the combined
test statistic may be powerful under a wide range of scenarios for GxE.

In this article we introduce a unified hierarchical regression framework for modeling GxE effects that
account for a priori information about variant characteristics such as functional features and data-driven
screening statistics as fixed effects, and heterogeneous GxE effects as random effects. We show that all
previously proposed tests can be derived under this framework by constraining certain parameters to 0.
Under this regression framework we develop a novel and rigorous approach to deriving independent score
statistics for fixed effects and the variance component. The approach is broadly applicable to any mixed
effects model where the hypothesis of interest is to test both the fixed and random effects equal to 0.
Our proposed score statistics have two advantages: (1) both score statistics have trackable asymptotic
distributions, and (2) the score statistics corresponding to the fixed effects and the random effects are
asymptotically independent. The independence of score statistics is very desirable, because it not only
allows study of the properties of various combinations of independent statistics with trackable asymptotic
distributions but also facilitates the search of optimum within a particular class of combinations of the
two score statistics. Towards this end we proposed two data-adaptive approaches to optimally combine
two independent score statistics. Our framework and tests provide, nearly uniformly, more powerful
approaches to identifying GxE of rare variants.

The rest of the article is organized as follows. In Section 2 we describe the hierarchical model for GxE
interaction effects, derive the independent score statistics for fixed and random effects, respectively. The
two data-driven combination approaches for combining the score statistics are also presented. The results
from an extensive simulation study are presented in Section 3. The proposed methods are applied to a
large exome-wide study of GxE analysis with NSAIDs use in colorectal cancer (CRC) in Section 4, and
finally, the article is concluded with some remarks.
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2. METHODS

2.1. Notation and model

Consider an outcome D, which can be binary or continuous. Let G = (G1, . . . , GP) be a set of variants
where Gp, p = 1, . . . , P, is a function of the pth variant genotype (e.g., the number of copies of the variant
allele), and E an environmental factor. The model for GxE is

g{E(D|G, E)} = β0 + βEE +
P∑

p=1

βG
p Gp +

P∑
p=1

βGE
p GpE, (2.1)

where g(·) is a link function, which depends on the type of outcome. For binary outcome, a commonly
used link function is logit. For continuous outcome, linear or log transformation may be used. In this
model, {β0, βE , βG

p , βGE
p : p = 1, . . . P} are the intercept, the main effects of E and G, and the interaction

effects, respectively. The main parameters of interest in this article are the interaction effects between the
P genetic variants and E, {βGE

p : p = 1, . . . P}.
A direct approach for drawing statistical inference on βGE’s is based on the likelihood ratio test treating

βGE’s as fixed effects. However, this approach may yield an inflated type I error and lose power when
the variants are rare and the number of the variants P is large. To overcome these issues, we propose a
hierarchical model to reduce the dimension of parameters while leveraging information across P variants.
Specifically, let Zp denote R known attributes associated with the pth variant. These attributes can be
functional annotations such as whether a variant is missense, nonsense, or other characteristics. It can
be data-driven weights such as those based on minor allele frequency or screening statistics of marginal
association of G with disease risk and correlation between G and E that were shown to be informative for
GxE yet independent of GxE interaction tests (Hsu and others, 2012). Under the hierarchical modeling,
we model the genetic main and interaction effects as a function of these variant attributes as following

βG
p = ZT

p γ G + δG
p , βGE

p = ZT
p γ GE + δGE

p , (2.2)

where γ G and γ GE are R × 1 row vectors of regression coefficients associated with the R attributes for
the main and interaction effects, respectively, and δG

p and δGE
p are the respective variant-specific main and

interaction effects that cannot be explained by Zp. To further leverage the information across variants
allowing for robust statistical inference for rare variants and improving power, we assume these residual
variant-specific effects, δG

p and δGE
p , follow arbitrary distributions with mean 0 and variance υ2 and τ 2,

respectively. Plugging model (2.2) into model (2.1), we obtain

g{E(D|G, E)} = β0 + βEE + (γ G)T (

P∑
p=1

ZpGp) +
P∑

p=1

δG
p Gp

+ (γ GE)T (

P∑
p=1

ZpGp)E +
P∑

p=1

δGE
p (Gp · E). (2.3)

It becomes clear that γ GE characterizes the interaction effects of R genetic risk (or burden) scores weighted
by one of the variant attributes, whereas τ 2 is the variance of the residual GxE effects. For example, suppose
Zp = 1, a scalar, for all variants, then

∑P
p=1 ZpGp is the number of variant alleles that a subject carries.

