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ABSTRACT Obesity influences and is influenced by the human gut microbiome.
Here, we present the genome of Christensenella minuta, a highly heritable bacterial Received 28 October 2016 Accepted |
species which has been found to be strongly associated with obesity through an un- November 2016 Published 12 January 2017
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paradigm, particularly for obesity, diabetes, and inflammatory bowel diseases (2). Address correspondence to Makedonka
Through complex interactions with host metabolism, the gut microbiome both Mitreva, mmitreva@wustl.edu.

influences and is influenced by the obesity phenotype (3-5). For example, Firmicutes
bacteria are more abundant at the expense of Bacteroides bacteria, both as a result of
a high fat/high sugar diet (6) and as a consequence of host genetic obesity due to
leptin deficiency (7). However, microbiome-targeted therapeutic efforts for obesity
have been hampered by a lack of understanding of the interactions between host
genetics and the microbiome, as well as the complexity and diversity of the micro-
biome (2). Recently, Christensenella minuta (the first described member of the Chris-
tensenellaceae family [8]) was described as being extremely highly heritable and as
promoting a lean host phenotype through an unknown biological mechanism, a
finding which was experimentally verified using transplantation techniques in germ-
free mice (3).

In order to facilitate further research into identifying the biological mechanisms
underlying the important role this organism plays in obesity prevention, here we
describe the first genome sequence of Christensenella minuta DSM 226077.

Genomic DNA was obtained from the DSMZ repository and sequenced using the
lllumina HiSeq 2000, to a depth of 115X. De novo assembly of the genome was
conducted using the One Button Velvet assembly pipeline version 1.1.06 (9). Gene
annotation was performed using both ab initio and evidence-based (BLAST) predic-
tions. Coding sequences were predicted using GeneMark and Glimmer3 (10, 11).
Intergenic regions not identified by GeneMark and Glimmer3 were searched by BLAST
in NCBI's nonredundant bacterial (NR) database. The best prediction for each open
reading frame was selected by evaluating all predictions against the best evidence (NR
and Pfam [12]) and resolving overlaps between adjacent coding genes. tRNA genes
were determined using tRNAscan-SE (13) and noncoding RNA genes by RNAmmer (14)
and Rfam (15). We performed a screen for core genes, as defined by the HMP project
(16), on many of the assemblies to test for completeness of the genome. Metabolic
pathways and subcellular localization were predicted using KEGG (17) and psortB (18),
respectively, and functional domains were evaluated using Interproscan (19) (used to
infer gene ontology [GO] terms [20, 21]) and Pfam (22). A total of 2,487 genes (79.7%
of all genes) had some predicted functional annotation, with 66.1% being assigned to
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at least one of 949 unique GO term annotations, 74.4% containing at least one of 2,822
unique InterPro domains, and 69.5% containing at least one of 1,412 unique Pfam
domains.
Accession number(s). This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number LSZW00000000. The version de-
scribed in this paper is the first version, LSZW01000000.
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