
Living Rev. Relativity, 2, (1999), 1
http://www.livingreviews.org/lrr-1999-1

L I V I N G REVIEWS

in relativity

Speeds of Propagation in Classical and Relativistic Extended

Thermodynamics

Ingo Müller
Technical University Berlin

Thermodynamik
10623 Berlin

email: ingo.mueller@alumni.tu-berlin.de
http://www.thermodynamik.tu-berlin.de

Living Reviews in Relativity
ISSN 1433-8351

Accepted on 1 March 1999
Published on 14 June 1999

Abstract

The Navier–Stokes–Fourier theory of viscous, heat-conducting fluids provides parabolic
equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the
theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on
speeds smaller than c. The attempts at a remedy have proved heuristically important for a
new systematic type of thermodynamics: Extended thermodynamics. That new theory has
symmetric hyperbolic field equations and thus it provides finite pulse speeds.

Extended thermodynamics is a whole hierarchy of theories with an increasing number of
fields when gradients and rates of thermodynamic processes become steeper and faster. The
first stage in this hierarchy is the 14-field theory which may already be a useful tool for the
relativist in many applications. The 14 fields – and further fields – are conveniently chosen
from the moments of the kinetic theory of gases.

The hierarchy is complete only when the number of fields tends to infinity. In that case
the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse
speed of relativistic extended thermodynamics tends to c, the speed of light.

In extended thermodynamics symmetric hyperbolicity – and finite speeds – are implied by
the concavity of the entropy density. This is still true in relativistic thermodynamics for a
privileged entropy density which is the entropy density of the rest frame for non-degenerate
gases.
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1 Introduction

Relativistic thermodynamics is needed, because in relativity the mass of a body depends on how
hot it is and the temperature is not necessarily homogeneous in equilibrium. But unlike classical
thermodynamics the relativistic theory cannot be constructed on the intuitive notions of heat and
work, because our intuition does not work well with relativistic effects. Therefore we must rely
upon logic, or what would seem logical: the cautious and careful extrapolation of the tenets of
non-relativistic thermodynamics.

A pioneer of this strategy was Carl Eckart [14, 15, 16] who – as early as 1940 – established the
thermodynamics of irreversible processes, a theory now universally known by the acronym TIP.
The third of Eckart’s three papers addresses the relativistic theory of a fluid. Eckart’s theory is
an important step away from equilibria toward non-equilibrium processes. It provides the Navier–
Stokes equations for the deviatoric stress and a generalization of Fourier’s law of heat conduction.
The latter permits a heat flux to be generated by an acceleration, or a temperature gradient to be
equilibrated by a gravitational field.

But Eckart’s theories – the relativistic and non-relativistic ones – have one draw-back: They
lead to parabolic equations for the temperature and velocity and thus predict infinite pulse speeds.
Naturally relativists, who know that no speed can exceed c, are particularly disturbed by this
result and they like to call it a paradox.

Cattaneo [7] proposed a solution of the paradox as far as it concerns heat conduction1. He
reasoned that under rapid changes of temperature the heat flux is somewhat influenced by the
history of the temperature gradient and he was thus able to produce a hyperbolic equation for
the temperature – actually a telegraph equation. Müller [35, 37] incorporated this idea into TIP
and came up with a fully hyperbolic system for temperature and velocity. He calculated the pulse
speeds and found them to be of the order of magnitude of the speed of sound, far removed from
c. And indeed, neither Cattaneo’s nor Müller’s arguments have anything to do with relativity,
although Müller [35] also formulated his theory relativistically. The theory became known as
Extended Thermodynamics, because the canonical list of fields – density, velocity, temperature –
is extended in this theory to include stress and heat flux, 14 fields altogether.

The pulse speed problem may not be the most important question in thermodynamics but it
is a question that can be answered, and has to be answered, and so there was a series of papers
on the problem all using extended thermodynamics of 14 fields. Israel [21] – who reinvented
extended thermodynamics in 1976 – and Kranys [24] and Stewart [46], and Boillat [2], and Seccia
& Strumia [44] all calculate the pulse speed for classical as well as for relativistic gases, degenerate
and non-degenerate, for Bosons and Fermions, and for the ultra-relativistic case. Actually in some
of these gases the pulse speed reaches the order of magnitude of c but it never exceeds it.

So far, so good! But now consider this: The 14 fields mentioned above are the first moments in
the kinetic theory of gases and the kinetic theory knows many more moments. In fact, in the kinetic
theory we may define infinitely many moments of an increasing tensorial rank. And so Müller and
his co-workers, particularly Kremer [25, 26], Weiss [49, 51, 50] and Struchtrup [47], came to realize
that the original extended thermodynamics was not extended far enough. Guided by the kinetic
theory of gases they formulated many-moment theories. These theories have proved their validity
and relevance for quickly changing processes and processes with steep gradients, in particular for
light scattering, sound dispersion, shock wave structure and radiation thermodynamics. And each

1It is true that Maxwell [33, 34] had an equation of transfer for the heat flux with a rate term just as postulated
by Cattaneo 80 years later; such an equation arises naturally in the kinetic theory of gases. However, on both
occasions Maxwell summarily dismisses the term as being small and uninteresting. He was interested in deriving the
proportionality of heat flux and temperature gradient, Fourier’s law. It is uncertain whether Maxwell was aware of
the paradox. But, if he was, he did not care about it, at least not in the papers cited. It is conceivable that Maxwell,
a prolific writer of letters as well as of papers, may have mentioned the paradox elsewhere. If so, the author of this
review should like to learn about it.
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6 Ingo Müller

theory predicts a new pulse speed. Weiss [49], working with the non-relativistic kinetic theory of
gases, demonstrated that the pulse speed increases with an increasing number of moments.

Boillat & Ruggeri [4] proved this observation and – very recently – Boillat & Ruggeri [5]
also proved that the pulse speed tends to infinity in the non-relativistic kinetic theory as the
number of moments becomes infinite. As yet unpublished is the corresponding result by Boillat &
Ruggeri [6, 3] in the relativistic case by which the pulse speed tends to c as the number of moments
increases. These results put an end to the long-standing paradox of pulse speeds – 50 years after
Cattaneo; they are reviewed in Section 3 and 4.

The quest for macroscopic field theories with finite pulse speeds has proved heuristically useful
for the discovery of the formal structure of thermodynamics, relativistic and otherwise. This
structure implies

∙ basis equations are of balance type; hence there is the possibility of weak solutions and shocks,

∙ constitutive equations are local in space-time; hence follow quasilinear first-order field equa-
tions,

∙ entropy inequality with a concave entropy density; this implies symmetric hyperbolic field
equations.

The latter property is essential for finite speeds and for the well-posedness of initial value
problems which is a feature at least as desirable as finite speeds. The formal structure of the
theory is described in Section 2; it was constructed by Ruggeri and his co-workers, particularly
Strumia and Boillat, see [43, 41, 4]. A convenient presentation may be found in the book by Müller
& Ruggeri [39] of which a second edition has just appeared [40].

Section 5 presents extended thermodynamics of viscous, heat-conducting gases due to Liu,
Müller & Ruggeri [31], a theory of 14 fields. That section demonstrates the restrictive character
of the thermodynamic constitutive theory by showing that most constitutive coefficients can be
reduced to the thermal equation of state. Also new insight is provided into the form of the transport
coefficients: bulk- and shear-viscosity, and thermal conductivity, which are all explicitly related
here to the relaxation times of the gas.

This whole review is concerned with a macroscopic theory: Extended thermodynamics. It is
true that some of the tenets of extended thermodynamics are strongly motivated by the kinetic
theory of gases, for instance the choice of moments as variables. But even so, extended thermody-
namics is a field theory in its own right, it is not kinetic theory.

The kinetic theory, complete with Boltzmann equation and Stoßzahlansatz, offers another pos-
sibility of discussing finite propagation speeds – or speeds smaller than c in the relativistic case.
Such discussions are more directly based on the observation that the atoms cannot be faster than
c. Thus Cercignani [8] has directly linked the phase speed of small harmonic waves to the speed
of particles and proved that the phase speeds are smaller than c. Cercignani & Majorana in a
follow-up paper [9] have exploited the full dispersion relation to calculate phase speeds and at-
tenuation as functions of frequency, albeit for a simplified collision term. Earlier works on the
kinetic theory which address the question of propagation speeds include Sirovich & Thurber [45]
and Wang Chang & Uhlenbeck [48]. These works, however, are not subjects of this review.
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2 Scope and Structure, Characteristic Speeds

This section explains the formal structure of modern extended thermodynamics, relativistic or
otherwise. Its key ingredients are

∙ field equations of balance type

∙ local constitutive equations

∙ entropy balance inequality

∙ concavity of entropy density

Thermodynamic processes are defined and characteristic speeds and the pulse speed are intro-
duced.

2.1 Thermodynamic processes

Thermodynamics, and in particular relativistic thermodynamics is a field theory with the primary
objective to determine the thermodynamic fields. These are typically the 14 fields of the number
density of particles, the particle flux vector and the fields of the stress-energy-momentum tensor.
However, in extended thermodynamics we have generally more fields and therefore it is better
– at least for the initial arguments – to leave the number of fields and their tensorial character
unspecified. Therefore we consider n fields, combined in the n-vector 𝑢(𝑥𝐷). 𝑥𝐷 denotes the
space-time components of an event. We have 𝑥0 = 𝑐𝑡 and 𝑥𝑑 = (𝑥1, 𝑥2, 𝑥3)2.

For the determination of the n fields 𝑢 we need field equations – generally n of them – and
these are based on the equations of balance of mechanics and thermodynamics. The generic form
of these balance equations reads

𝐹 𝐴
,𝐴 = 𝜋. (1)

The comma denotes partial differentiation with respect to 𝑥𝐴, and 𝐹 0 is the n-vector of densities,
while 𝐹 𝑎 is the n-vector of flux components. Thus 𝐹 𝐴 represents n four-fluxes, and 𝜋 is the
n-vector of productions.