For another example, let Zp = 1 if the pth variant is missense and 0 otherwise, for p = 1, . . . , P. Then∑P
p=1 ZpGp is the total number of missense variant alleles that a subject carries, and γ GE characterizes the

“dosage" interaction effect of (missense) variant alleles with E. To guard against the possibility that such
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“dosage" interaction effect may not fully account for the interaction effect, the remaining variant-specific
interaction effects are captured by δGE

p , which are assumed to follow an arbitrary distribution with mean
0 and variance τ 2. Testing the interaction effect between E and a set of variants G therefore amounts to
test H0 : γ GE = 0 and τ 2 = 0, and the number of tested parameters is R + 1, which is typically smaller
than if we were to test P variant GxE.

Model (2.3) encompasses scenarios that give rise to previously proposed tests. If we set γ GE = 0,
testing GxE is to test H0 : τ 2 = 0, which is the variance component test proposed by Lin and others
(2013). If Zp is a screening statistics-based weight with βG as fixed effects, the score statistic for GxE
derived under this model is same as our early works on screening informed GxE tests assuming τ 2 = 0
(Jiao and others, 2013) and τ 2 �= 0 (Jiao and others, 2015). Further if Zp is 1 for all variants, then our
model is same as the random effects model in Lin and others (2016), where the interaction effects have
an exchangeable correlation.

Model (2.3) provides a basis for a general framework for modeling the interaction effect of P variants
with E. It can straightforwardly include adjustment of other covariates, for example, principal components
to account for population substructure. It can be further generalized to allow for non-linear genetic effects
by replacing

∑P
p=1 δG

p Gp and
∑P

p=1 δGE
p GpE by hG(G) and hG(G)E, respectively, where hG(·) ∈ HKG is an

unknown function belonging to the functional space HKG implicitly specified by some positive definite
kernel function KG(·, ·) (Cristianini and Shawe-Taylor, 2000). Common examples of kernel functions
include the polynomial kernel, identity-by-state, and the Gaussian Kernel (Schaid, 2010). Without loss
of generality, we focus on the generalized linear regression model (2.3) for the development of proposed
GxE test statistics.

2.2. Proposed score statistics

Computation remains one of the foremost considerations in large-scale genome-wide discovery because of
the large sample size and the large number of variants being tested. It is important that test statistics are quick
to compute, and their p values can be obtained based on asymptotic distributions. Maximum likelihood or
Bayesian approaches based on the mixed effects model (2.2) involve P-dimensional integration, for which
the required computation can be intensive for genome-wide discovery. We therefore propose to use score
statistics to test GxE interaction effects because they only depend on the null and are easy to compute
with trackable asymptotic distributions.

Consider the data consist of N subjects such that D = (D1, . . . , DN )T , E = (E1, . . . , EN )T , and G =
[G1, . . . , GN ]T . These subjects can be sampled randomly from the population or under a retrospective
sampling scheme such that cases (diseased) and controls (non-diseased) are randomly selected from their
respective subpopulations. We establish the asymptotic distributions under both scenarios and the proof
are provided in Section A in the supplementary material available at Biostatistics online. We denote
B = (B1, . . . , BN )T to be the (weighted) burden scores, where Bi is a R × 1 vector of

∑P
p=1 ZpGip, for

i = 1, . . . , N . Further, we denote the score statistics for θ by Uθ .
The usual approach for deriving score statistics is to take the partial derivatives of the log-likelihood

function with respect to the parameters of interest under the null hypothesis. Here, we propose a novel
modification to the derivation of score statistics. Specifically, we derive the score statistic Uγ GE for γ GE

corresponding to the burden scores under H0 : γ GE = 0 and τ 2 = 0 as usual. However, for the score
statistic Uτ2 , we propose to derive it under τ 2 = 0 without constraining γ GE = 0, instead of H0 : γ GE = 0
and τ 2 = 0. This seemingly simple modification to Uτ2 has an important property: the resulting score
Uτ2 is independent of Uγ GE asymptotically. In fact, it is asymptotically orthogonal to the projection of the
score statistics Uτ2,0 for τ 2 onto the space of Uγ GE under H0 : γ GE = 0 and τ 2 = 0.

