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Cheats are a pervasive threat to public goods production in natural and
human communities, as they benefit from the commons without
contributing to it. Although ecological antagonisms such as predation,
parasitism, competition, and abiotic environmental stress play key roles
in shaping population biology, it is unknown how such stresses
generally affect the ability of cheats to undermine cooperation. We
used theory and experiments to address this question in the patho-
genic bacterium, Pseudomonas aeruginosa. Although public goods pro-
ducers were selected against in all populations, our competition
experiments showed that antibiotics significantly increased the ad-
vantage of nonproducers. Moreover, the dominance of nonpro-
ducers in mixed cultures was associated with higher resistance to
antibiotics than in either monoculture. Mathematical modeling indi-
cates that accentuated costs to producer phenotypes underlie the
observed patterns. Mathematical analysis further shows how these
patterns should generalize to other taxa with public goods behav-
iors. Our findings suggest that explaining the maintenance of coop-
erative public goods behaviors in certain natural systems will be
more challenging than previously thought. Our results also have
specific implications for the control of pathogenic bacteria using an-
tibiotics and for understanding natural bacterial ecosystems, where
subinhibitory concentrations of antimicrobials frequently occur.
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Public goods production is a characteristic of a diverse range
of taxa, from microbes to humans (1–3). Explaining the

persistence of this costly behavior is challenging, because cheats
can exploit the commons without contributing. Kin selection theory
has proven to be a successful framework for addressing this ques-
tion, with the central prediction that cooperation is favored by
sufficient benefits to, and positive assortment between, cooperators
(4–8). For example, recent study in experimental bacterial pop-
ulations has elucidated mechanisms such as assortment emerging
from limited or budding dispersal (9, 10) and kin discrimination
(11, 12) that are consistent with kin selection fostering cooperative
behaviors (e.g., refs. 8 and 13). However, despite this accumulating
consensus, little is known about how social populations respond to
differences and variation in abiotic and biotic components of their
environment. In particular, it is unclear how ecological antago-
nisms affect the ability of cheats to invade cooperator communities.
Cooperation can be affected by stress directly through differ-

ential selection on cooperative phenotypes (14, 15), or by inducing
specific plastic behaviors (16–22), especially when cooperation
leads to increased stress resistance. However, in the absence of a
direct benefit of the cooperative behavior against stress, the eco-
logical and evolutionary outcomes of the interactions between
nondefensive public goods and stress responses are less clear and
are potentially complex. Cooperation may be influenced indirectly
through impacts on population structure and dynamics (23), via
epistasis or pleiotropy (24) or through the hitchhiking of co-
operative genes with resistance mutations (25–27). In the case of
hitchhiking, the fate of cooperators might in part be contingent on
whether they represent the majority of the population when the
environmental stress occurs. This is because the probability of the

emergence of resistance or tolerance mutations should increase with
population size (25, 28), and so these mutations are most likely to
appear in the more numerous and/or fastest-growing subpopulation.
On the other hand, we would more generally expect that, under
sublethal stress, nonproducers limit the emergence and spread of
resistant cooperators by cheating on public goods production. In
addition, should stress responses (29–31) or the evolution of stress
resistance (32–34) entail costs, such costs could potentially interact
with social behaviors and accentuate selection for cheating. Evi-
dence to support or refute such hypotheses is lacking. Addressing
this gap crucially requires characterizing—both experimentally and
in general theoretical models—how the fitness of cheats, relative to
producers, depends on the level of ecological stress.
Microbial populations are an increasing focus for research on