Obviously the balance equations (1) are not field equations for the fields 𝑢, at least not in this
form. They must be supplemented by constitutive equations. These relate the four-fluxes 𝐹 𝐴 and
the productions 𝜋 to the fields 𝑢 in a materially dependent manner. We write

𝐹 𝐴 = ̂︀𝐹 𝐴(𝑢) and 𝜋 = ̂︀𝜋(𝑢). (2)

̂︀𝐹 𝐴 and ̂︀𝜋 denote the constitutive functions. Note that the constitutive quantities 𝐹 𝐴 and 𝜋 at
one event depend only on the values of 𝑢 at that same event. In particular there is no dependence
on gradients and time derivatives of 𝑢.

If the constitutive functions ̂︀𝐹 𝐴 and ̂︀𝜋 are explicitly known, we may eliminate 𝐹 𝐴 and 𝜋
between the balance equations (1) and the constitutive relations (2) and obtain a set of explicit
field equations for the fields 𝑢. These are quasilinear partial differential equations of first order.
Every solution of the field equations is called a thermodynamic process.

2Throughout this work we stick to Lorentz frames, so that the metric tensor 𝑔 has only diagonal components
with 𝑔00 = 1, 𝑔11 = 𝑔22 = 𝑔33 = −1.
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8 Ingo Müller

2.2 Elements of the constitutive theory

Since, however, the constitutive functions ̂︀𝐹 𝐴 and ̂︀𝜋 are generally not explicitly known, the ma-
jor task of thermodynamics is the determination of these functions, or at least the restriction of
their generality. In simple cases it is possible to reduce the constitutive functions to a few coef-
ficients which may be turned over to the experimentalist for measurement. The formulation and
exploitation of such restrictions is the subject of the constitutive theory.

The tools of the constitutive theory are certain universal physical principles which have come to
be accepted by the extrapolation of common experience. Above all there are three such principles:

The Entropy Inequality. The entropy density ℎ0 and the entropy flux ℎ𝑎 combine to form a
four-vector ℎ𝐴 = (𝑐ℎ0, ℎ𝑎), whose divergence ℎ𝐴

,𝐴 is equal to the entropy production Σ. The
four-vector ℎ𝐴 and Σ are both constitutive quantities and Σ is assumed non-negative for all
thermodynamic processes. Thus we may write ℎ𝐴 = ℎ̂𝐴(𝑢), Σ = Σ̂(𝑢) and

ℎ𝐴
,𝐴 = Σ ≥ 0 ∀ thermodynamic processes. (3)

This inequality is clearly an extrapolation of the entropy inequalities known in thermostatics
and thermodynamics of irreversible processes; it was first stated in this generality by Müller
[36, 38].

The Principle of Relativity. The principle of relativity requires that the field equations and
the entropy inequality have the same form in all

∙ Galilei frames for the non-relativistic case, or in all

∙ Lorentz frames for the relativistic case.

The formal statement and exploitation of this principle have to await a specific choice for
the fields 𝑢 and the four-fluxes 𝐹 𝐴.

The Requirement of Concavity of the Entropy Density. It is possible, and indeed com-
mon, to make a specific choice for the fields 𝑢 and the concavity postulate is contingent upon
that choice.

∙ In the non-relativistic case we choose the fields 𝑢 as the densities 𝐹 0. The requirement
of concavity demands that the entropy density ℎ0 be a concave function of the variables
𝐹 0:

𝜕2ℎ0

𝜕𝐹 0𝜕𝐹 0 ∼ negative definite. (4)

∙ In the relativistic case we choose the fields 𝑢 as the densities 𝐹 𝜁 = 𝐹 𝐴𝜁𝐴 in a generic
Lorentz frame that moves with the four-velocity 𝑐𝜁𝐴 with respect to the observer. We
have 𝜁𝐴𝜁𝐴 = 1 and 𝜁0 > 0. We cannot be certain that in all these frames the entropy
density ℎ𝜁 = ℎ𝐴𝜁𝐴 is concave as a function of 𝐹 𝜁 . Therefore we assume that there is at
least one 𝜁𝐴 – a privileged one, denoted by 𝜁𝐴 – such that ℎ𝜁 = ℎ𝐴𝜁𝐴 is concave with
respect to 𝐹 𝜁 = 𝐹 𝐴𝜁𝐴, viz.

𝜕2ℎ𝜁

𝜕𝐹 𝜁𝜕𝐹 𝜁

∼ negative definite. (5)

The privileged co-vector 𝜁𝐴 remains to be chosen, see Section 4.1.
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In both cases the concavity postulate makes it possible that the entropy be maximal for a
particular set of fields – the set corresponding to equilibrium – and that is its attraction for
physicists. For mathematicians the attraction of the concavity postulate lies in the observation
that concavity implies symmetric hyperbolicity of the field equations, see Sections 3.2 and 4.2
below.

2.3 Exploitation of the entropy inequality, Lagrange multipliers

The key to the exploitation of the entropy inequality lies in the fact that the inequality should
hold for thermodynamic processes, i.e. solutions of the field equations rather than for all fields. By
a theorem proved by Liu [30] this constraint may be removed by the use of Lagrange multipliers
Λ – themselves constitutive quantities, so that Λ = ̂︀Λ(𝑢) holds. Indeed, the new inequality

ℎ𝐴
,𝐴 −Λ ·

(︁
𝐹 𝐴

,𝐴 − 𝜋
)︁
≥ 0 ∀ fields 𝑢. (6)

is equivalent to (3).

Liu’s proof proceeds from the observation that the field equations and the entropy equation are
linear functions of the derivatives 𝑢,𝐴. By the Cauchy–Kowalewski theorem these derivatives are
local representatives of an analytical thermodynamic process and therefore the entropy principle
requires that the field equations and the entropy equation must hold for all 𝑢,𝐴. It is then a simple
problem of linear algebra to prove that

𝜕ℎ𝐴

𝜕𝑢
must be a linear combination of

𝜕𝐹 𝐴

𝜕𝑢
.

Liu’s proof is not restricted to quasilinear systems of first order equations but here we need his
result only in that particularly simple case.

We may use the chain rule on ℎ𝐴 = ℎ̂ 𝐴(𝑢) and 𝐹 𝐴 = ̂︀𝐹 𝐴(𝑢) in (6) and obtain(︃
𝜕ℎ𝐴

𝜕𝑢
−Λ · 𝜕𝐹 𝐴

𝜕𝑢

)︃
𝑢,𝐴 + Λ · 𝜋 ≥ 0. (7)

The left hand side is an explicit linear function of the derivatives 𝑢,𝐴 and, since the inequality
must hold for all fields 𝑢, it must hold in particular for arbitrary values of the derivatives 𝑢,𝐴.
The entropy inequality could thus easily be violated by some choice of 𝑢,𝐴 unless we have

𝑑ℎ𝐴 = Λ · 𝑑𝐹 𝐴; (8)

and there remains the residual inequality

Λ · 𝜋 ≥ 0. (9)

The differential forms (8) represent a generalization of the Gibbs equation of equilibrium ther-
modynamics; the classical Gibbs equation for the entropy density is here generalized into four
equations for the entropy four-flux. Relation (9) is the residual entropy inequality which repre-
sents the irreversible entropy production. Note that the entropy production is entirely due to the
production terms in the balance equations.
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2.4 Characteristic speeds

The system of field equations (1), (2) may be written as a quasilinear system of n equations in the
form

𝜕𝐹 𝐴

𝜕𝑢
𝑢,𝐴 = 𝜋. (10)

Such a system allows the propagation of weak waves, so-called acceleration waves. There are n
such waves and their speeds are called characteristic speeds, which are not necessarily all different.
The fastest characteristic speed is the pulse speed. This is the largest speed by which information
can propagate.

Let 𝜑(𝑥𝐷) = 0 define the wave front; thus

𝜕𝜑

𝜕𝑥𝑎
= |grad 𝜑|𝑛𝑎 and

𝜕𝜑

𝜕𝑐𝑡
= − |grad 𝜑| 𝑉

𝑐
(11)

define its unit normal 𝑛 and the speed 𝑉 . An easy manipulation provides

𝑉 2

𝑐2
= 1 +

𝑔𝐴𝐵𝜑,𝐴𝜑,𝐵

|grad 𝜑|2
. (12)

Since in a weak wave the fields 𝑢 have no jump across the front, the jumps in the gradients
must have the direction of 𝑛 and we may write

[𝑢,𝑎] = 𝛿𝑢𝑛𝑎, [𝑢,0] = −𝑉

𝑐
𝛿𝑢, where 𝛿𝑢 =

[︂
𝑛𝑎

𝜕𝑢

𝜕𝑥𝑎

]︂
. (13)

𝛿𝑢 is the magnitude of the jump of the gradient of 𝑢. The square brackets denote differences
between the front side and the back side of the wave.

In the field equations (10) the matrix
𝜕𝐹 𝐴

𝜕𝑢
and the productions are equal on both sides of the

wave, since both only depend on 𝑢 and since 𝑢 is continuous. Thus, if we take the difference of
the equations on the two sides and use (13) and (11), we obtain

𝜑,𝐴
𝜕𝐹 𝐴

𝜕𝑢
𝛿𝑢 = 0. (14)

Non-trivial solutions for 𝛿𝑢 require that this linear homogeneous system have a vanishing deter-
minant

det

(︃
𝜑,𝐴

𝜕𝐹 𝐴

𝜕𝑢

)︃
= 0. (15)

Insertion of (11) into (15) provides an algebraic equation for 𝑉 whose solutions – for a prescribed
direction 𝑛 – determine n wave speeds 𝑉 , of which the largest one is the pulse speed. Equation (15)
is called the characteristic equation of the system (10) of field equations. By (11) it may be written
in the form

det
(︂

𝜕𝐹 𝑎

𝜕𝑢
𝑛𝑎 −

𝑉

𝑐

𝜕𝐹 0

𝜕𝑢

)︂
= 0. (16)
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3 Finite Speeds in Non-Relativistic Extended Thermody-
namics

It is shown in this section that the concavity of the entropy density ℎ0 with respect to the fields 𝐹 0

implies global invertibility of the map 𝐹 0 ⇐⇒ Λ, where Λ is the n-vector of Lagrange multipliers.
Also the system of field equations – written in terms of Λ – is recognized as a symmetric hyperbolic
system which guarantees

∙ finite characteristic speeds and

∙ well-posedness of initial value problems.