To explicitly express the two score statistics, additional notation is introduced as follows. Define
μ̃ = Ẽ(D|E, G) to be the fitted value of D under H0, and μ̂ = Ê(D|E, G) to be the fitted value of D under

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw034/-/DC1
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τ 2 = 0 without constraining γ GE = 0. Then the score statistics for γ GE and τ 2 can be written as

Uγ GE = (D − μ̃)T (B · E)V−1(B · E)T (D − μ̃), (2.4)

Uτ2 = (D − μ̂)T (G · E)(G · E)T (D − μ̂), (2.5)

where B · E = (B1E1, . . . , BN EN )T , G · E = [G1E1 . . . , GN EN ]T , and V is a covariance matrix of (B ·
E)T (D − μ̃) and is equal to (B · E)T �−1(IN − H1)�(IN − H1)�

−1(B · E), where diag(�−1) = μ̃(1N − μ̃)

with 1N is a N × 1 vector of 1, IN is an N × N identity matrix, and H1 = �−1/2X1(X T
1 �−1X1)

−1X T
1 �−1/2

with X1 = [1N E B G ]. We term the score statistics for testing both the fixed and random interaction
effects as Mixed effects Score Tests for interaction (MiSTi).

As the fitted value μ̃ and μ̂ involve the random main effects for the variants, maximum posterior
estimate (MPE) (also known as best linear unbiased prediction, BLUP, in the context of linear mixed
effects model) can be used; however, it requires calculation of the posterior distribution of the random
effects given observed data and estimation of variance υ2, for which the computation can be intensive
especially under the generalized linear model because P-dimensional integration is required and there is
no closed form for the integration. Instead, we propose to use ridge regression estimators (Hastie and
others, 2005) for estimating the random effects. Note that for linear models, the ridge regression estimator
is equivalent to the BLUP for a given penalty (de Vlaming and Groenen, 2015). Furthermore, the ridge
regression estimator is

√
N -consistent if the penalty grows at the rate of o(

√
N ) (Knight and Fu, 2000).

Following these results, it is easy to show that as N → ∞, Uγ GE follows a χ 2
R distribution with R degrees

of freedom and Uτ2 follows a weighted sum of P i.i.d. χ 2
1 distributions with weights being eigen-values

of (IN − H2)
T �−1/2(G · E)(G · E)T �−1/2(IN − H2), where H2 = �−1/2X2(X T

2 �−1X2)
−1X T

2 �−1/2 with
X2 = [1N E B G (B · E)], the design matrix of proposed logistic model (2.3) under τ 2 = 0.

2.3. Combinations of score statistics

The asymptotic independence of Uγ GE and Uτ2 offers many possibilities for combining these two statistics.
For example, since each score statistic has an asymptotic distribution, we can obtain the p value based on
each score statistic and combine these p values using for example, the commonly used Fisher’s or Tippett’s
combinations. However, unlike in the conventional meta-analysis where the combined components are
from different studies but test the same parameter, Uγ GE and Uτ2 do not test the same parameters. The
score statistic Uγ GE tests the association of weighted burden scores when τ 2 = 0, whereas the score
statistic Uτ2 tests τ 2 = 0. Hence, a usual weighting for combining test statistics in the meta-analysis,
which often involves sample sizes of individual studies, does not apply here. In the following we propose
two data-driven combination approaches: grid-search optimal linear combination and adaptive weighted
linear combination.