public goods dynamics (35–37). Microbes may exhibit rapid
ecological and evolutionary responses and are amenable to
controlled laboratory experimentation (36, 38). Bacteria, in
particular, show a variety of behaviors consistent with basic
social interactions. These frequently involve the coordinated
secretion of metabolites that are potentially beneficial to others
(i.e., public goods), leading to, for example, collective motility
and/or resource acquisition (e.g., reviewed in refs. 35, 39, and
40). Bacteria are also confronted with a variety of antagonisms,
including predation and parasitism (e.g., phages, metazoans,
and plasmids), antimicrobials produced by other organisms
(antibiotics, AMPs, and toxins), and abiotic environments
(extreme temperatures, pH, and salinity) that can result in
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reduced fitness through decreases in survival and re-
production. In particular, subinhibitory concentrations of an-
timicrobials are pervasive in natural environments such as
rivers, lakes, soils, and bacterial hosts (animals and plants). In
human society, subinhibitory levels of anthropogenic antibi-
otics are important for their impacts on managed systems (e.g.,
animal husbandry), their effects as environmental pollutants,
and their key role in the progressive increases in antibiotic re-
sistance (41–43). Subinhibitory concentrations have been shown to
affect cellular physiology and genetic variability and behaviors, yet the
evolutionary implications for both social and asocial traits are largely
unknown (41).
We used a bacterial system to test the prediction that the direct

cost of public goods production and indirect costs through exploi-
tation by nonproducers accentuate both the ecological and evolu-
tionary benefits of cheating when the population faces an
environmental stress. Specifically, we examined how a public goods
trait in the form of siderophore production interacts with resistance
evolution to the antibiotic gentamicin in the pathogenic bacterium,
Pseudomonas aeruginosa. We grew a strain of P. aeruginosa PAO1
producing the siderophore pyoverdin and/or a nonproducing strain
under iron-limited conditions with different doses of the antibiotic.
Siderophores are small secreted molecules that chelate poorly sol-
uble iron in the environment, making the iron available to bacteria
via specific outer-membrane receptors (44). Because any cell car-
rying these receptors can use chelated iron, siderophores are a
public good in well-mixed environments. As such, costly side-
rophore production is vulnerable to “cheating” by cells that do not
produce the molecule, but possess specialized receptors and reap
the benefit of available iron (e.g., refs. 13 and 45). We used sub-
inhibitory antibiotic concentrations, which the bacteria are most
likely to encounter in natural settings and in host tissues (46–49).
We assessed (i) the impact of antibiotic pressure on the interaction
between the two production genotypes and (ii) the consequences
for the population response to antibiotics, in particular the evolu-
tion of resistance. We found that antibiotic stress accelerates the
decline of producers in mixed cultures, indicating that the envi-
ronment can shape competitive interactions. Moreover, non-
producer resistance frequency was greater in mixed cultures
compared with monocultures of either nonproducers or pro-
ducers. A mathematical model shows that these observed
qualitative patterns may be explained by the constitutive in-
vestment in pyoverdin production decreasing the capacity of
producers to cope with antibiotic stress in the presence of
nonproducers. Given the generality of the model, its predic-
tions regarding the interplay between social and stress re-
sistance traits should apply to many other biological systems.

We discuss these findings in the contexts of social evolution and
resistance to antagonisms, with a focus on bacterial evolution.

Experimental Results
Changes in Nonproducer Frequency. In all mixed populations, for
all three initial frequencies and four antibiotic treatments (Fig.
1A), nonproducer frequency increased over the course of the ex-
periment (Fig. 1B). Nonproducer frequencies were substantially
higher in the presence of the antibiotic than in the antibiotic-free
controls. At higher doses (4 and 8 μg/mL), nonproducers had
often reached near fixation (>90%) after 48 h.
Antibiotic dose further affected the timing of changes in the

relative frequencies of producers and nonproducers, as indicated
by the significant Time × Gentamicin interaction [χ2(3) = 123.39,
P < 0.0001]. Namely, at the two lower doses (2 and 4 μg/mL),
nonproducer frequencies increased considerably during the first
24 h and then reached a peak (Fig. 1B). At the highest antibiotic
dose (8 μg/mL), this increase was delayed by approximately 24 h.
These patterns were similar for all initial frequencies of non-

producers, and the significant three-way interaction [Time ×
Gentamicin × Initial Frequency, χ2(6) = 26.69, P < 0.001] likely
reflects the lower absolute change in frequency for populations
initiated with 75% of nonproducers.

