
83

Introduction
Chronic obstructive pulmonary disease (COPD) is an 

increasing chronic respiratory illness characterized by per-
sistent airflow limitation1-3. The airflow limitation results from 
pathophysiological changes, especially emphysema, in the 
airways and lung parenchyme, which are mainly caused by 
smoking inhalation. However, the mechanism by which smok-
ing provokes emphysema has not been clearly determined, 
although protease-antiprotease imbalance4, oxidative stress5, 
and inflammation6 have all been proposed to contribute to the 
development of emphysema7. Recent studies have reported 
that apoptosis and autophagy play roles in the pathogenesis 
of emphysema. An increase in apoptosis of epithelial and 
endothelial cells in the lungs of COPD patients has been ob-
served8, and studies have shown that several apoptotic mod-
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els cause emphysema9. Autophagy, an autodigestion in which 
cytoplasmic materials are delivered to the lysosome10, is one 
of the processes regulating the apoptosis pathway. Studies 
have shown autophagy has essential roles in the pathogen-
esis of neurodegenerative diseases11, and it has been recently 
highlightened that autophagy has important functions in 
respiratory diseases12. There have been three forms of distinct 
autophagy identified: macroautophagy, microautophagy and 
chaperon-mediated autophagy (CMA)10. In macroautophagy, 
cytoplasmic components are nonspecifically captured within 
vesicles to form autophagosomes, which are delivered to the 
lysosome. CMA transports proteins to the lysosome only via 
lysosome-associated membrane protein 2a (LAMP2A), a 
lysosomal transmembrane protein13. While macroautophagy 
sequestrates cytosolic components in bulk form, CMA targets 
soluble cytosolic proteins selectively14. The role of macroau-
tophagy in the pathogenesis of COPD has been suggested. 
Autophagy knockout of microtubule-associated protein 1 light 
chain 3B (LC3B), the macroautophagic protein, reduced lung 
apoptosis and airspace enlargement in mice15. However, few 
studies have evaluated whether CMA could contribute to the 
regulation of apoptosis. It has been reported that CMA has an 
opposite activity against macroautophagy14. Thus, we postu-
lated that CMA has a role in the prevention of apoptosis in the 
pathogenesis of emphysema. In this study, we investigated the 
impact of autophagy, including both macroautophagy and 
CMA, on apoptosis in an in vitro model.

Materials and Methods
1. Cells and reagents

Normal human bronchial epithelial cells, BEAS-2B, were 
cultured in defined keratinocyte-SFM (Gibco by Life Tech-
nologies, Grand Island, NY, USA) at 37oC under 5% CO2. Anti-
rabbit LC3B antibody and anti-rabbit caspase-3 antibody 
were purchased from Cell Signaling Technology (Danvers, 
MA, USA). Anti-rabbit LAMP2A antibody was purchased 
from Abcam (Cambridge, MA, USA). Anti–poly (ADP-ribose) 
polymerase-1 (PARP-1) and anti–glyceraldehyde 3-phosphate 
dehydrogenase were obtained from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA, USA). All in vitro cell experiments were 
repeated at least three times.

2. Cigarette smoke extract

Cigarette smoke extract (CSE) was prepared as previously 
described16. Commercial cigarettes (THIS; 84-mm long, with 
a diameter of 8 mm; purchased from KT&G, Seoul, Korea) 
were smoked continuously by a bottle system connected to a 
vacuum system, and the smoke from 20 cigarettes was bub-
bled in 60 mL of phosphate-buffered saline (PBS; Gibco). The 

insoluble particles in the resulting suspension were filtered by 
a 0.22-μm filter.