2.3.1. Gird-search-based optimal linear combination The perhaps most straightforward approach for
combining the two score statistics is to take the weighted sum of Uγ GE and Uτ2 as Tρ = ρUγ GE +(1−ρ)Uτ2 ,
where ρ ∈ [0, 1] controls the relative contribution of the burden score versus the variance components. A
natural approach to choosing the optimal value of ρ is by minimizing the p values as ρ∗ = arg min

ρ∈[0,1]
pρ ,

where pρ is the p value based on Tρ for a given ρ. We call the corresponding test statistic, To = Tρ∗ ,
oMiSTi with “o" referring to optimal. Now let pobs

ρ∗ be the observed minimal p value obtained from data
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we can show that under the null

Pr
(
pρ∗ ≤ pobs

ρ∗
) = 1 − Pr

(
pρ ≥ pobs

ρ∗ , ∀ρ ∈ [0, 1])
= 1 − E

{
I
(

Uγ GE < qU
γ GE (1 − pobs

ρ∗ )
)

Pr
(

Uτ2 < min
ρ �=1

1

1 − ρ

[
qTρ

(
1 − pobs

ρ∗
) − ρUγ GE

] | Uγ GE

) }
,

(2.6)

where qU (p) stands for the 100p%-th quantile of the random variable U , and the expectation is with respect
to Uγ GE . We refer to Section B in the supplemental material available at Biostatistics online for a detailed
derivation of (2.6). It is clear that the independence between Uγ GE and Uτ2 facilitates an easy evaluation
of the above conditional probability of Uτ2 given Uγ GE . We employ a numerical method proposed by
Liu and others (2009) to approximate the distribution of Uτ2 that is a weighted sum of i.i.d. χ 2

1 random
variables by a skewed χ 2 distribution with skewness and degrees of freedom obtained by matching the
fourth moment while minimizing the third moment between the two distributions. This numerical method
has been applied in SKAT-related methods and shown to perform well in the rare variants association
analysis with finite sample sizes (Lee and others, 2012). The expectation can be obtained by numerical
integration on Uγ GE , which is very fast for univariate integrals.

In practice, evaluating the conditional probability in (2.6) for all ρ ∈ [0, 1] can be computationally
intensive. To ease this, we consider a grid-search method to evaluate the conditional probability on a set
of pre-specified grid points {0 = ρ0, ρ1, . . . , ρd = 1}, and the search of optimal ρ is restricted on this
given set of grid points. Based on our numerical experiences, a set of 20 grid points usually achieves good
performance at a reasonable computational cost.

2.3.2. Adaptive weighted linear combination Since each of the score statistics Uγ GE and Uτ2 has an
asymptotic distribution, it is natural to first calculate the p value based on each score statistic and then
combine the two independent p values. Fisher’s combination (Fisher and others, 1970) is a very popular
approach for combining independent p values. This can be represented by Zγ GE + Zτ2 , where Zγ GE =
−2 log(pγ GE ) and Zτ2 = −2 log(pτ2). It is expected that Fisher’s combination is very powerful when
both the burden and variance components are non-null, but could potentially lose power when only one is
non-null. To allow for flexibility of the combined test to accommodate the evidence of association mainly
from either the burden or variance component, we propose an adaptive weighted linear combination with
weights determined by Zγ GE and Zτ2 , respectively. Specifically, the adaptive weighted linear combination
can be represented as

Ta = Z2
γ + Z2

τ2 , (2.7)

where the subscript a refers to “adaptive". We term this combination as aMiSTi. Note that Ta is equivalent
to the square of ργ Zγ + ρτ Zτ2 , where ργ = Zγ√

Z2
γ +Z2

τ2
and ρτ = Z

τ2√
Z2
γ +Z2

τ2
. Interestingly, the weights ργ and

ρτ are equivalent to the sine and cosine functions of the angle between the direction of the observed 2D
test statistics {(Zγ GE , Zτ2)} ∈ R

2 and the x-axis. We note that a similar idea of adaptive weighting has been
proposed in set-based association testing for main effects (see e.g., Cai and others, 2012). Compared to
the grid-search weighted combination, the adaptive weighting has the advantage that it does not require a
prior decision on the number and placement of grid points. The nice property of Zγ ∼ χ 2

2 and Zτ2 ∼ χ 2
2 ,

and the independence between the two components facilitate an easy way to calculate the p value for Ta

through numerical integration at low computational cost.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw034/-/DC1
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3. SIMULATION