Effects of the Antibiotic and Initial Nonproducer Frequency on
Bacterial Antibiotic Resistance. Experimental treatments affected
resistance frequencies in three main ways. First, increasing the
dose of gentamicin led to higher frequencies of resistant cells, with
a difference of up to five orders of magnitude between the highest
dose (8 μg/mL) and the control (Fig. 1C). Nonetheless, the fre-
quency of resistance always remained below 10%.
Second, producer monocultures generally showed higher fre-

quencies of resistance than nonproducer monocultures at all three
gentamicin doses [producer vs. nonproducer: χ2(1) = 9.0, P < 0.005;
Fig. 1C]. Third, resistance was more frequent in mixed culture than
in monoculture, in particular at high antibiotic dose (Fig. 1C). This
general pattern held for both producers [mono vs. mixed: χ2(1) =
43.7, P < 0.0001] and nonproducers [χ2(1) = 34.2, P < 0.0001],
despite some deviations [significant Dose × Initial Nonproducer
Frequency interactions for both producer types: χ2(9) > 16, P < 0.05
for both analyses]. Namely, for producers, the higher mixed-culture
resistance was only consistently prominent in lines from the highest
antibiotic dose treatment (Fig. 1C, Left). Nonproducers showed
higher mixed-culture resistance over all dose treatments, but there
was more variation among lines with different initial nonproducer
frequencies (Fig. 1C, Right). A supplementary replicate experiment
confirmed these main results (SI Appendix, Fig. S3 E–G).
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The unexpected observation of higher frequencies of pro-
ducer resistance in mixed culture led us to conduct a series of
additional assays (SI Appendix) to investigate in more detail the
quantitative levels of resistance (measured as the minimum in-
hibitory concentration) and associated fitness costs in mixed and
monocultures. Our hypothesis was that producers in mixed culture
might have acquired particular adaptations to selection pressures
from both nonproducers and the antibiotic, resulting in highly re-
sistant, fit producers that could coexist with nonproducers. Indeed,
we found that, unlike nonproducers, producers tended to be more
resistant (higher level of resistance) in mixed cultures compared
with monocultures (P < 0.05, SI Appendix, Fig. S4 A–C). Moreover,
this higher level of resistance did not come at an increased fitness
cost: resistant producers showed an average reduction of growth of
40%, both in monocultures and mixed cultures, compared with
nonresistant producers [ANOVA, F(1, 41) = 116.232, P < 0.001; SI
Appendix, Fig. S4 D–F]. On the basis of the growth assays, the
availability and production of pyoverdin were higher in resistant
producers compared with nonresistant producers [availability:
ANOVA, F(1, 9) = 21.603, P < 0.005; production: ANOVA, F(1,
9) = 69.362, P < 0.001]. However, we did not detect significant
differences in pyoverdin availability [ANOVA, F(1, 9) = 0.069, P =
0.799; SI Appendix, Fig. S5A] or production per cell [ANOVA,
F(1, 9) = 1.252, P = 0.292; SI Appendix, Fig. S5 B–D] between re-
sistant colonies from mixed cultures and monocultures. This
finding suggests that competition with nonproducers did not
select for decreased pyoverdin production in resistant producers.
We then investigated genetic resistance to gentamicin in resistant

and nonresistant individual colonies of producers and non-
producers from all treatments in the repeated 48-h experiment (SI
Appendix). We sequenced the repressor gene and intergenic region
of the efflux pump MexXY, described as the only identified pump
mediating aminoglycoside resistance (50, 51). Although the ob-
served selection for resistant phenotypes suggests an underlying
genetic component, we did not detect any evidence of gene mod-
ification in these markers (SI Appendix). We further tested for the
presence of nine genes coding for gentamicin-degrading enzymes
and did not detect any of these genes.