3. Western blot analysis

Cellular proteins were extracted using cell lysis buffer (Cell 
Signaling Technology). The concentration of proteins was 
evaluated with the Bradford protein assay (BioRad, Hercules, 
CA, USA) according to the manufacturer’s instructions. Equal 
amounts of protein were resolved by gradient sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (Invitrogen, Carls-
bad, CA, USA) and transferred to nitrocellulose membranes 
(GE Healthcare Bio-Sciences, Piscataway, NJ, USA). The 
membranes were blocked with 5% skim milk, PBS, and 0.1% 
Tween 20 for 1 hour before overnight incubation at 4oC with 
the primary antibodies. The membranes were then washed 
out three times and incubated with horseradish peroxidase-
conjugated secondary antibodies in blocking buffer for 1 hour. 
After successive washes, the membranes were developed 
using SuperSignal West Pico Chemiluminescent kit (Thermo 
Scientific, Waltham, MA, USA).

4. Analysis of cell apoptosis

Apoptosis was determined using an Annexin V–fluorescein 
isothiocyanate (FITC) apoptosis detection kit (BD Biosci-
ences, San Jose, CA, USA). The cells were washed twice with 
cold PBS and then resuspended in binding buffer at a con-
centration of 1×106 cells/mL. Five microliters of Annexin V–
FITC was added to the suspended cells. After incubation for 
15 minutes at room temperature in the dark, the percentage of 
apoptotic cells was analyzed by flow cytometry.

5. Transfection of small interfering RNAs

Transfection of small interfering RNAs (siRNAs) targeting 
the LC3B (Cell Signaling) or LAMP2 genes (Santa Cruz Bio-
technology) was carried out using Neon Transfection System 
(Thermo Fisher Scientific) according to the manufacturer’s 
specifications. After 48 hours of transfection, the cells were 
used in the experiments.

6. Animals

Female 8-week-old C57BL/6 wild-type mice (OrientBio, 
Seongnam, Korea) were anesthetized and injected intratra-
cheally with 100 μL of CSE (n=3) or buffered saline (control, 
n=3) once a week for 3 weeks. Recently, we showed the 
emphysema development in mice by the intratracheal CSE 
injection16. The mice were sacrificed at 4 weeks, and the lungs 
were fixed with 4% neutral buffered paraformaldehyde. The 
fixed lung samples were dehydrated, embedded with paraffin, 
sectioned, and stained with hematoxylin and eosin. Emphy-
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sema was quantified by the measurement of the mean linear 
intercept (MLI)16. Apoptosis was evaluated with terminal 
deoxynucleotidyl transferase dUTP nick-end labeling stain-
ing. The proportion of the number of positive cells in the four 
randomly selected high power fileds (×400) was compared 
between groups by chi-square test. 

Results
1. Intratracheal CSE injection led to the development of 

emphysema and an increase in apoptosis in mice

In the in vivo experiment, intratracheal CSE injection pro-

duced emphysema in the mice after 8 weeks (MLI, 25±5 vs. 
29±11 μm; p<0.001). The injection of CSE also increased the 
number of apoptotic cells (p<0.05) (Figure 1). 

2. CSE decreased epithelial cell survival via an increase 
in apoptosis

In the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay, ≥2% CSE significantly decreased the 
survival of BEAS2-B cells after 24 hours (Figure 2A) and sig-
nificantly increased the release of lactose dehydrogenase (Fig-
ure 2B). The flow cytometry analysis with annexin/propidium 
iodide staining revealed that CSE increased the apoptosis of 
BEAS2-B cells in a dose-dependent manner (Figure 3A). Fur-

A B

C D

Figure 1. Intratracheal CSE injection led to the development of emphysema and an increase of apoptosis in mice. (A) Control group (H&E 
stain, ×100). (B) CSE group (H&E stain, ×100). (C) Control group (TUNEL, ×400). (D) CSE group (TUNEL, ×400). The arrows indicate TUNEL 
positive cells. CSE: cigarette smoke extract; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labeling.
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thermore, ≥2% CSE activated caspase-3 and cleaved PARP-1 
(Figure 3B).

3. CSE increased macroautophagy and CMA in BEAS2-B 
cells

Both LC3B and LAMP2a expression were increased in cells 

treated with higher CSE concentrations, indicating that CSE 
induced macroautophagy and CMA (Figure 4).