We conducted an extensive simulation study to evaluate the performance of our proposed combinations
To (oMiSTi) and Ta (aMiSTi), Fisher’s combination Tf (fMiSTi) and an existing approach, iSKAT (Lin
and others, 2016). To help understand the performance of various combination methods, we also included
tests based on the burden component only (Uγ GE ) and the variance component only (Uτ2 ). We evaluated
the performance of all tests for both continuous and binary outcomes. Here we are focused on results for
binary outcome because in our real data application the phenotype is binary and it is also generally more
challenging than continuous outcome. The results for continuous outcome are provided in Section D,
supplementary materials available at Biostatistics online. Briefly, all tests maintain correct type I error and
MiSTi’s are generally more powerful than or as powerful as iSKAT. When the signals mainly come from
either the burden or the variance component, oMiSTi and aMiSTi are slightly more powerful than fMiSTi.
On the other hand, when the signals come from both components, fMiSTi is slightly more powerful,
probably due to the cost of estimating the weight from the data for oMiSTi and aMiSTi.

Specifically, we generated the binary outcome according to logistic regression model

logit{Pr(D = 1 | G, E)} = −3 + 0.5E +
P∑

p=1

βG
p Gp +

P∑
p=1

βGE
p GpE. (3.1)

We generated E from Normal(1, 0.252) independently from G. We generated G under two different
scenarios. The first scenario was to generate P = 10 or 25 independent SNPs with minor allele frequencies
(MAF) equally spaced from 0.005 to 0.05. The purpose of this simulation was to study how all methods
perform under various alternatives without being confounded by complicated genetic structures. To save
space, the results are presented in Section D.3, supplementary material available at Biostatistics online.
Here we only provide a brief summary. All tests maintain correct type I error across all settings considered
under this scenario. The various combinations of MiSTi’s have comparable power, and they all have greater
power than iSKAT. The pattern and strength of the genetic main effects do not affect the general pattern
of the powers across all methods.

The second scenario is to mimic a more realistic genetic structure by generating G based sequencing
data from the Dallas Heart Study (DHS, Victor and others, 2004). Specifically, haplotypes were inferred
based on the sequencing data on a candidate gene ANGPTL5 for 3409 subjects and randomly paired to
achieve a desirable sample size. There are a total 100 genetic variants in ANGPTL5. Of these, 97 variants
have MAF < 3%, and 27 are functional variants. Unless otherwise stated, a total of 10 000 simulated data
sets were generated each with 5000 cases and 5000 controls to mimic our real data example. The type I
error and power were evaluated at three significance levels α = 0.005, 0.01, and 0.05.
Type I error We considered two settings for the genetic main effects: (1) Null, βG

p = 0, p = 1, . . . , P,
(2) Sparse, 20% of βG

p ∼ N (0, log(5)/2) and 0 otherwise. The set of variants is defined in two different
ways: 27 functional variants only and all 100 variants in the gene. When all 100 variants are tested for
GxE, we also assessed the type I error with and without including a function indicator, which is 1 if the
variant is functional and 0 otherwise. Ridge regression was used in fitting the null models and the penalty
was selected by generalized cross validation following the suggestion in Lin and others (2013). Overall,
the type I error of all MiSTi combinations are well within the 95% confidence intervals of the true type I
error (Table 1). iSKAT also has correct type I error; however, the type I error is somewhat inflated when
P = 100. We also examined the type I error of the proposed methods at the exome-wide significance
level. A large scale simulation with 1 000 000 datasets was conducted. Figure 1 shows the estimated type
I error of MiSTi’s at various significance levels ranging from 0.05 to the exome-wide significance level
5 × 10−6. All MiSTi’s appear to keep a correct type I error all the way to the exome-wide significance
level.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw034/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw034/-/DC1
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Table 1.Type I error of four combinations oMiSTi, aMiSTi, fMiSTi, and
iSKAT as well as tests for burden (Tb) and variance component (Tr)
at significance level α = 0.05, 0.01, and 0.005 for binary outcome. A
total of P = 100 variants are in the gene-set, and 27 are functional. For
P = 100, the type I error for MiSTi’s with and without incorporating
the functional indicator, denoted by FA and No FA, respectively, are
also shown.