Theoretical Framework
Our experimental results showed that (i) antibiotics increased the
frequency of nonproducers in mixed cultures in a dose-dependent
manner and (ii) the frequency of resistant cells was higher in mixed
cultures than in either monoculture. We hypothesized that the cost
of public goods production reduced the capacity of producers to
cope with antibiotic stress, perhaps by depleting metabolic re-
sources that would otherwise be expended on countering effects of
the antibiotic. This would be especially pronounced in the presence
of nonproducers because the latter constitute an indirect cost by
removing iron from the environment. We developed and analyzed
a mathematical model to examine this hypothesis and to investigate
more generally how an ecological antagonism can influence com-
petition between public goods producers and nonproducers.

Effects of an Ecological Antagonism on Interactions Between Producers
and Nonproducers. In analyzing the effects of an ecological antag-
onism, we are primarily interested in how rapidly the frequency of
nonproducers increases during the exponential growth phase,
when population size and public goods concentration are both
relatively small. We therefore assume that the latter two factors
have relatively little effect on the frequency dynamics and can be
neglected. We further assume that the cost of public goods pro-
duction is approximately constant. For an antagonism that slows
growth or reproduction, the dynamical equations are then

dNPS

dt
= bð1− cÞð1− «PSÞNPS,  

dNQS

dt
= b

�
1− «QS

�
NQS,

where NPS and NQS are the numbers of producers and nonpro-
ducers (respectively), b is the baseline birth rate, c is the cost of
public goods production, and «PS ≤ 1 and «QS ≤ 1 are the effects
of the antagonism. The equations for a mortality-inducing antag-
onism are similar (SI Appendix). We assume the antagonism
dose–response curve can be approximated by a sigmoidal Hill
function kAh/(Ah + Mh), where A is the level of the antagonism,
and k, h, and M are constant parameters. The Hill function form
accords, for example, with the pharmacodynamics of antibiotics
including gentamicin (52–54).
Analysis of our mathematical model reveals that, in general, the

relative fitness of nonproducers can vary with the antagonism level in
four qualitatively different ways. The type of relationship (mono-
tonically increasing, monotonically decreasing, peaked, or valley
shaped) depends on the relative sizes of the antagonism effects and
the cost of public goods production (Fig. 2 and SI Appendix).
Nonproducer frequency is expected to increase fastest at in-

termediate antagonism levels (as in our experimental system) if the
antagonism (i) affects producers more than nonproducers at low
and intermediate levels, but (ii) impacts both populations similarly
at very high levels. This pattern holds over a wide range of plau-
sible parameter values, regardless of whether the antagonism af-
fects growth, reproduction, or mortality, and is not sensitive to
public goods dynamics (SI Appendix).
To further quantify antibiotic effects in our experimental

system, we extended our mathematical model, such that the
fitness of each subpopulation depended on the cost of public
goods production, the population density, the beneficial effect
of public goods, and effects of the antibiotic on bacterial
growth. We then tailored this model to our particular biological
system by specifying functional forms for each component (SI
Appendix). When fitted to the bacterial population data using a
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Markov chain Monte Carlo (MCMC) method (SI Appendix),
the dynamical model provides a good statistical fit to the ex-
perimental data (SI Appendix, Fig. S7), and shows frequency
dynamics qualitatively consistent with experimental observa-
tions (cf. Figs. 1B and 3A). Initially, nonproducer frequency
increases fastest at intermediate antibiotic concentrations and
increases slowest at high antibiotic concentrations. However,
under the reasonable assumption that the antibiotic effect de-
creases over time [which could occur, for example, due to drug
degradation (55) or bacterial adaptation (56)], the model pre-
dicts that the rate of change will accelerate in the latter case, as
we indeed observed in our experiments.