Thus we conclude that no paradox of infinite speeds can arise in extended thermodynamics, –
at least not for finitely many variables.

A commonly treated special case occurs when the fields 𝑢 are moments of the phase density
of a gas. In this case the pulse speed depends on the degree of extension, i.e. on the number n
of fields 𝑢. For a gas in equilibrium the pulse speeds can be calculated for any n. Also it can be
estimated that the pulse speed tends to infinity as n grows to infinity.

3.1 Concavity of the entropy density

We recall the argument of Section 2.2 concerning concavity and choose the fields 𝑢 to mean the
fields of densities 𝐹 0. Thus equation (8), for 𝐴 = 0, leads to

Λ =
𝜕ℎ0

𝜕𝐹 0 , hence
𝜕Λ
𝜕𝐹 0 =

𝜕2ℎ0

𝜕𝐹 0𝜕𝐹 0 . (17)

Therefore the concavity of the entropy density ℎ0 in the variables 𝐹 0 – the negative-definiteness

of
𝜕2ℎ0

𝜕𝐹 0𝜕𝐹 0 – implies global invertibility between the field vector 𝐹 0 and the Lagrange multipliers

Λ.
The transformation 𝐹 0 ⇐⇒ Λ helps us to recognize the structure of the field equations and to

find generic restrictions on the constitutive functions.
Indeed, obviously, with Λ as field vector instead of 𝑢, or 𝐹 0, we may rephrase (8) in the form

𝑑ℎ′𝐴 = 𝐹 𝐴𝑑Λ, (18)

where
ℎ′𝐴 ≡ Λ · 𝐹 𝐴 − ℎ𝐴. (19)

Thus we have

𝐹 𝐴 =
𝜕ℎ′𝐴

𝜕Λ
, (20)

and

ℎ𝐴 = Λ
𝜕ℎ′𝐴

𝜕Λ
− ℎ′𝐴, (21)

so that the constitutive quantities 𝐹 𝐴 and ℎ𝐴 result from ℎ′𝐴 – defined by equation (19) – through
differentiation. Therefore the vector ℎ′𝐴 is called the thermodynamic vector potential.

It follows from equation (20) that

𝜕𝐹 𝐴

𝜕Λ
is symmetric,

which implies 4𝑛(𝑛− 1) restrictions on the constitutive functions ̂︀𝐹 𝐴(Λ).
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3.2 Symmetric hyperbolicity

Using the new variables Λ we may write the field equations in the form

𝜕𝐹 𝐴

𝜕Λ
Λ,𝐴 = 𝜋(Λ), (22)

or, by (20):

𝜕2ℎ′𝐴

𝜕Λ𝜕Λ
Λ,𝐴 = 𝜋(Λ). (23)

We observe that the coefficient matrices in (23) are Hessian matrices derived from the vector
potential ℎ′𝐴. Therefore the matrices are symmetric.

Also the matrix
𝜕2ℎ′0

𝜕Λ𝜕Λ
is negative definite on account on the concavity (4) of ℎ0 with respect

to 𝐹 0. This is so, because the defining equation of ℎ′0, viz.

ℎ′0 = Λ · 𝐹 0 − ℎ0 (24)

represents the Legendre transformation from ℎ0 to ℎ′0 connected with the map 𝐹 0 ⇐⇒ Λ between
dual fields. Indeed, we have by (20, 21) and (8)

𝐹 0 =
𝜕ℎ′0

𝜕Λ
and Λ =

𝜕ℎ0

𝜕𝐹 0 . (25)

Such a transformation preserves convexity – or concavity – so that ℎ′0 is a concave function of Λ,
since ℎ0 is a concave function of 𝐹 0.

A quasilinear system of the type (23) with symmetric coefficient matrices, of which the temporal
one is definite, is called symmetric hyperbolic. We conclude that symmetric hyperbolicity of the
equations (23) for the fields Λ is equivalent to the concavity of the entropy density ℎ0 in terms of
the fields of densities 𝐹 0.

Hyperbolicity implies finite characteristic speeds, and symmetric hyperbolic systems guarantee
the well-posedness of initial value problems, i.e. existence and uniqueness of solutions – at least in
the neighbourhood of an event – and continuous dependence on the data.

Thus without having actually calculated a single characteristic speed, we have resolved Catta-
neo’s paradox of infinite speeds. The structure of extended thermodynamics guarantees that all
speeds are finite; no paradox can occur!

The fact that a system of balance-type field equations is symmetric hyperbolic, if it is com-
patible with the entropy inequality and the concavity of the entropy density was discovered by
Godunov [19] in the special case of Eulerian fluids. In general this was proved by Boillat [1]. Rug-
geri & Strumia [43] have found that the symmetry is revealed only when the Lagrange multipliers
are chosen as variables; these authors were strongly motivated by Liu’s results of 1972 and by a
paper by Friedrichs & Lax [18] which appeared a year earlier.

3.3 Moments as variables

In a gas the most plausible choice for the four-fluxes 𝐹 𝐴 are the moments of the phase density
𝑓(𝑥, 𝑝, 𝑡) of the atoms. Thus we have

𝐹𝐴
𝛼 =

∫︁
𝑝𝐴𝑝𝛼𝑓𝑑𝑝, (𝛼 = 1, 2, . . . 𝑛), (𝐴 = 0, 1, 2, 3). (26)
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𝑝0 is equal to 𝑚𝑐, where 𝑚 is the atomic mass, while 𝑝𝑎 denotes the Cartesian coordinates of the
momentum of an atom. 𝛼 is a multi-index and 𝑝𝛼 stands for

𝑝𝛼 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑝𝑖1

𝑝𝑖1𝑝𝑖2

𝑝𝑖1𝑝𝑖2 . . . 𝑝𝑖𝑁

𝛼 = 1
𝛼 = 2, 3, 4
𝛼 = 5, 6, . . . 10
𝛼 = 𝑛− 1

2 (𝑁 + 1)(𝑁 + 2), . . . , 𝑛

(27)

so that the densities 𝐹 0
𝛼, (𝛼 = 1, 2, . . . 𝑛) form a hierarchy of moments of increasing tensorial degree

up to degree N. Because of the evident symmetry of (27) there is a relation between n and N, viz.

𝑛 =
1
6
(𝑁 + 1)(𝑁 + 2)(𝑁 + 3). (28)

The kinetic theory of gases implies that the moments (26) satisfy equations of balance of the
type (1) so that the foregoing analysis holds. In particular, we have (18) which may now be
written in the form

𝑑ℎ′𝐴 = 𝐹𝐴
𝛼 𝑑Λ𝛼 = (29)∫︁

𝑝𝐴𝑑(Λ𝛼𝑝𝛼)𝑓𝑑𝑝 = (30)∫︁
𝑝𝐴𝑑𝐹 (Λ𝛼𝑝𝛼)𝑑𝑝 = (31)

𝑑

∫︁
𝑝𝐴𝐹 (Λ𝛼𝑝𝛼)𝑑𝑝. (32)

We introduce 𝜒 = Λ𝛼𝑝𝛼 and note that by (30) the phase density depends on the single variable
𝜒 only. Also (32) implies that the vector potential has the form

ℎ′𝐴 =
∫︁

𝑝𝐴𝐹 (𝜒)𝑑𝑝, (33)

where, by (31),
𝑑𝐹

𝑑𝜒
= 𝑓 holds. The field equations (23) now read

[︂∫︁
𝑝𝐴𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑝

]︂
Λ𝛽,𝐴 = 𝜋𝛼. (34)

Obviously the coefficient matrices are symmetric in 𝛼, 𝛽 and
∫︁

𝑝𝛼𝑝𝛽
𝑑2𝐹

𝑑𝜒2
𝑑𝑝 is negative definite,

provided that
𝑑2𝐹

𝑑𝜒2
< 0, (35)

i.e. 𝐹 (𝜒) must be concave for the system (34) to be symmetric hyperbolic.

3.4 Specific form of the phase density

For moments as variables the entropy four-flux ℎ𝐴 follows from (19) and (33). We obtain

ℎ𝐴 =
∫︁

𝑝𝐴 (𝜒𝑓(𝜒)− 𝐹 (𝜒)) 𝑑𝑝. (36)
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On the other hand statistical mechanics defines the four-flux of entropy by (e.g. see Huang [20])

ℎ𝐴 = −𝑘

∫︁
𝑝𝐴

(︂
ln

𝑓

𝑦
± 𝑦

𝑓

(︂
1± 𝑓

𝑦

)︂
ln
(︂

1± 𝑓

𝑦

)︂)︂
𝑓𝑑𝑝 for

Fermions
Bosons . (37)

𝑘 is the Boltzmann constant and 1/𝑦 is the smallest phase space element.
Comparison shows that we must have

𝜒𝑓(𝜒)− 𝐹 (𝜒) = −𝑘

(︂
ln

𝑓

𝑦
± 𝑦

𝑓

(︂
1± 𝑓

𝑦

)︂
ln
(︂

1± 𝑓

𝑦

)︂)︂
𝑓,

and hence, by differentiation with respect to 𝜒,

𝑓 =
𝑦

e𝜒/𝑘 ± 1
, (38)

so that

𝐹 = ∓𝑘𝑦 ln
(︁
1± e−𝜒/𝑘

)︁
. (39)

𝑓 is the phase density appropriate to a degenerate gas in non-equilibrium. Differentiation of (39)
with respect to 𝜒 proves the inequality (35).