4. Macroautophagy and CMA had different effects on 
apoptosis in BEAS2-B cells

Both LC3B and LAMP2a expression were knocked down 
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Figure 2. CSE decreased BEAS2-B cell viability. (A) MTT assay. (B) LDH release. *p<0.05 by ANOVA. CSE: cigarette smoke extract; MTT: 
3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide; LDH: lactose dehydrogenase.
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with the respective siRNA treatments (Figure 5A, C). Suppres-
sion of LCB3 with siRNA inhibited the cleavage of PARP-1, 
which suggests that macroautophagy contributes to apoptosis 
(Figure 5B). By contrast, knockdown of LAMP2a expression 
led to an increase in PARP-1 cleavage (Figure 5D). These re-
sults suggest that macroautophagy and CMA regulate apopto-
sis in opposite directions.

Discussion
Cigarette smoking is the well-known principal risk factor of 

COPD. Thus, exposure to cigarette smoke is commonly used 
to experimentally explore the mechanism and pathogenesis 
of COPD in vitro or in vivo. Currently, the logical choice of an 
animal model for COPD is cigarette smoke inhalation, which 
could result in a pathophysiologic condition similar to that of 
human patients. However, the lesions induced in the model 
can be subtle, even upon microscopic evaluation. In addition, 
it can take as long as 6 months to establish a model17. We de-
veloped a new emphysema model of mice, which took only 8 
weeks to achieve16. Intratracheal injection of CSE directly into 
the airway induced parenchymal destruction in the mice. The 
CSE group showed an increase in apoptosis, which suggested 
that apoptosis is related to emphysema development (Figure 
1). To further explore the contribution of autophagy on apop-
tosis, we used CSE for an in vitro study. 

Although protease-antiprotease imbalance, oxidative stress, 
and inflammation are regarded as the major contributors 
to the development of emphysema7, other mechanisms, in-
cluding apoptosis and macroautophagy, have been studied 
recently8,9,15. We also demonstrated a relationship between 
apoptosis and emphysema development in the current study, 
as described above. Our in vitro study showed the reduction 
of cell survival when bronchial epithelial cells were treated 
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with CSE (Figure 2), and that increased apoptosis was the ma-
jor contributor to CSE-induced cell death (Figure 3).

We observed an increase in macroautophagy and CMA 
in the CSE-treated cells (Figure 4). Previous studies have 
reported that macroautophagy regulates apoptosis15. How-
ever, to date, no study has investigated the role of CMA in the 
pathogenesis of emphysema. Interestingly, macroautophagy 
and CMA were found to have opposite effects on cell apop-
tosis (Figure 5). Macroautophagy increased apoptosis, which 
has been reported previously. By contrast, CMA suppressed 
apoptosis according to the results of the siRNA experiment.

The opposite effects of macroautophagy and CMA on apop-
tosis have been reported previously. If CMA is blocked, mac-
roautophagy upregulation is induced, and vice versa18. For 
example, Huntington disease cells upregulate CMA activity 
by increasing LAMP2a de novo synthesis, followed by block-
age of macroautophagy19. The upregulation of one autophagic 
process has been usually regarded as beneficial for cells when 
the other is compromised20. However, these processes are not 
completely compensatory. CMA cannot be degraded by par-
ticular substrates of macroautophagy and fails to compensate 
for the macroautophagy-mediated degradation of damaged 
organelles21,22. Interestingly, our results showed that macroau-
tophagy and CMA have reverse effects and lead to contrasting 
results. However, we should acknowledge that we could not 
determine the molecular mechanisms of the two autophagic 
processes.

In conclusion, the intratracheal injection of CSE induces 
pulmonary emphysema and increases apoptosis in mice. CSE 
also induces the apoptosis, macroautophagy, and CMA of 
bronchial epithelial cells. Finally, macroautophagy and CMA 
regulate apoptosis in opposite directions. 
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