Null genetic main effects Sparse genetic main effects

P = 100 P = 100

α P = 27 No FA FA P = 27 No FA FA

0.05

oMiSTi 0.0519 0.0519 0.0499 0.0515 0.0483 0.0484

aMiSTi 0.0522 0.0516 0.0487 0.0512 0.0490 0.0476

fMiSTi 0.0554 0.0529 0.0505 0.0517 0.0512 0.0498

iSKAT 0.0568 0.0555 — 0.0548 0.0589 —

Uγ GE 0.0496 0.0519 0.0498 0.0518 0.0521 0.0510

Uτ2 0.0546 0.0519 0.0480 0.0530 0.0469 0.0467

0.01

oMiSTi 0.0107 0.0120 0.0121 0.0107 0.0110 0.0108

aMiSTi 0.0107 0.0116 0.0118 0.0105 0.0109 0.0104

fMiSTi 0.0116 0.0116 0.0115 0.0104 0.0107 0.0093

iSKAT 0.0125 0.0134 — 0.0118 0.0143 —

Uγ GE 0.0093 0.0121 0.0117 0.0091 0.0111 0.0104

Uτ2 0.0121 0.0107 0.0103 0.0113 0.0100 0.0095

0.005

oMiSTi 0.0051 0.0060 0.0065 0.0060 0.0053 0.005

aMiSTi 0.0053 0.0057 0.0066 0.0062 0.0052 0.0048

fMiSTi 0.0054 0.0059 0.0062 0.0055 0.0054 0.0045

iSKAT 0.0065 0.0079 — 0.0070 0.0084 —

Uγ GE 0.0046 0.0066 0.0064 0.0044 0.0056 0.0055

Uτ2 0.0060 0.0060 0.0058 0.0063 0.0054 0.0051

Power To compare power among different tests, we randomly selected two functional variants to have
GxE. We considered two scenarios, the GxE effects of the two variants are in same direction (GxE same
direction) and opposite direction (GxE opposite direction). The results of power comparison are shown
in Table 2. All MiSTi tests are much more powerful than iSKAT with MiSTis having comparable power
with each other, and oMiSTi and aMiSTi being more powerful than fMiSTi when the signal is from
only the variance component as in the GxE opposite direction model. When all 100 variants are included
in the set, all tests lose power; however, iSKAT still has lower power than MiSTi tests in most of the
cases. Furthermore, incorporating an indicator for whether or not a variant is functional can improve
power for MiSTi tests considerably when the functional indicator is informative, as in the case of the
GxE same direction model. Importantly, we note that the power of the burden component is much greater
after incorporating the functional indicator, suggesting that the interaction signals are mainly from the
functional variants. This demonstrates that using the mixed effects model leveraging functional annotation,
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Fig. 1. Type I error rate of three different combination approaches for DHS genetic structure on the 27 functional
variants under genetic main effects as setting 2n. Sample size is 10 000 and the number of simulation runs is 10 00 000.

if known and informative, cannot only improve power for detecting the overall association, but also help
identify sources of the signals that may inform the follow-up studies.

4. APPLICATION TO GENOME-WIDE EXOME CHIP GXE ANALYSIS

CRC is a commonly diagnosed cancer, and has a sizable genetic component and well-established environ-
mental risk factors. Identifying GxE is key to understand the interplay between genes and environment and
their role in the development of CRC. We applied our proposed MiSTi’s and iSKAT to the case–control
data from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) (Peters and others,
2013). In particular, this data set includes exome-wide genotyping on 17 864 white study participants
(9135 CRC cases and 8729 controls) from 11 studies. The description of these studies is provided in
supplementary Table S6 available at Biostatistics online. To illustrate, we assessed association of exome-
wide interaction with nonsteroidal anti-inflammatory drugs (NSAIDs) use (nonuser, regular user) with
CRC risk. A logistic regression model was used, adjusting for study, age, sex, and three major principal
components to account for population substructure. NSAIDS use is associated with decreased risk of CRC
with odds ratio (OR) 0.71 (95% confidence interval: 0.66–0.76).