Therefore symmetric hyperbolicity of the system (34) and hence the concavity of the entropy
density with respect to the variables 𝐹 0

𝛼 is implied by the moment character of the fields and the
form of the four-flux of entropy.

For a non-degenerate gas the term ±1 in the denominator of (38) may be neglected. In that
case we have

𝑓 = 𝑦e−𝜒/𝑘, (40)

hence

𝐹 = −𝑘𝑓 and
𝑑2𝐹

𝑑𝜒2
= −1

𝑘
𝑓, (41)

and therefore the field equations (23), (34) assume the form[︂
−1

𝑘

∫︁
𝑝𝐴𝑝𝛼𝑝𝛽𝑓𝑑𝑝

]︂
Λ𝛽,𝐴 = 𝜋𝛼. (42)

Note that the matrices of coefficients are composed of moments in this case of a non-degenerate
gas.

We know that a non-degenerate gas at rest in equilibrium exhibits the Maxwellian phase density

𝑓𝐸 =
𝑛

√
2𝜋𝑚𝑘𝑇

3 e−
𝑝2

2𝑚𝑘𝑇 . (43)

n and 𝑇 denote the number density and the temperature of the gas in equilibrium. Comparison
of (43) with (40) shows that only two Lagrange multipliers are non-zero in equilibrium, viz.

Λ𝐸 = 𝑘 ln
𝑦
√

2𝜋𝑚𝑘𝑇
3

𝑛
and Λ𝐸

𝑖𝑖 =
1

2
3𝑚𝑘𝑇

. (44)
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3.5 Pulse speeds in a non-degenerate gas in equilibrium

We recall the discussion of characteristic speeds in Section 2.4 which we apply to the system (23)
of field equations. The characteristic equation of this system reads

det
(︂

𝜑,𝐴
𝜕2ℎ′𝐴

𝜕Λ𝜕Λ

)︂
= 0 (45)

or, by (11):

det
(︂

𝜕2ℎ′𝑎

𝜕Λ𝜕Λ
𝑛𝑎 −

𝑉

𝑐

𝜕2ℎ′0

𝜕Λ𝜕Λ

)︂
= 0. (46)

This equation determines the characteristic speeds 𝑉 , whose maximal value 𝑉max is the pulse speed.
In the case of moments and for a non-degenerate gas at rest and in equilibrium this equation reads,
by (42),

det
(︂∫︁

(𝑝𝑎𝑛𝑎 − 𝑉 𝑚) 𝑝𝛼𝑝𝛽𝑓𝐸𝑑𝑝

)︂
= 0. (47)

𝑓𝐸 is the Maxwellian phase density, so that all integrals in (47) are Gaussian integrals, easy to
calculate. Weiss [49] has calculated the speeds 𝑉 for different degrees n of extended thermody-
namics. Recall that 𝛼, 𝛽 range over the values 1 through n. He has made a list of 𝑉max which is

represented here in Table 1. 𝑉max is normalized in Table 1 by 𝑐𝑜 =
√︁

5𝑘𝑇
3𝑚 , the ordinary speed of

sound, sometimes called the adiabatic sound speed.
Inspection of Table 1 shows that the pulse speed increases monotonically with the number of

moments and there is clearly a suspicion that it may tend to infinity as n goes to infinity. This
suspicion will presently be confirmed.

3.6 A lower bound for the pulse speed of a non-degenerate gas

Since in (47) the integral
∫︀

𝑝𝑎𝑛𝑎𝑝𝛼𝑝𝛽𝑓𝐸𝑑𝑝 is symmetric and
∫︀

𝑝𝛼𝑝𝛽𝑓𝐸𝑑𝑝 is symmetric and positive
definite, it follows from linear algebra3 that∫︁

(𝑝𝑎𝑛𝑎 − 𝑉max𝑚) 𝑝𝛼𝑝𝛽𝑓𝐸𝑑𝑝 is negative semi-definite. (48)

Boillat & Ruggeri [5] have used this knowledge to derive an estimate for 𝑉max in terms of N, the
highest tensorial degree of the moments. The estimate reads

𝑉max

𝑐0
≥

√︃
6
5

(︂
𝑁 − 1

2

)︂
. (49)

Therefore, indeed, as more and more moments are drawn into the scheme of extended thermody-
namics, the pulse speed goes up and, if N tends to infinity, so does 𝑉max.

The proof of (49) rests on the realization that – because of symmetry – 𝑝𝛼 = 𝑝𝑖1𝑝𝑖2 . . . 𝑝𝑖𝑙 has
only 1

2 (𝑙 + 1)(𝑙 + 2) independent components and they are simply powers of 𝑝1, 𝑝2 and 𝑝3, so that
𝑝𝛼 may be written as (𝑝1)𝑝(𝑝2)𝑞(𝑝3)𝑟 with 𝑝 + 𝑞 + 𝑟 = 𝑙. Accordingly 𝑝𝛽 = 𝑝𝑗1𝑝𝑗2 . . . 𝑝𝑗𝑘 may be
written as (𝑝1)𝑠(𝑝2)𝑡(𝑝3)𝑢 with 𝑠 + 𝑡 + 𝑢 = 𝑘.

Therefore (48) assumes the form∫︁
(𝑝𝑎𝑛𝑎 − 𝑉max𝑚) (𝑝1)𝑝+𝑠(𝑝2)𝑞+𝑡(𝑝3)𝑟+𝑢𝑓𝐸𝑑𝑝 – negative semi-definite. (50)

3If the reader does not recall this theorem, he is advised to recapitulate the part of linear algebra that deals with
the simultaneous diagonalization of two symmetric matrices.
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Table 1: Pulse speed in extended thermodynamics of moments. n: Number of moments, N : Highest
degree of moments, 𝑉max/𝑐0: Pulse speed.

n N 𝑉max/𝑐0 n N 𝑉max/𝑐0

4 1 0.77459667 2600 23 6.59011627
10 2 1.34164079 2925 24 6.75262213
20 3 1.80822948 3276 25 6.91176615
35 4 2.21299946 3654 26 7.06774631
56 5 2.57495874 4060 27 7.22074198
84 6 2.90507811 4495 28 7.37091629

120 7 3.21035245 4960 29 7.51841807
165 8 3.49555791 5456 30 7.66338362
220 9 3.76412372 5984 31 7.80593804
286 10 4.01860847 6545 32 7.94619654
364 11 4.26098014 7140 33 8.08426549
455 12 4.26098014 7770 34 8.22024331
560 13 4.71528716 8436 35 8.35422129
680 14 4.92949284 9139 36 8.48628432
816 15 5.13625617 9880 37 8.61651144
969 16 5.33629130 10660 38 8.74497644

1140 17 5.53020569 11480 39 8.87174833
1330 18 5.71852112 12341 40 8.99689171
1540 19 5.90168962 13244 41 9.12046722
1771 20 6.08010585 14190 42 9.24253184
2024 21 6.25411673 15180 43 9.36313918
2300 22 6.42402919
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The elements of a semi-definite matrix 𝑎𝑖𝑗 satisfy the inequalities 𝑎𝑖𝑖𝑎𝑗𝑗 ≥ 𝑎2
𝑖𝑗 and therefore (50)

implies (︁∫︀
(𝑝𝑎𝑛𝑎 − 𝑉max𝑚)

(︀
𝑝1
)︀2𝑝 (︀

𝑝2
)︀2𝑞 (︀

𝑝3
)︀2𝑟

𝑓𝐸𝑑𝑝
)︁
×

×
(︁∫︀

(𝑝𝑎𝑛𝑎 − 𝑉max𝑚)
(︀
𝑝1
)︀2𝑠 (︀

𝑝2
)︀2𝑡 (︀

𝑝3
)︀2𝑢

𝑓𝐸𝑑𝑝
)︁
≥

≥
(︁∫︀

(𝑝𝑎𝑛𝑎 − 𝑉max𝑚)
(︀
𝑝1
)︀2𝑝+𝑠 (︀

𝑝2
)︀2𝑞+𝑡 (︀

𝑝3
)︀2𝑟+𝑢

𝑓𝐸𝑑𝑝
)︁2

(51)

Since 𝑓𝐸 is an even function of 𝑝 we obtain

(𝑉max)
2
𝑚2
(︁∫︀ (︀

𝑝1
)︀2𝑝 (︀

𝑝2
)︀2𝑞 (︀

𝑝3
)︀2𝑟

𝑓𝐸𝑑𝑝
)︁
×

×
(︁∫︀ (︀

𝑝1
)︀2𝑠 (︀

𝑝2
)︀2𝑡 (︀

𝑝3
)︀2𝑢

𝑓𝐸𝑑𝑝
)︁
≥

≥
(︁∫︀

(𝑝𝑎𝑛𝑎 − 𝑉max𝑚)
(︀
𝑝1
)︀𝑝+𝑠 (︀

𝑝2
)︀𝑞+𝑡 (︀

𝑝3
)︀𝑟+𝑢

𝑓𝐸𝑑𝑝
)︁2

(52)

This estimate depends on the choice of the exponents 𝑝 through 𝑢 and we choose, rather arbitrarily
𝑝 = 𝑁 , 𝑠 = 𝑁 − 1 and all others zero. Also we set 𝑛𝑎 = (1, 0, 0). In that case (52) implies

𝑉 2
max ≥

∫︀ (︀
𝑝1
)︀2𝑁

𝑓𝐸𝑑𝑝1

(𝑝1)2(𝑁−1)
𝑓𝐸𝑑𝑝1

=
6
5
· 5
3

𝑘

𝑚
𝑇

(︂
𝑁 − 1

2

)︂
(53)

which proves (49).

