Skip to main content
. 2017 Jan 3;114(3):522–527. doi: 10.1073/pnas.1614577114

Table S2.

Interregional comparisons of AHI and dAHI values from forest inventory plots (n = 882)

Region No. of plots SA CA WAN WAS GS EA Random No. of random points
Inventory plots: interregional comparison of AHI values
 SA 47 NA < 0.001 < 0.001 0.012 0.982 < 0.001 < 0.001 2,434
 CA 366 < 0.001 NA 0.300 < 0.001 < 0.001 0.134 < 0.001 2,385
 WAN 216 < 0.001 0.300 NA 0.005 < 0.001 0.013 < 0.001 1,870
 WAS 166 0.012 < 0.001 0.005 NA < 0.001 < 0.001 < 0.001 1,395
 GS 60 0.982 < 0.001 < 0.001 < 0.001 NA < 0.001 < 0.001 1,229
 EA 27 < 0.001 0.134 0.013 < 0.001 < 0.001 NA < 0.001 246
Inventory plots: Interregional comparison of dAHI values
 SA 47 NA < 0.001 0.885 0.020 < 0.001 < 0.001 < 0.001 2,435
 CA 366 < 0.001 NA < 0.001 < 0.001 < 0.001 0.007 < 0.001 2,385
 WAN 216 0.885 < 0.001 NA 0.010 < 0.001 < 0.001 < 0.001 1,870
 WAS 166 0.020 < 0.001 0.010 NA 0.252 < 0.001 0.07 1,395
 GS 60 < 0.001 < 0.001 < 0.001 0.252 NA < 0.001 0.27 1,229
 EA 27 < 0.001 0.007 < 0.001 < 0.001 < 0.001 NA < 0.001 246

Comparisons are P values from Nemenyi post hoc tests. Kruskal–Wallis tests indicated significant regional differences in both AHI values (χ2 = 143, df = 5, P < 0.001) and dAHI values (χ2 = 343, df = 5, P < 0.001). CA, central; EA, eastern; GS, Guiana Shield; NA, not applicable; SA, southern; WAN, northwestern; WAS, southwestern. “Random” is the P value from the Kolmogorov–Smirnov test that compared the number of plots in each region with the distribution of random points.