Effects of Nonproducer Frequency on Resistance to an Ecological
Antagonism. We next investigated the effects of the initial fre-
quency of public goods nonproducers (and the antagonism level)
on the frequency of resistance to an ecological antagonism, by
extending the previously described mathematical model to include
resistant and susceptible subpopulations of producers and non-
producers. To ensure generality, we analyzed various alternative
ways in which the public goods concentration, the antagonism
level, and the cost of resistance to the antagonism might affect the
relative fitness of the resistant subpopulation (SI Appendix). This
analysis reveals that, when the antagonism level is relatively high,
a public good (such as pyoverdin) will increase the final frequency
of resistance to the antagonism only if (i) the beneficial effect of
the public good interacts with the effect of the antagonism or with
the cost of resistance (or both); and (ii) the primary effect of the
antagonism is to slow growth or reproduction. When these con-
ditions are met, the beneficial effects of the public good accen-
tuate the fitness difference resulting from the unequal effects of
the antagonism on susceptible and resistant subpopulations.
According to the fitted model described previously (SI Ap-

pendix, Fig. S7), pyoverdin’s effect on the final frequency of
resistance increased with antibiotic dose, within the range
tested in our experiments (Fig. 3B). The model output re-
sembles the data for the frequency of resistance in non-
producers, but is less accurate for the frequency of resistance in
producers. An examination of the data (SI Appendix, Fig. S7)
suggests that this discrepancy is a result of the rapid decrease in
the susceptible producer population toward the end of the
experiment, which may have been due to environmental de-
terioration (not included in the mathematical model).

Discussion
Social behaviors are widespread across the living world at all or-
ganizational levels (57). Whereas underlying intrapopulation in-
teractions have been extensively studied, their interplay with

environmental factors is only beginning to be understood. Im-
portantly, very little is known about how ecological antagonisms
affect the risk that cheating will undermine cooperation, particu-
larly when cooperation is not directly involved in resistance or
tolerance. Here, we focused on the interplay between antibiotic
stress and siderophore cooperation in P. aeruginosa. We found
that antibiotics constitute a cost to social behaviors, manifested by
an increased benefit of cheating under stressful conditions.
Mathematical analyses show the key driver to be the differential
stress sensitivities (and fitness effects) of the two public goods
strategies. Our experimental and theoretical results thus contrib-
ute to disentangling the complex ecological and evolutionary dy-
namics of public goods behaviors and their interactions with
biological stressors such as antibiotics. Our mathematical model is
sufficiently general for its testable predictions to apply to public
goods cooperation across a wide array of biological systems. Below
we discuss the importance of ecological antagonisms in the evo-
lution of public goods behaviors and resistance.
The essential element underlying all of our results is that,