An easy check will show that for each N the value
√︁

6
5

(︀
𝑁 − 1

2

)︀
lies below the corresponding

values of Table 1, as they must. It may well be possible to tighten the estimate (49).
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4 Finite Speeds in Relativistic Extended Thermodynamics

In the relativistic theory the entropy density is not a scalar, it depends on the frame. This fact
creates problems: Granted that an entropy density tends to be concave, which one would that
be? To my knowledge this question is unresolved. In this section we assume that there exists a
privileged frame in which the entropy density is concave. And we choose the privileged frame such
that symmetric hyperbolicity of the system of field equations is guaranteed. These considerations
have been motivated by a paper by Ruggeri [42].

Symmetric hyperbolicity means finite characteristic speeds, not necessarily speeds smaller than
the speed of light. However, for moments as four-fluxes it can be shown that all speeds are smaller
or equal to c and that for infinitely many moments the pulse speed tends to c. Moreover, for
moments the privileged frame is the rest frame of the gas, at least, if the gas is non-degenerate.

4.1 Concavity of a privileged entropy density

We recall the arguments of Section 2.2 concerning concavity in the relativistic case and choose the
fields 𝑢 to mean the privileged densities 𝐹 𝜁 = 𝐹 𝐴𝜁𝐴. The privileged entropy density is assumed
by (5) to be concave with respect to the privileged fields 𝐹 𝜁 . The privileged co-vector 𝜁𝐴 will be
chosen so that the concavity of ℎ𝜁 implies symmetric hyperbolicity of the field equations.

From (8) we obtain after multiplication by 𝜁𝐴

Λ =
𝜕ℎ𝜁

𝜕𝐹 𝜁

+ ℎ′𝐴
𝜕𝜁𝐴

𝜕𝐹 𝜁

, (54)

hence
𝜕Λ
𝜕𝐹 𝜁

=
𝜕2ℎ𝜁

𝜕𝐹 𝜁𝜕𝐹 𝜁

+
𝜕

𝜕𝐹 𝜁

(︂
ℎ′𝐴

𝜕𝜁𝐴

𝜕𝐹 𝜁

)︂
. (55)

ℎ′𝐴 is still defined as Λ ·𝐹 𝐴 − ℎ𝐴, as in (19). From (55) it follows that the concavity of ℎ𝜁

(︀
𝐹 𝜁

)︀
–

the negative definiteness of
𝜕2ℎ𝜁

𝜕𝐹 𝜁𝜕𝐹 𝜁

– implies global invertibility between the field vector 𝐹 𝜁 and

the Lagrange multipliers Λ, provided that the privileged co-vector 𝜁𝐴 is chosen as co-linear to the
vector potential ℎ′𝐴. We set

𝜁𝐴 = − ℎ′𝐴√︀
ℎ′𝐴ℎ′𝐴

. (56)

Indeed, in that case we have

ℎ′𝐴
𝜕𝜁𝐴

𝜕𝐹 𝜁

= 0, (57)

hence

𝜁𝐴 𝜕2𝜁𝐴

𝜕𝐹 𝜁𝜕𝐹 𝜁

= − 𝜕𝜁𝐴

𝜕𝐹 𝜁

𝜕𝜁𝐴

𝜕𝐹 𝜁

∼ positive semi-definite (58)

so that, by (57), the second term on the right hand side of (55) vanishes and
𝜕Λ
𝜕𝐹 𝜁

is definite.

Equation (58) will be used later.
With Λ as a field vector, instead of 𝐹 𝜁 , we may rephrase (8) in the form

𝑑ℎ′𝐴 = 𝐹 𝐴 · 𝑑Λ, (59)

or

𝐹 𝐴 =
𝜕ℎ′𝐴

𝜕Λ
, (60)
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hence

𝐹 𝜁 =
𝜕ℎ𝜁

𝜕Λ
, (61)

where ℎ′
𝜁

= ℎ′𝐴𝜁𝐴 = Λ · 𝐹 𝜁 − ℎ𝜁 . Thus ℎ′
𝜁

is the Legendre transform of ℎ𝜁 with respect to the
map 𝐹 𝜁 ⇐⇒ Λ. It follows that ℎ′

𝜁
is concave in Λ, since ℎ𝜁 is concave in 𝐹 𝜁 ; thus we have

𝜕2ℎ′
𝜁

𝜕Λ𝜕Λ
∼ negative definite. (62)

4.2 Symmetric hyperbolicity

The transformation 𝐹 𝜁 ⇐⇒ Λ helps us to recognize the structure of the field equations. Obviously
with Λ as the field vector, instead of 𝐹 𝜁 we may rephrase the field equations (10) as

𝜕𝐹 𝐴

𝜕Λ
Λ,𝐴 = 𝜋(Λ), (63)

or, by (60):
𝜕2ℎ′

𝐴

𝜕Λ𝜕Λ
Λ,𝐴 = 𝜋(Λ). (64)

We observe that the coefficient matrices are Hessian matrices and therefore symmetric.
By the definition of symmetric hyperbolicity due to Friedrichs [17] the system is symmetric

hyperbolic, if there exists at least one co-vector 𝜁𝐴 for which

𝜕2ℎ′
𝐴

𝜕Λ𝜕Λ
𝜁𝐴 ∼ negative definite

(︀
𝑔𝐴𝐵𝜁𝐴𝜁𝐵 = 1, 𝜁0 > 0

)︀
. (65)

In our case – with the concavity (5) of the entropy density ℎ𝜁 for 𝜁𝐴 = − ℎ′𝐴√︀
ℎ′𝐴ℎ′𝐴

– it is clear that

such a co-vector exists. It is 𝜁𝐴 itself! Indeed we have

𝜕2ℎ′
𝐴

𝜕Λ𝜕Λ
𝜁𝐴 =

𝜕2ℎ′
𝜁

𝜕Λ𝜕Λ
+

𝜕𝜁𝐴

𝜕Λ
𝜕ℎ′

𝐴

𝜕Λ
∼ negative definite (66)

by (62) and (58). Thus symmetric hyperbolicity is implied by the concavity of the entropy density
both in the relativistic and the non-relativistic case.

It is true that in the relativistic case we have to rely on the privileged co-vector 𝜁𝐴 = − ℎ′𝐴√︀
ℎ′𝐴ℎ′𝐴

in this context and therefore on a privileged Lorentz frame whose entropy density ℎ𝜁 is concave in
𝐹 𝜁 . The significance of this choice is not really understood. Indeed, we might have preferred the
privileged frame to be the local rest frame of the body. In that respect it is reassuring that ℎ′

𝐴

is often co-linear to the four-velocity 𝑈𝐴 as we shall see in Section 4.3 below; but not always! A
better understanding is needed.

Note that in the non-relativistic case the only time-like co-vector is 𝜁𝐴 = (1, 0, 0, 0), a constant
vector. In that case all the above-mentioned complications are absent: Concavity of the one and
only entropy density ℎ0 is equivalent to symmetric hyperbolicity, see Section 3 above.

Also note that the requirement (65) of symmetric hyperbolicity ensures finite characteristic
speeds, not necessarily speeds smaller than c as we might have wished. [In this respect we may
be tempted to replace Friedrich’s definition of symmetric hyperbolicity by one of our own making,
which might require (65) to be true for all time-like co-vectors 𝜁𝐴 – instead of at least one. If we
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did that, we should anticipate the whole problem of speeds greater than c. Indeed, we recall the
characteristic equation (15) which – for our system (64) – reads

det
(︂

𝜑,𝐴
𝜕2ℎ′𝐴

𝜕Λ𝜕Λ

)︂
= 0.

If (65) were to hold for all time-like co-vectors 𝜁𝐴, we could now conclude that 𝜑,𝐴 is space-like,
or light-like, so that 𝑔𝐴𝐵𝜑,𝐴𝜑,𝐵 ≤ 0 holds. Thus (12) would imply 𝑉 2 ≤ 𝑐2. This is a clear case of
assuming the desired result in a disguise and we do not follow this path.]

4.3 Moments as four-fluxes and the vector potential

Just like in the non-relativistic case the most plausible – and popular – choice of the four-fluxes
𝐹 𝐴 in relativistic thermodynamics is moments of the phase density 𝑓(𝑥, 𝑝, 𝑡) of the atoms, viz.

𝐹𝐴
𝛼 =

∫︁
𝑝𝐴𝑝𝛼𝑓𝑑𝑃 , (𝛼 = 1, 2, . . . 𝑛) , (𝐴 = 0, 1, 2, 3) (67)

This is formally identical to the non-relativistic case that was treated in Section 34. There are
essential differences, however

∙ 𝑝𝐴 is now the Lorentz vector of atomic four-momentum with 𝑝0 > 0 and 𝑝𝐴𝑝𝐴 = 𝑚2𝑐2.
Accordingly 𝑝𝛼 now stands for polynomials in the components of four-momentum. Thus
instead of (27) we have

𝑝𝛼 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
𝑝𝐵1

𝑝𝐵1𝑝𝐵2

...
𝑝𝐵1𝑝𝐵2 . . . 𝑝𝐵𝑁 .

∙ The element 𝑑𝑃 of phase space is now equal to 𝑑𝑝/𝑝0 instead of 𝑑𝑝.

Both are important differences. But many results from the non-relativistic theory will remain
formally valid.

