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ABSTRACT A systematic approach is suggested to design
chemical systems capable of displaying stationary, symmetry-
breaking reaction diffusion patterns (Turing structures). The
technique utilizes the fact that reversible complexation of an
activator species to form an unreactive, immobile complex
reduces the effective diffusion constant of the activator, thereby
facilitating the development of Turing patterns. The chlorine
dioxide/iodine /malonic acid reaction is examined as an ex-
ample, and it is suggested that a similar phenomenon may
occur in some biological pattern formation processes.

The stable, stationary, reaction-diffusion patterns predicted
by Turing (1) have served as the basis for several theories of
morphogenesis (2, 3). They have recently been found exper-
imentally in the chlorite/iodide/malonic acid (CIMA) system
in a gel reactor (4). The difficulty in observing Turing patterns
in other systems arises from the necessary condition that the
diffusion coefficients of the activator and inhibitor species be
very different. Here, we show that introduction of a reagent
that reversibly forms an unreactive, immobile complex with
the activator species can circumvent this requirement, mak-
ing it possible to produce Turing patterns in systems that
would not otherwise exhibit such structures.

The experimental difficulty of demonstrating the chemical
nature of the postulated morphogens has prevented direct
study of the Turing mechanism in biological systems. Chem-
ical reactions, in which the relevant species can be identified
and monitored, offer far better prospects for investigating
Turing structures. The need, however, for the activator—

e., the species responsible for the positive feedback—to
diffuse significantly less rapidly than the inhibitor (3) has
posed a major obstacle, since in aqueous media nearly all
simple molecules and ions have diffusion coefficients within
a factor of 2 of 1.5 x 1075 cm?s~ 1.8

A General Two-Variable Model

In the CIMA reaction, we have suggested that interactions of
the activator iodine species with the polyacrylamide gel
and/or with the starch indicator result in a major reduction of
the effective activator diffusion coefficient (6). Here we
generalize that idea to an algorithm for designing systems that
exhibit Turing instability. Consider a system characterized
by parameters (e.g., rate constants) p and containing an
activator species X and an inhibitor species Y that react and
diffuse according to Eq. 1.
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where D, and D, are the respective diffusion constants,
lowercase letters represent concentrations, and the elements
a; of the Jacobian matrix are evaluated at the steady state of
interest. The identification of X and Y as activator and
inhibitor, respectively, implies that a;; > 0 and a;; < 0.

Suppose now that X can react to form a complex with
another species S, which is either bound to a gel matrix or is
so large that the diffusivities of S and the complex SX are
effectively zero.Y Suppose also that the complex is unreac-
tive, either because of its chemical properties or because
steric factors prevent Y from approaching X when it is bound
to the large molecule. For simplicity we assume a large
excess of S (s >> x) uniformly distributed so that its
concentration is always very close to its initial value so. The
complex formation is described by

X k+
X+S=8X, K=—=—,
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sx k.’ 0
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If the spatial distribution of S is uniform, the new reaction-
diffusion system is described by
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If the formation and dissociation of the complex are rapid, the
concentration of SX instantaneously follows that of X, and sx
can be expressed in terms of x by using the last two expres-
sions in Eq. 2./ The set of differential equations can then be
simplified by adding Eqs. 3a and 3¢ and replacing sx by K'x.

Abbreviation: CIMA, chlome/lodlde/malomc acid.

$This is paper no. 76 in the series ‘‘Systematic Design of Chemical
Oscillations.”” Paper no. 75 is ref. 5.

YHunding and Sorensen (7) have suggested a similar approach to
describe size adaptation of Turing patterns in developing embryos.
IThis reduction can be made rigorous using singular perturbation
theory by letting k. = k' /e, k— = k_ /e, where k4 and k_ are O(1),
and then letting € — 0.
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This two-variable reaction-diffusion system is more easily
analyzed if one rescales the time and length variables by
settingt = t'/(1 + K'), z = D/’z'. The differential Eq. 4 then
takes the form
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where 0 = 1 + K’ and ¢ = D,/D,. Observe that f, g, and p
retain the same form. Whether or not the original differential
equation system (Eq. 4) is in dimensionless form, the com-
plex formation (Eq. 2) and the subsequent transformation
change neither the scaling of the dependent (concentration)
variables nor the kinetic parameters of the system.** Phys-
ically, formation of the complex separates the time scales for
changes in the activator and inhibitor concentrations by a
factor of o. In particular, the more stable the complex, the
greater the difference between the time scales for the diffu-
sion of the two components.