We aggregated rare variants (MAF < 0.05) by gene and assessed the interaction effect of each gene
with NSAIDs use on CRC risk. Genes with two or fewer rare variants were excluded, resulting a total of
7600 genes. The number of variants ranges from 3 to 357, with an average of 4.8. Since the colorectal
tissue specific functional annotation database is still under development in GECCO, detailed annotation
is not yet available for analysis. To illustrate, we simply set Z = 1 for all variants, creating a burden score
(B) that is the sum of variant alleles in a gene. The MiSTi’s test both the BxE and the variance component
for GxE equal to 0.

Two genes are identified at the exome-wide significance level 6.6 × 10−6 = 0.05/7600: PTCHD3
at 10p12.1 and TELO2 at 16p13.3 (Table 3). The interaction of PTCHD3xNSAIDs is only detected by
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Table 2. Power of various methods without and with functional
annotations: To, Ta, Tf , Ts, Tb, and Tr for dichotomous outcomes
for 27 functional variants (FV Only) and 100 variants (All) from
the DHS without or with functional annotations (No FA and FA,
respectively) under scenarios with no main effects and two set-
tings of interaction effects on two variants with same and opposite
directions respectively (GxE Same Direction and GxE Opposite
Direction). The significance levels α are 0.05, 0.01, and 0.005,
respectively

GxE same direction GxE opposite direction

P = 100 P = 100

α P = 27 No FA FA P = 27 No FA FA

0.05

oMiSTi 0.798 0.151 0.370 0.726 0.063 0.077
aMiSTi 0.813 0.159 0.365 0.727 0.069 0.072
fMiSTi 0.842 0.160 0.396 0.703 0.079 0.078
iSKAT 0.554 0.086 — 0.633 0.064 —
Uγ GE 0.439 0.066 0.373 0.062 0.053 0.056
Uτ2 0.745 0.193 0.133 0.810 0.083 0.093

0.01

oMiSTi 0.576 0.054 0.181 0.480 0.010 0.016
aMiSTi 0.590 0.053 0.172 0.484 0.011 0.017
fMiSTi 0.647 0.056 0.186 0.454 0.013 0.017
iSKAT 0.241 0.022 — 0.316 0.014 —
Uγ GE 0.230 0.015 0.201 0.013 0.013 0.011
Uτ2 0.498 0.068 0.024 0.581 0.013 0.016

0.005

oMiSTi 0.486 0.031 0.124 0.394 0.007 0.009
aMiSTi 0.490 0.032 0.122 0.397 0.007 0.009
fMiSTi 0.542 0.031 0.131 0.354 0.006 0.009
iSKAT 0.166 0.011 — 0.222 0.007 —
Uγ GE 0.164 0.007 0.146 0.006 0.005 0.006
Uτ2 0.408 0.042 0.013 0.480 0.006 0.010

Table 3. P-values of MiSTi’s, iSKAT, burden Tb and variance component Tr for the inter-
action of PTCHD3 and TELO2 with NSAIDs use from the analysis of GECCO exome chip
data