Thus for instance in the relativistic case we still have

ℎ′𝐴 =
∫︁

𝑝𝐴𝐹 (𝜒)𝑑𝑃 (68)

with
𝐹 (𝜒) = ∓𝑘𝑦 ln

(︁
1± e−

𝜒
𝑘

)︁
, (69)

just like (33) and (39). We conclude that the vector potential ℎ′𝐴 is not generally in the class of
moments. However, in the non-degenerate limit, where e−𝜒/𝑘 ≪ 1 holds, we obtain from (69) (see
also (41))

𝐹 (𝜒) = −𝑘𝑦e−
𝜒
𝑘 or 𝐹 = −𝑘𝑓. (70)

Therefore ℎ′𝐴 for a non-degenerate gas reads

ℎ′𝐴 = −𝑘

∫︁
𝑝𝐴𝑓𝑑𝑃 (71)

4The subtle differences between the non-relativistic moments (26) and the relativistic moments (67) may be
studied in papers on the relativistic kinetic theory, e.g. Lichnerowicz & Marrot [29], Chernikov [10, 11, 12] and
Marle [32] also in the book by de Groot, van Leeuven & van Weert [13].
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and that is in the class of moments. In fact ℎ′𝐴 is equal to the four-velocity 𝑈𝐴 of the gas to
within a factor. We have

ℎ′𝐴 = −𝑛𝑘

𝑐
𝑈𝐴, (72)

where 𝑛 is the number density of atoms in the rest frame of the gas.
We recall the discussion – in Section 4.2 – of the important role played by ℎ′𝐴 in ensuring

symmetric hyperbolicity of the field equations: Symmetric hyperbolicity was due to the concavity

of ℎ𝜁

(︀
𝐹 𝜁

)︀
in the privileged frame moving with the four-velocity 𝑐𝜁𝐴 = −𝑐

ℎ′𝐴√︀
ℎ′𝐴ℎ′𝐴

. Now we see

from (72) that – for the non-degenerate gas – we have 𝑐𝜁𝐴 = 𝑈𝐴 so that the privileged frame is the
local rest frame of the gas. This is quite satisfactory, since the rest frame is naturally privileged.
[There remains the question of why the rest frame is not the privileged one for a degenerate gas.
This point is open and invites investigation.]

4.4 Upper and lower bounds for the pulse speed

We recall the form of the field equations (34)[︂∫︁
𝑝𝐴𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑃

]︂
Λ𝛽,𝐴 = 𝜋𝛼 (73)

which is still valid in the relativistic case, albeit with 𝑝𝐴 as the Lorentz vector of the atomic four-

momentum rather than 𝑝𝐴 = (𝑚𝑐, 𝑝𝑎) as in Section 3. We already know that
𝑑2𝐹

𝑑𝜒2
< 0 holds. Also

𝑝𝐴 is a time-like vector so that we have

𝜁𝐴

∫︁
𝑝𝐴𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑃 ∼ negative definite (74)

for all time-like co-vectors 𝜁𝐴.
Therefore the characteristic equation of the system (73) of field equations, viz.

det
(︂

𝜑,𝐴

∫︁
𝑝𝐴𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑃

)︂
= 0 (75)

implies that 𝜑,𝐴 is space-like, or light-like and therefore – by (12) – all characteristic speeds are
smaller than c. We conclude that the speed of light is an upper bound for the pulse speed 𝑉max.

[Recall that the requirement (65) of symmetric hyperbolicity did not require speeds ≤ 𝑐. I
have discussed that point at the end of Section 4.2. Now, however, in extended thermodynamics
of moments, because of the specific form of the vector potential, the condition (65) is satisfied for
all co-vectors. Therefore all speeds are ≤ 𝑐.]

More explicitly, by (11), the characteristic equation (75) reads

det
(︂∫︁ (︂

𝑝𝑎𝑛𝑎 −
𝑉

𝑐
𝑝0

)︂
𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑃

)︂
= 0 (76)

and this holds in particular for 𝑉max. Obviously
∫︁

𝑝𝐴𝑝𝛼𝑝𝛽
𝑑2𝐹

𝑑𝜒2
𝑑𝑃 is symmetric and

−
∫︁

𝑝0𝑝𝛼𝑝𝛽
𝑑2𝐹

𝑑𝜒2
𝑑𝑃 is positive definite and symmetric. Therefore it follows from linear algebra

(see Footnote (3)) that
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∫︁ (︂
𝑝𝑎𝑛𝑎 −

𝑉max

𝑐
𝑝0

)︂
𝑝𝛼𝑝𝛽

𝑑2𝐹

𝑑𝜒2
𝑑𝑃 ∼ negative semi-definite. (77)

In very recent papers, Boillat & Ruggeri [6, 3] have used this knowledge to prove lower bounds for
𝑉max. The lower bounds depend on 𝑛, the number of fields, and for the number of fields tending
to infinity the lower bound of 𝑉max tends to c from below. The strategy of proof is similar to the
one employed in Section 3.6 for the non-relativistic case.

Therefore the pulse speeds of all moment theories are smaller than c, but they tend to c as the
number of moments tends to infinity. This result compares well with the corresponding result in
Section 3.6 concerning the non-relativistic theory. In that case there was no upper bound so that
the pulse speeds tended to infinity for extended thermodynamics of very many moments.
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5 Relativistic Thermodynamics of Gases. 14-Field Theory

While the synthetic treatment of the foregoing sections is concise and seems quite elegant, it is
also little suggestive of the laws for heat flux and stress that we associate with non-equilibrium
thermodynamics. Moreover, the elegance of this treatment disguises the fact that much work is
needed in order to obtain specific results.

The following section highlights this situation by considering a viscous heat-conducting gas, a
material which is fully characterized by 14 fields, viz. the density and flux of mass, energy and
momentum, and stress and heat flux. With this choice of fields we shall be able to exploit the
principle of relativity and the entropy inequality in explicit form and to calculate some specific
pulse speeds.

It is true that much of the rigorous formal structure of the preceding section is lost when it
comes to specific calculations. Linearization around equilibrium cannot be avoided, if we wish to
obtain specific results, and that destroys global invertibility and general symmetric hyperbolicity.
These properties are now restricted to situations close to equilibrium.

5.1 Thermodynamic processes in viscous, heat-conducting gases

The objective of thermodynamics of viscous, heat-conducting gases is the determination of the 14
fields

𝐴𝐴 : particle flux vector
𝐴𝐴𝐵 : energy-momentum tensor (78)

in all events 𝑥𝐷. Both 𝐴𝐴 and 𝐴𝐴𝐵 are Lorentz tensors. The energy-momentum tensor is assumed
symmetric so that it has 10 independent components.

For the determination of these fields we need field equations and these are formed by the
conservation laws of particle number and energy-momentum, viz.

𝐴𝐴
,𝐴 = 0 (79)

𝐴𝐴𝐵
,𝐵 = 0 (80)

and by the equations of balance of fluxes

𝐴𝐴𝐵𝐶
,𝐶 = 𝐼𝐴𝐵 . (81)

𝐴𝐴𝐵𝐶 is the flux tensor – it is completely symmetric –, and 𝐼𝐴𝐵 is its production density. We
assume

𝐼𝐴
𝐴 = 0 and 𝐴𝐴𝐵

𝐵 = 𝑐2𝐴𝐴 (82)

so that among the 15 equations (79, 80, 81) there are 14 independent ones, which is the appropriate
number for 14 fields.

The components of 𝐴𝐴 and 𝐴𝐴𝐵 have the following interpretations

𝐴0 : 𝑐 · rest mass density,
𝐴𝑎 : flux of rest mass,

𝐴00 : energy density,
𝐴0𝑎 : 1/𝑐 · energy flux,
𝐴𝑎0 : 𝑐 ·momentum density,
𝐴𝑎𝑏 : momentum flux.

(83)

The motivation for the choice of equations (79, 80, 81), and in particular (81), stems from the
kinetic theory of gases. Indeed 𝐴𝐴 and 𝐴𝐴𝐵 are the first two moments in the kinetic theory and
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𝐴𝐴
,𝐴 = 0 and 𝐴𝐴𝐵

,𝐵 = 0 are the first two equations of transfer. Therefore it seems reasonable to
take further equations from the equation of transfer for the third moment 𝐴𝐴𝐵𝐶 and these have
the form (81). In the kinetic theory the two conditions (82) are satisfied.

The set of equations (79, 80, 81) must be supplemented by constitutive equations for the flux
tensor 𝐴𝐴𝐵𝐶 and the flux production 𝐼𝐴𝐵 . The generic form of these relations in a viscous,
heat-conducting gas reads

𝐴𝐴𝐵𝐶 = 𝐴𝐴𝐵𝐶(𝐴𝑀 , 𝐴𝑀𝑁 )
𝐼𝐴𝐵 = 𝐼𝐴𝐵(𝐴𝑀 , 𝐴𝑀𝑁 ).

(84)

If the constitutive functions 𝐴 and 𝐼 are known, we may eliminate 𝐴𝐴𝐵𝐶 and 𝐼𝐵𝐶 between (79,
80, 81) and (84) and obtain a set of field equations for 𝐴𝑀 , 𝐴𝑀𝑁 . Each solution is called a
thermodynamic process.

It is clear upon reflection that this theory, based on (79, 80,81) and (84), provides a special
case of the generic structure explained in Section 2.

5.2 Constitutive theory

We recall the restrictive principles of the constitutive theory from Section 2 and adjust them to
the present case

∙ entropy inequality ℎ𝐴
,𝐴 ≥ 0 with ℎ𝐴 = ℎ̂𝐴(𝐴𝑀 , 𝐴𝑀𝑁 ),

∙ principle of relativity.

The former principle was discussed and exploited in the general scheme of Section 2, but the
principle of relativity was not. This principle assumes that the constitutive functions 𝐴𝐴𝐵𝐶 , 𝐼𝐴𝐵 ,
ℎ̂𝐴 – generically 𝐶 – are invariant under Lorentz transformations

*
𝑥𝐴 =

*
𝑥𝐴(𝑥𝐵).

Thus the principle of relativity may be stated in the form

𝐶 = 𝐶(𝐴𝑀 , 𝐴𝑀𝑁 ) and
*
𝐶= 𝐶(

*
𝐴

𝑀 ,
*
𝐴

𝑀𝑀 ) (85)

Note that 𝐶 is the same function in both equations.
It is complicated and cumbersome to exploit the constitutive theory but the results are remark-

ably specific, at least for near-equilibrium processes:

∙ 𝐴𝐴𝐵𝐶 will be reduced to the thermal equation of state.