whereas public goods benefit every individual, only producers pay
the associated fitness cost. This factor can explain why producer
bacteria were more affected than nonproducers by antibiotic stress:
the fitness cost of pyoverdin production (58) limited the capacity of
producers to resist antibiotics (which is also associated with a
metabolic fitness cost in antibiotic-free medium; SI Appendix, Fig.
S4 D–F) (59) and to compete with nonproducers. In other words, in
the absence of a “private benefit” to producers, it is growth in the
absence of stress that, all else being equal, determines how well a
strain can cope with an ecological antagonism. This is consistent
with the findings of Mitri et al. (60) who used computer simulations
in a spatial setting and showed that antagonism (in this case, eco-
logical competition) is more detrimental to cooperators than to
cheats when nutrients are limiting. The authors suggested that this
effect occurs because the investment in cooperative secretions limits
growth and thereby competitive ability. Alternatively, in some
particular cases, antagonisms may directly increase the benefit to
nonproducers by inducing the production of costly public goods (20,
61). In Staphylococcus aureus, for example, sublethal doses of
ciprofloxacin, mupirocin, or rifampicin induce the expression of the
costly effector molecule regulating the quorum-sensing system agr,
thereby favoring agr-negative variants (61). Such findings add to the
challenge of explaining how public goods cooperators and cheats
coexist in nature. Our results specifically imply that cooperation
may be even costlier in natural social bacterial systems than sug-
gested by previous study (e.g., ref. 13). In many cases, a likely im-
portant factor enabling coexistence is spatial structure (62–64),
whereby spatial segregation of nonproducers and producers limits
the exploitative potential of the former.
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In one of the few studies investigating interactions between anti-
biotics and social behaviors in bacteria, Diard et al. (14) assessed the
in vivo impact of ciprofloxacin on competition between virulent
cooperative Salmonella enterica serovar Typhimurium and avirulent
defectors. In the absence of the antibiotic, defectors outcompeted
cooperators in the gut lumen, whereas the antibiotic addition re-
versed the outcome, leading to selection for the virulent coopera-
tors. Indeed, only the virulent cells were able to invade host tissues
and escape antibiotic mortality in the lumen. The authors observed
that, when antibiotic pressure decreased, the virulent strain rein-
vaded the gut lumen. Our results contrast with these findings of
Diard et al., as we observed that antibiotics led to the selection of
nonproducers over producers. We hypothesize that this finding is
because of differences in spatial structure between the two studies:
whereas the gut lumen is a highly structured environment, our
in vitro studies were conducted under well-mixed conditions, where
producers had no refuge from the antibiotic nor from exploitation
by nonproducers.
Whereas public goods availability had relatively little effect on

nonproducer frequency dynamics, we found it had a major role in the
evolution of resistance to an ecological antagonism. Pure producer
populations should have the highest public goods availability per in-
dividual, leading to the highest growth rates and population sizes, and
therefore one might expect to see the highest final frequency of re-
sistance in the absence of cheats. However, in our experiments we
found that, under the highest antibiotic dose, the frequency of re-
sistant cells was higher in mixed cultures. Our mathematical model
shows that this pattern is predicted when a bacteriostatic antibiotic
affects producers more than nonproducers, provided the beneficial
effect of the public good interacts with the effects of the drug (SI
Appendix). This model can explain why resistant nonproducers grew
faster in mixed cultures, not only compared with resistant non-
producers in monoculture, but also compared with resistant pro-
ducers in monoculture, thereby leading to more resistance in mixed
populations. The optimal frequency for nonproducers appears to be
low. When initially very frequent (75%), nonproducers did not
evolve substantially higher frequencies of resistance compared with
their populations in monoculture, possibly as uncommon producers
yielded a low pyoverdin concentration, thereby contributing rela-
tively little both to nonproducer growth (20) and to the generation
of resistant variants. An additional experiment (SI Appendix) con-
firmed that differences in growth and antibiotic resistance between
producers and nonproducers are mediated by pyoverdin availability
and production: when populations grew under high iron availability
conditions (i.e., where siderophores are not needed), the non-
producers did not invade the mixed populations (SI Appendix, Fig.
S6A) and the frequency of resistance was similar for both strains in
mixed cultures and in both monocultures (SI Appendix, Fig. S6 E–G).
Our mathematical model also predicts that, when iron availability is
limited, resistance among producers will be more frequent in
monocultures than in mixed cultures, yet experimentally we observed
the opposite pattern. This discrepancy between theory and experi-
ments may be explained by the steep decline in sensitive producer
densities near the end of the culture period, as they succumbed to the
combined effects of antibiotics and exploitation by cheats.
Our results have implications for the control of cooperatively

foraging or scavenging pathogenic bacteria using antibiotics in
resource-limited infections as we have found that antibiotics can select
for an overall higher prevalence of resistance when both producers
and nonproducers are present. It has previously been shown that
selection for nonproducers is expected to lower bacterial virulence
(65, 66). We observed that highly resistant producers also arose
in mixed cultures, but they were outcompeted by resistant non-
producers. This could have implications for predicting the direct
and knockon effects of antibiotic dosing on treatment outcomes
(e.g., see discussion in ref. 67).
Our findings also provide insights into competitive interactions