Gene oMiSTi aMiSTi fMiSTi iSKAT Uγ GE Uτ2

PTCHD3 1.57 × 10−5 1.73 × 10−5 5.90 × 10−6 1.89 × 10−2 2.79 × 10−2 1.34 × 10−5

TELO2 1.79 × 10−5 5.19 × 10−5 4.92 × 10−6 3.15 × 10−6 2.09 × 10−4 1.48 × 10−3

fMiSTi, and the p values of oMiSTi and aMiSTi are close to the threshold (p = 1.57×10−5 and 1.73×10−5,
respectively). However, the p value for iSKAT is 0.0189, which is highly non-significant. Gene TELO2 is
identified by both fMiSTi and iSKAT at the exome-wide significance level, though the p values of oMiSTi
and aMiSTi are close to the threshold. No other genes have reached exome-wide significance by any test.
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Gene PTCHD3 has been previously reported by Jiao and others (2013). There are eight rare variants
in PTCHD3 with MAF ranging from 2 × 10−4 to 4.38 × 10−2 (see supplementary Table S7 available
at Biostatistics online). A ridge regression model on the eight variants in PTCHD3 and MSAIDs with
interactions shows that the NSAIDs use has no protective effect if a subject carries any minor allele
in PTCHD3 (see supplementary Table S8 available at Biostatistics online). For TELO2, there are seven
rare variants with MAF ranging from 2.5 × 10−4 to 1.25 × 10−2. A ridge regression with GxE shows
that NSAIDs use has a stronger protective effect if the subject does not carry any minor allele in any
of the seven variants (OR = 0.69 = exp(−0.366)) than subjects who carry at least one minor allele
(OR = 0.91 = exp(−0.366 + 0.275)). For both genes, the interaction appears to be driven by a few
variants as shown in single variant GxE test, and there is substantial variability on the individual variant
GxE effects, where both positive and negative effects exist. The variance component test would be more
powerful than the burden test under this scenario. However, our approach suggests that despite highly
heterogeneous GxE effects, there appears to be a concerted GxE as shown in the burden GxE. A search
of literature suggests that TELO2 encodes a protein that is a regulator of the DNA damage response and
associated with telomere maintenance (Takai and others, 2007), which could potentially be modified by
NSAIDs use. Though these findings are very preliminary and need to be replicated in an independent data
set, it is clear that our proposed tests are able to detect as many, if not more, genes than the existing test.

5. DISCUSSION

In this article, we proposed a mixed effects model for assessing the association of GxE for a set of genetic
variants and a novel approach for constructing score test statistics for testing both the fixed effect and
the variance component equal to 0. Our novel construction ensures that the score statistics corresponding
to fixed and random effects are asymptotically independent, which enables one to combine these two
score statistics efficiently with p values that can be easily computed. We also proposed two data-adaptive
combinations: linear combinations based on grid-search and adaptive weighted. Extensive simulation
shows that these two and Fisher’s combination all have comparable power and they are more powerful
than existing tests under a wide range of scenarios. This is particularly appealing for genome-wide search
of GxE, as all possible interaction models could exist.

Model (2.2) has fixed and random effects for both the main genetic effects and GxE. As the focus here
is on testing GxE, there is no need to model the main effects of G as in (2.2). Instead we can directly
estimate βG by ridge regression. This is because tests for GxE are valid, as long as the main effects of G and
E are adequately modeled. In fact, we show that the fitted values from the two ridge regression modeling
on the genetic main effects are asymptotically equivalent if the penalty term is o(

√
N ) (see Section C

supplementary material available at Biostatistics online). However, if the interest is in GxE effects, it is
important that the main effects and GxE have the same models to ensure the hierarchical structure and
interpretable estimates.

Sample size determination for set-based GxE is important in the study design phase. The power of a set-
based GxE test depends on the size of the set and the number of causal variants with GxE in the set, as well
as the effect sizes and MAFs of the causal variants, and the underlying linkage disequilibrium structure
among the variants. One needs to balance out between not missing causal variants that would require a
larger set and not including too many neutral variants that would require a smaller set. We note that when
a set includes many neutral variants, if the functional annotation is somewhat informative, our proposed
mixed effects score tests can improve power significantly. A closed form of power calculation would be
desirable for determining the sample size required for particular scenarios; however, it is difficult to derive
such a formula because the power depends on many factors. It would be more realistic to calculate power
based on simulations for any particular scenarios that investigators deem to be reasonable. As our score
statistics have asymptotic distributions, it is computationally feasible to conduct such a simulation-based

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxw034/-/DC1
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study to assess the power with given sample size. As a back-of-the-envelope calculation, we may calculate
power by a “composite" single variant GxE, where the MAF of the composite variant is the sum of the
MAFs of rare variants in the set and the effect size β for the composite variant would be such that the
explained variation, that is, β2MAF(1 − MAF) is equivalent to the total sum of variation explained by
the hypothesized causal variants. By doing this transformation, we can then easily calculate the power
for single variant GxE using the popular power calculator Quanto (http://biostats.usc.edu/Quanto.html).
For example, under the first scenario in Table 2, the back-of-the-envelop power calculations give the
power estimates 0.863, 0.689, and 0.603, respectively, when α = 0.05, 0.01, and 0.005, which are largely
consistent with the power as shown for MiSTi’s.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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