Complex formation does not change the steady-state com-
position of the system. It may, however, modify the stability
of the steady state. If the system has a unique unstable steady
state and hence shows oscillatory behavior in the absence of
S (o = 1), then complex formation (¢ > 1) can stabilize the
homogeneous steady state at this same set of parameters.
Introduction of S thus broadens the range of steady-state
stability as illustrated in Fig. 1, making it possible for
diffusion-induced instability to occur at parameter values that
were inside the oscillatory region of the complex-free system.
Equivalently, complex formation may be viewed as shifting
the homogeneous Hopf bifurcation to larger parameter val-
ues, so that the Turing bifurcation occurs before the Hopf
point and is therefore observable. The wavelength of the
Turing patterns and the stability of the inhomogeneous steady
state are independent of the concentration of complexing
agent, a result in agreement with observations (P. De Kepper,
personal communication) on the CIMA/starch system with
varying concentrations of starch.

The CIMA System

We illustrate these ideas with reference to the CIMA reaction
(4). More general and detailed treatments of the Turing
bifurcation can be found in refs. 3 and 8. The system is well
described by three overall stoichiometric processes whose
rate laws have been experimentally determined. After some
simplifications, the dynamics can be summarized in a two-
variable model (9):
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**Note that if one does not change to dimensionless variables at this
stage, the “‘length’’ variable z’ in Eq. § has dimensions of (time)/2.
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Fic.1. Stability boundary for a general activator—inhibitor model
in the ay; vs. ay; space. The hatched area indicates the stable steady
state.

where X and Y denote iodide and chlorite ions, the activator
and inhibitor, respectively, and MA denotes malonic acid.

The starch reacts with iodine and iodide to form a blue
helical complex. Because of its high molecular weight, the
starch is essentially immobile either in the gel or in aqueous
solution. In a water solution, formation of the complex is a
very fast process, though it may be somewhat slower in a
medium like the polyacrylamide gel.

We assume rapid formation of a starch/triiodide complex
SI3 according to

(SI;]
K=-——o-,
[SII1"]

where [S] represents the concentration of starch per six
monomer units needed to form a complete helix (10, 11). The
dimensionless rate Eq. 4 for the system allowing for complex
formation (Eq. 7) takes the form (cf. Eq. 5):
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Fig. 2 shows, for realistic values of the rate parameters and
concentrations, the range of diffusion-induced instability at
various values of o. In the absence of starch, ¢y, is =10,
while with sufficient starch to give o = 8, roughly the
conditions employed by Castets et al. (4), Cmin is reduced to
1.5, a plausible value for the ratio of two small inorganic ions.
Evenin the absence of starch, the polyacrylamide gel may act
as a complexing agent with similar effect.

(8]

A Design Algorithm

The above analysis suggests a path toward the elusive goal of
designing new systems that exhibit Turing patterns, a path
that may already have been followed by many biological
systems. By complexing an activator molecule either with a
macromolecule or with a membrane-bound species, it be-
comes possible to obtain Turing structures even when the
ratio ¢ of diffusivities of inhibitor and free activator does not
exceed unity, if the effective complexation strength K’ in Eq.
2 is sufficiently large. Such complexation almost certainly
occurs in many living systems, though identification of the
activator and inhibitor species is a formidable task.
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F1G. 2. Stability boundaries at several values of o for the model
of the chlorine dioxide/iodine/malonic acid/starch reaction in the
range of chemically accessible parameters. Above the solid Hopf
bifurcation curve, ob = 3a/5 — 25/a, there is a stable steady state.
The region of diffusion-induced instability lies above the solid line
and below the dashed Turing bifurcation curve, given by (3ca® — Sab
— 125¢)? = 100abc(25 + a?). ¢ = 1.5.

If one wishes to study Turing patterns, chemical systems
with strongly nonlinear dynamics provide more favorable
opportunities, since in many cases mechanisms have been
worked out and the activator and inhibitor species are
reliably known. A simple design (or search) algorithm would
start from a system that shows oscillation and in which the
activator species, often an autocatalyst, is capable of revers-
ible complex formation. The reaction would be run in a flow
reactor with increasing amounts of complexing agent until the
oscillatory state gives way to a stable steady state. The
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resulting concentrations would then serve as a guide for
carrying out experiments in a gel reactor (4).

The situation with respect to the study of Turing structures
is similar in many ways to that of oscillating chemical
reactions about a decade ago. There is a significant body of
theory, but only a very small number of experimental exam-
ples, and those have been discovered largely by chance. The
introduction of a systematic approach to designing chemical
oscillators (12) has yielded several dozen additional experi-
mental examples and many important insights in a relatively
short time. The approach outlined above should facilitate
similar rapid progress in the study of Turing structures.
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