∙ 𝐼𝐴𝐵 will be reduced to the relaxation times of the gas, which may be considered to be of the
order of magnitude of the mean time of free flight of its molecules.

For details of the calculation the reader is referred to the literature, in particular to the book
by Müller & Ruggeri [39, 40] or the paper by Liu, Müller & Ruggeri [31]. Here we explain only
the results.

5.3 Results of the constitutive theory

No matter how much a person may be conditioned to think relativistically, he will appreciate the
decomposition of the four-tensors 𝐴𝐴, 𝐴𝐴𝐵 and ℎ𝐴 into their suggestive time-like and space-like
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components. We have

𝐴𝐴 = 𝑛𝑚𝑈𝐴

𝐴𝐴𝐵 = 𝑡⟨𝐴𝐵⟩ + (𝑝(𝑛, 𝑒) + 𝜋)ℎ𝐴𝐵 + 1
𝑐2 (𝑈𝐴𝑞𝐵 + 𝑈𝐵𝑞𝐴) + 𝑒

𝑐2 𝑈𝐴𝑈𝐵

ℎ𝐴 = ℎ𝑈𝐴 + Φ𝐴,

(86)

and the components have suggestive meaning as follows

𝑛 : number density
𝑈𝐴 : velocity

𝑡⟨𝐴𝐵⟩ : stress deviator
𝑝 + 𝜋 : pressure

𝑞𝐴 : heat flux
𝑒 : energy density
ℎ : entropy density

Φ𝐴 : (non-convective) entropy flux.

(87)

At least this is how 𝑛 through Φ𝐴 are to be interpreted in the rest frame of the gas.

We have defined ℎ𝐴𝐵 =
1
𝑐2

𝑈𝐴𝑈𝐵 − 𝑔𝐴𝐵 and 𝑚 is the molecular rest mass.

The decomposition (86) is not only popular because of its intuitive quality but also, since it is
now possible to characterize equilibrium as a process in which the stress deviator 𝑡⟨𝐴𝐵⟩, the heat
flux 𝑞𝐴 and the dynamic pressure 𝜋 – the non-equilibrium part of the pressure – vanish.

The equilibrium pressure 𝑝 is a function of 𝑛 and 𝑒, the thermal equation of state. In thermo-
dynamics it is often useful to replace the variables (𝑛, 𝑒) by

fugacity 𝛼 and absolute temperature 𝑇,

because these two variables can be measured – at least in principle. Also 𝛼 and 𝑇 are the natural
variables of statistical thermodynamics which provides the thermal equation of state in the form
𝑝 = 𝑝(𝛼, 𝑇 ). The transition between the new variables (𝛼, 𝑇 ) and the old ones (𝑛, 𝑒) can be effected
by the relations

𝑛𝑚 = − 1
𝑇

𝑝̇ and 𝑒 = 𝑝′ − 𝑝 (88)

where ˙ and ′ here and below denote differentiation with respect to 𝛼 and ln 𝑇 respectively.
If we restrict attention to a linear theory in 𝑡⟨𝐴𝐵⟩, 𝑞𝐴, and 𝜋, we can satisfy the principle of

relativity with linear isotropic functions for 𝐴𝐴𝐵𝐶 , 𝐼𝐵𝐶 viz.

𝐴𝐴𝐵𝐶 = (𝐶0
1 + 𝐶𝜋

1 𝜋)𝑈𝐴𝑈𝐵𝑈𝐶 + 𝑐2

6 (𝑛𝑚− 𝐶0
1 − 𝐶𝜋

1 𝜋)·

·(𝑔𝐴𝐵𝑈𝐶 + 𝑔𝐵𝐶𝑈𝐴 + 𝑔𝐶𝐴𝑈𝐵) + 𝐶3(𝑔𝐴𝐵𝑞𝐶 + 𝑔𝐵𝐶𝑞𝐴 + 𝑔𝐶𝐴𝑞𝐵)−

− 6
𝑐2 𝐶3(𝑈𝐴𝑈𝐵𝑞𝐶 + 𝑈𝐵𝑈𝐶𝑞𝐴 + 𝑈𝐶𝑈𝐴𝑞𝐵)+

+𝐶5(𝑡⟨𝐴𝐵⟩𝑈𝐶 + 𝑡⟨𝐵𝐶⟩𝑈𝐴 + 𝑡⟨𝐶𝐴⟩𝑈𝐵),

(89)

𝐼𝐵𝐶 = 𝐵𝜋
1 𝜋𝑔𝐴𝐵 − 4

𝑐2
𝐵𝜋

1 𝜋𝑈𝐴𝑈𝐵 + 𝐵3𝑡
⟨𝐴𝐵⟩ +

1
𝑐2

𝐵̂4(𝑞𝐴𝑈𝐵 + 𝑞𝐵𝑈𝐴). (90)

Note that 𝐼𝐵𝐶 vanishes in equilibrium so that no entropy production occurs in that state. The
coefficients 𝐶 and 𝐵 in (89, 90) are functions of 𝑒 and 𝑛, or 𝛼 and 𝑇 . In fact, the entropy principle
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determines the 𝐶’s fully in terms of the thermal equation of state 𝑝 = 𝑝(𝛼, 𝑇 ) as follows

𝐶0
1 =

Γ′1
2𝑐2𝑇

with Γ1 = −2𝑐2𝑇 6

∫︁
𝑝̇

𝑇 7
𝑑𝑇

𝐶𝜋
1 =− 2

𝑐2𝑇

⎡⎣ −𝑝 𝑝̇− 𝑝̇′ Γ̇1

𝑝̇− 𝑝̇′ 𝑝′ − 𝑝′′ Γ′1 − Γ1

Γ̇1 Γ′1 − Γ1
5
3Γ2

⎤⎦
⎡⎣ −𝑝 𝑝̇− 𝑝̇′ Γ̇1

𝑝̇− 𝑝̇′ 𝑝′ − 𝑝′′ Γ′1 − Γ1

−𝑝̇ −𝑝′ 5
3Γ1

⎤⎦

𝐶3 =− 1
2𝑇

[︂
𝑝̇ −Γ̇1

Γ1 Γ2

]︂
[︂

𝑝̇ −Γ̇1

𝑝′ Γ1 − Γ′1

]︂

𝐶5 =− 1
2𝑇

Γ2

Γ1
with Γ2 = 2𝑐2𝑇 8

∫︁
1

𝑇 3
Γ̇1𝑑𝑇.

(91)

The 𝐵’s in (90) are restricted by inequalities, viz.

𝐵𝜋
1 ≥ 0, 𝐵̂4 ≥ 0, 𝐵3 ≤ 0. (92)

All 𝐵’s have the dimension 1/sec and we may consider them to be of the order of magnitude of
the collision frequency of the gas molecules.

In conclusion we may write the field equations in the form

(𝑛𝑚𝑈𝐴),𝐴 = 0 (93)

(𝑡⟨𝐵𝐴⟩ + (𝑝 + 𝜋)ℎ𝐵𝐴 +
1
𝑐2

(𝑞𝐵𝑈𝐴 + 𝑞𝐴𝑈𝐵) +
𝑒

𝑐2
𝑈𝐵𝑈𝐴),𝐴 = 0 (94)

𝐴𝐵𝐶𝐴
,𝐴 = 𝐵𝜋

1 𝜋𝑔𝐵𝐶 − 4
𝑐2

𝐵𝜋
1 𝜋𝑈𝐵𝑈𝐶 + 𝐵3𝑡

⟨𝐵𝐶⟩ +
1
𝑐2

𝐵̂4(𝑞𝐵𝑈𝐶 + 𝑞𝐶𝑈𝐵), (95)

where 𝐴𝐵𝐶𝐴 must be inserted from (89) and (91). This set of equations represents the field
equations of extended thermodynamics. We conclude that extended thermodynamics of viscous,
heat-conducting gases is quite explicit – provided we are given the thermal equation of state
𝑝 = 𝑝(𝛼, 𝑇 ) – except for the coefficients 𝐵. These coefficients must be measured and we proceed
to show how.

5.4 The laws of Navier–Stokes and Fourier

It is instructive to identify the classical constitutive relations of Navier–Stokes and Fourier of TIP
within the scheme of extended thermodynamics. They are obtained from (93, 94, 95) by the first
step of the so-called Maxwell iteration which proceeds as follows: The 𝑛th iterate

(𝑛)

𝐼
𝐴𝐵

(︂
or

(𝑛)
𝜋 ,

(𝑛)

𝑡 𝐴𝐵 ,
(𝑛)
𝑞 𝐴

)︂
results from
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𝐴𝐴
,𝐴 = 0

(𝑛−1)

𝐴 𝐴𝐵
,𝐵 = 0

(𝑛−1)

𝐴 𝐴𝐵𝐶
,𝐶 =

(𝑛)

𝐼 𝐴𝐵

with the
initiation
agreement

(𝐸)

𝐴 𝐴
,𝐴 = 0

(𝐸)

𝐴 𝐴𝐵
,𝐵 = 0

(𝐸)

𝐴 𝐴𝐵𝐶
,𝐶 =

(1)

𝐼 𝐴𝐵 (96)

where
(𝐸)

𝐴 are equilibrium values.
A little calculation provides the first iterates for dynamic pressure, stress deviator and heat

flux in the form
(1)
𝜋 = −𝜆

[︀
𝑈𝐴

,𝐴

]︀
(97)

(1)

𝑡 ⟨𝐴𝐵⟩= 𝜇
[︀
ℎ𝑀

𝐴 ℎ𝑁
𝐵 𝑈⟨𝑀,𝑁⟩

]︀
(98)

𝑞𝐴 = −𝜅

[︂
ℎ𝑀

𝐴 (ln 𝑇 ),𝑀 − 1
𝑐2

𝑑𝑈𝑀

𝑑𝜏

]︂
(99)

with

𝜆 =
1

2𝑇𝐵𝜋
1

⎡⎣ −𝑝 𝑝̇− 𝑝̇′ Γ̇1

𝑝̇− 𝑝̇′ 𝑝′ − 𝑝′′ Γ′1 − Γ1

Γ̇1 Γ′1 − Γ1
5
3Γ2

⎤⎦
[︂
−𝑝 𝑝̇− 𝑝̇′

𝑝̇− 𝑝̇′ 𝑝′ − 𝑝′′

]︂
𝜇 =

1
2𝑇𝐵3

Γ1

𝜅 =
1

2𝑇 2𝐵̂4

[︂
𝑝̇ −Γ̇1

𝑝′ Γ1 − Γ′1

]︂
𝑝̇

These are the relativistic analogues of the classical phenomenological equations of Navier–Stokes
and Fourier. 𝜆, 𝜇 and 𝜅 are the bulk viscosity, the shear viscosity and the thermal conductivity
respectively; all three of these transport coefficients are non-negative by the entropy inequality.