in natural ecosystems. In particular, our study addresses two of the

“outstanding questions” in a recent review by Ghoul and Mitri
(68): How does the environment dictate the prevalence of com-
petition? And: Is it possible to manipulate competition by altering
environmental conditions? We have shown that the prevalence
and outcomes of competition may be highly dependent on the
environment, so that it is possible to manipulate the relative fitness
of competitors by modifying their environment. Indeed, increased
iron availability resulted in the higher relative fitness of producers.
Moreover, the dose of antibiotics in the environment shapes the
outcomes of competition between producers and nonproducers,
with intermediate doses increasing the advantage to nonproducers.
Previous research has propounded the importance of ecology in

social evolution and called for a deeper integration of ecological
factors in social theory (69–73). Further to this claim, we suggest
that ecological stressors could impact social evolution in microbes
and in multicellular taxa more generally. Testing this broader
hypothesis would require extensions of our mathematical model
and experiments to assess the costs and payoffs of different social
strategies in a wider range of environments with various types of
spatial structure.

Materials and Methods
Experiment.
Experimental protocol.We used P. aeruginosa PAO1 as the pyoverdin-producing
wild type (“producers”) and an otherwise isogenic mutant PAO1ΔpvdD (74) un-
able to produce pyoverdin (“nonproducers”). We inoculated bacteria as either
monocultures or mixed cultures of producers and nonproducers to a final density
of approximately 107 bacteria per milliliter into fresh iron-limited medium with
either a low (2 μg/mL), intermediate (4 μg/mL), or high (8 μg/mL) dose of genta-
micin, or in antibiotic-freemedium (Fig. 1A). Mixed populations were initiatedwith
15%, 45%, or 75%of nonproducers. Each treatmentwas replicated five times for a
total of 100 populations (4 antibiotic conditions × 5 types of cultures × 5 replicates)
that were arbitrarily distributed in 48-well plates. The experiment was run for 48 h
at 37 °C under constant shaking (350 rpm, 8-mm stroke). We measured the den-
sities and the relative frequencies of producers and nonproducers by plating
samples of each population onto King’s Bmedium (KB) agar plates and subsequent
counting of colony forming units (CFUs) at the beginning of the experiment (T0)
and after 10 (T10), 24 (T24), 34 (T34), and 48 (T48) hours. In addition, we estimated
the frequency of resistant cells at T0 and T48 by plating samples of each population
onto antibiotic-free KB agar plates and onto KB agar with 10 μg/mL gentamicin,
simultaneously. Experimental conditions are detailed in SI Appendix, section 1.
Additional assays. Following the above-described experiment, we conducted a
series of assays detailed in SI Appendix, sections 2 and 3. Briefly, we repeated the
experiment for a subset of treatments andwe isolated resistant and nonresistant
clones from the ancestral and all of the evolved populations. We subsequently
assayed pyoverdin production, the growth capacity and the level of gentamicin
resistance of these clones. We explored the genetic basis of gentamicin re-
sistance in the clones by target-sequencing and sequence amplification.
Moreover, we controlled for the importance of pyoverdin cooperation in
the observed dynamics by growing producers and nonproducers under
iron-rich conditions (i.e., that did not require siderophore production).

Mathematical Analysis and Modeling. We conducted a general mathematical
analysis of the relative fitness of public goods producer and nonproducer
subpopulations and of subpopulations resistant and susceptible to an eco-
logical antagonism. The main assumptions are that public goods production
and resistance to the antagonism incur fitness costs, and the antagonismmay
affect producers and nonproducers unequally. The full analysis can be found
in SI Appendix, section 4.

We also developed a more specific mathematical model of our experi-
mental system as a quantitative test of our assumptions. We fitted this model
to the bacterial population data using a MCMC method (75, 76) and verified
the fit with a different algorithm (77). Further details of the model are in
SI Appendix, section 4.
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