The only essential difference between the equations (97, 98, 99) and the non-relativistic phe-
nomenological equations is the acceleration term in (99). This contribution to the Fourier law was
first derived by Eckart, the founder of thermodynamics of irreversible processes. It implies that
the temperature is not generally homogeneous in equilibrium. Thus for instance equilibrium of a
gas in a gravitational field implies a temperature gradient, a result that antedates even Eckart.

We have emphasized that the field equations of extended thermodynamics should provide finite
speeds. Below in Section 5.6 we shall give the values of the speeds for non-degenerate gases. In
contrast TIP leads to parabolic equations whose fastest characteristic speeds are always infinite.
Indeed, if the phenomenological equations (97, 98, 99) are introduced into the conservation laws (93,
94) of particle number, energy and momentum, we obtain a closed system of parabolic equations for
𝑛, 𝑈𝐴 and 𝑒. This unwelcome feature results from the Maxwell iteration; it persists to arbitrarily
high iterates.

5.5 Specific results for a non-degenerate relativistic gas

For a relativistic gas Jüttner [22, 23] has derived the phase density for Bosons and Fermions,
namely

𝑓𝐸 =
𝑦

exp
[︂
𝑚

𝑘
𝛼 +

𝑈𝐴

𝑘𝑇
𝑝𝐴

]︂
∓ 1

or 𝑓𝐸 =
𝑦

exp

[︃
𝑚

𝑘
𝛼 +

𝑚𝑐2

𝑘𝑇

√︂
1 +

𝑝2

𝑚2𝑐2

]︃
∓ 1

. (100)
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The latter equation is valid in the rest frame of the gas. 𝑝𝐴 is the atomic four-momentum and we
have 𝑝𝐴𝑝𝐴 = 𝑚2𝑐2. Jüttner has used these phase densities to calculate the equations of state. For
the non-degenerate gas he found that Bessel functions of the second kind, viz.

𝐾𝑛

(︂
𝑚𝑐2

𝑘𝑇

)︂
=

∞∫︁
0

cos ℎ(𝑛𝜌) exp
(︂
−𝑚𝑐2

𝑘𝑇
cos ℎ𝜌

)︂
𝑑𝜌 (101)

are the relevant special functions. The thermal equation of state 𝑝 = 𝑝(𝛼, 𝑇 ) reads

𝑝 = 𝑛𝑘𝑇 with 𝑛 = exp
(︁
−𝑚

𝑘
𝛼
)︁
· 4𝜋𝑦𝑚3𝑐3

𝐾2

(︁
𝑚𝑐2

𝑘𝑇

)︁
𝑚𝑐2

𝑘𝑇

, (102)

where 1/𝑦 is the smallest phase space element. From (102) we obtain with 𝐺 =
𝐾3

𝐾2
and 𝛾 =

𝑚𝑐2

𝑘𝑇

𝑒 = 𝑛𝑚𝑐2

(︂
𝐺− 1

𝛾

)︂
,

Γ1

𝑇
= 𝑛𝑚𝑐2 2

𝛾
𝐺 (103)

and hence
𝐶0

1 = 𝑛𝑚
(︁
1 + 6

𝛾 𝐺
)︁

𝐶𝜋
1 = − 6

𝑐2

(︀
2− 5

𝛾2

)︀
+
(︀

19
𝛾 −

30
𝛾3

)︀
𝐺−
(︀
2− 45

𝛾2

)︀
𝐺2− 9

𝛾 𝐺3

3
𝛾−
(︀
2− 20

𝛾2

)︀
𝐺− 13

𝛾 𝐺2+2𝐺3

𝐶3 = − 1
𝛾

1+ 6
𝛾 𝐺−𝐺2

1+ 5
𝛾 𝐺−𝐺2

𝐶5 =
(︁

6
𝛾 + 1

𝐺

)︁
.

(104)

The transport coefficients read

𝜆 = 1
3

𝑛𝑚𝑐2

𝛾
1

𝐵𝜋
1

− 3
𝛾 +
(︀
2− 20

𝛾2

)︀
𝐺+ 13

𝛾 𝐺2+2𝐺3

1− 1
𝛾2 + 5

𝛾 𝐺−𝐺2

𝜇 = −𝑛𝑘𝑇 1
𝐵3

𝐺

𝜅 = −𝑛𝑘𝑇 𝑐2

𝐵̂4

(︀
𝛾 + 5𝐺− 𝛾𝐺2

)︀
.

(105)

It is instructive to calculate the leading terms of the transport coefficients in the non-relativistic
case 𝑚𝑐2 ≫ 𝑘𝑇 . We obtain

𝜆 = − 5
6𝐵𝜋

1

𝑛𝑘𝑇
1
𝛾2

(106)

𝜇 = − 1
𝐵3

𝑛𝑘𝑇 (107)

𝜅 = − 5
2𝐵̂4

𝑛𝑘2𝑇

𝑚
. (108)

It follows that the bulk viscosity does not appear in a non-relativistic gas. Recall that the coeffi-
cients 1/𝐵 are relaxation times of the order of magnitude of the mean-time of free flight; so they
are not in any way ”relativistically small”.

Note that 𝜆, 𝜇 and 𝜅 are measurable, at least in principle, so that the 𝐵’s may be calculated
from (105). Therefore it follows that the constitutive theory has led to specific results. All consti-
tutive coefficients are now explicit: The 𝐶’s can be calculated from the thermal equation of state
𝑝 = 𝑝(𝛼, 𝑇 ) and the 𝐵’s may be measured.
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It might seem from (106) and (97) that the dynamic pressure is of order 𝑂

(︂
1
𝛾2

)︂
but this is

not so as was recently discovered by Kremer & Müller [27]. Indeed, the second step in the Maxwell

iteration for 𝜋 provides a term that is of order 𝑂

(︂
1
𝛾

)︂
, see also [28]. That term is proportional to

the second gradient of the temperature 𝑇 so that it may be said to be due to heating or cooling.
Specific results of the type (104, 105) can also be calculated for degenerate gases with the

thermal equation of state 𝑝(𝛼, 𝑇 ) for such gases. That equation was also derived by Jüttner [23].
The results for 14 fields may be found in Müller & Ruggeri [39, 40].

5.6 Characteristic speeds in a viscous, heat-conducting gas

We recall from Section 2.4, in particular (14), that the jumps 𝛿𝑢 across acceleration waves and
their speeds of propagation are to be calculated from the homogeneous system

𝜑,𝐴
𝜕𝐹 𝐴

𝜕𝑢
𝛿𝑢 = 0. (109)

In the present context, where the field equations are given by (79, 80) this homogeneous algebraic
system spreads out into three equations, viz.

𝜑,𝐴𝛿𝐴𝐴 = 0, 𝜑,𝐴𝛿𝐴𝐴𝐵 = 0, 𝜑,𝐴𝛿𝐴𝐴𝐵𝐶 = 0. (110)

By (89) and (91) this is a fully explicit system, if the thermal equation of state 𝑝 = 𝑝(𝛼, 𝑇 ) is known.
The vanishing of its determinant determines the characteristic speeds. Seccia & Strumia [44] have
calculated these speeds – one transversal and two longitudinal ones – for non-degenerate gases and
obtained the following results in the non-relativistic and ultra-relativistic cases

𝑚𝑐2

𝑘𝑇 ≫ 1 : 𝑉trans =
√︁

7𝑘
5𝑚𝑇 , 𝑉 1

long =
√︁

4𝑘
3𝑚𝑇 , 𝑉 2

long =
√︁

5.18 𝑘
𝑚𝑇 ,

𝑚𝑐2

𝑘𝑇 ≪ 1 : 𝑉trans =
√︁

1
5𝑐, 𝑉 1

long =
√︁

1
3𝑐, 𝑉 2

long =
√︁

3
5𝑐.

(111)

All speeds are finite and smaller than c. Inspection shows that in the non-relativistic limit the order
of magnitude of these speeds is that of the ordinary speed of sound, while in the ultra-relativistic
case the speeds come close to c.

5.7 Discussion

So as to anticipate a possible misunderstanding I remark that the equations (93, 94, 95) with 𝐴𝐴𝐵𝐴

from (89) and (91) are neither symmetric nor fully hyperbolic. Indeed the underlying symmetry
of the system (79, 80, 81), and (84) reveals itself only when the Lagrange multipliers Λ are
used as variables. But (93, 94, 95, 89, 91) are equations for the physical variables 𝐴𝐴, 𝐴𝐴𝐵 or
in fact 𝑛, 𝑇, 𝑈𝐴, 𝑡𝐴𝐵 , and 𝑞𝐴. Also the hyperbolicity in the whole state space is lost, because
the equations (89, 90) are restricted to linear terms. Therefore the system is hyperbolic only in
the neighbourhood of equilibrium. For a more detailed discussion of these aspects, see Müller &
Ruggeri [39, 40].
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