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Abstract. The objective of this work was to establish the quantitative relationship between Lanreotide
Autogel® (LAN) on serum chromogranin A (CgA) and progression-free survival (PFS) in patients with
nonfunctioning gastroenteropancreatic neuroendocrine tumors (GEP-NETs) through an integrated
pharmacokinetic/pharmacodynamic (PK/PD) model. In CLARINET, a phase III, randomized, double-
blind, placebo-controlled study, 204 patients received deep subcutaneous injections of LAN 120 mg (n =
101) or placebo (n = 103) every 4 weeks for 96 weeks. Data for 810 LAN and 1298 CgA serum samples
(n = 632 placebo and n = 666 LAN) were used to develop a parametric time-to-event model to relate CgA
levels and PFS (76 patients experienced disease progression: n = 49 placebo and n = 27 LAN). LAN
serum profiles were described by a one-compartment disposition model. Absorption was characterized by
two parallel pathways following first- and zero-order kinetics. As PFS data were considered informative
dropouts, CgA and PFS responses were modeled jointly. The LAN-induced decrease in CgA levels was
described by an inhibitory EMAX model. Patient age and target lesions at baseline were associated with
an increment in baseline CgA.Weibull model distribution showed that decreases in CgA from baseline reduced
the hazard of disease progression significantly (P< 0.001). Covariates of tumor location in the pancreas and
tumor hepatic tumor load were associated with worse prognosis (P< 0.001). We established a semimechanistic
PK/PDmodel to better understand the effect of LAN on a surrogate endpoint (serum CgA) and ultimately the
clinical endpoint (PFS) in treatment-naive patients with nonfunctioning GEP-NETs.

KEY WORDS: chromogranin A; lanreotide; neuroendocrine tumors; population PK/PD; time-to-event
analysis.

INTRODUCTION

Endocrine tumors are rare, with an incidence ap-
proaching five cases/100,000/year (1). They are typically
slow-growing tumors (2–5) that arise from endocrine cells
located in the gastrointestinal system or the pancreas; most
patients have distant metastases at diagnosis (1). The ideal
initial treatment is surgical removal of the tumor, but as many
patients have inoperable tumors, medical therapy is required.

Somatostatin analogs (SSAs) are the main treatment for
gastroenteropancreatic neuroendocrine tumors (GEP-NETs).
The efficacy of Lanreotide Autogel (LAN) (known as Depot

in the USA) in patients with GEP-NETs has been demon-
strated in a randomized, double-blind, placebo-controlled,
multicenter phase III clinical trial (6). LAN has been
approved recently for the treatment of GEP-NETs in the
European Union and the USA (7,8).

According to the European Society for Medical Oncoloty
(ESMO) Clinical Practice Guidelines for GEP-NETs, treatment
efficacy should be assessed both by imaging procedures (i.e.,
computed tomography [CT] scans or magnetic resonance
imaging [MRI]) and biochemical markers (9). GEP-NETs
secrete endocrine markers such as chromogranin A (CgA), the
plasma levels of which are elevated in patients with GEP-NETs,
and CgA has been reported to be a sensitive tumor marker for
disease monitoring: not only does it reflect tumor load, but it is
also an indicator of tumor growth (3,10–13).

Whereas prognostic factors are defined to predict disease
outcome in the absence of therapy, predictive factors provide
information on the potential benefit from treatment (14,15). To
date, the most significant prognostic factors identified for GEP-
NETs include the size of the primary tumor (1,2) with worse
prognosis for pancreatic tumors (9,11,16), presence of metastasis
(1,2,5,9), proliferative index (2,17), high hepatic tumor load
(3,11,18,19), and CgA expression (3,11,13). It has been suggested
that CgA levels are a predictive factor for outcome.
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To our knowledge, there is currently no quantitative
model to describe the effects of somatostatin analogs in the
treatment of GEP-NETs. We now establish an integrated
pharmacokinetic/pharmacodynamic (PK/PD) model for bio-
marker and clinical endpoint effects of LAN, using longitu-
dinal CgA and progression-free survival (PFS) data from the
phase III clinical trial CLARINET (6). This model can also
be used to evaluate the outcome of alternative study designs
(dose level, dosing interval) in patients with GEP-NETs. As a
result of this modeling exercise, the prognostic and predictive
factors of PFS in these patients have been identified.

METHODS

Study Population

CLARINET is a phase III, randomized, double-blind,
comparative, placebo-controlled, parallel group, multicenter
study (6). A total of 204 treatment-naive patients with
nonfunctioning GEP-NETs located in the pancreas, midgut
(small intestine and appendix), hindgut (large intestine,
rectum, anal canal, and anus), or of unknown origin were
enrolled (33% with hepatic tumor load >25%; 103 treatment,
101 placebo). Patients in the treated group received an
extended release aqueous gel formulation of 120 mg LAN
every 28 days for 2 years. Table I summarizes the demo-
graphic and disease characteristics of the patients included in
the analysis.

All patients provided written informed consent consis-
tent with the International Conference on Harmonization of
Technical Requirements for Registration of Pharmaceuticals
for Human Use–Good Clinical Practice and local legislation.
The study was performed in accordance with the Declaration

of Helsinki and was approved by the institutional review
board of the ethics committee at each study site.

Assessment of LAN, CgA, and Tumor Progression

Serum LAN was measured at (i) baseline; (ii) between
the first and second administrations (weeks 1–4)—either, two
blood samples taken at 4 h (range 2–12 h) and 7 days (range
6–8 days) after drug administration, or two blood samples
taken at 3 days (range 2–4 days) and 14 days (range 12–
16 days) after drug administration (half of the patients were
randomly allocated to the first sampling schedule, and the
other half to the second sampling schedule); (iii) at week 4
prior to drug administration; (iv) between the sixth and
seventh administrations (weeks 20–24), using the same
sampling schedule as that established between the first and
second administrations; and (v) at all treatment visits prior to
study drug administration including at completion or
withdrawal.

Levels were quantified using a radioimmunoassay (SGS
Cephac, Saint Benoit, France), with a lower limit of
quantification of 0.078 ng/mL, an intra‐assay precision of
2.7–5.8%, and an inter‐assay precision of 3.5–6.5%.

Tumor progression and CgA levels were assessed every
12 weeks during year 1 and every 24 weeks during year 2.
Tumor progression was assessed using RECIST v1.0 (20)
(preferably by CT, alternatively by MRI). An increase
(>20%) of the sum of the longest tumor diameters or the
appearance of a new lesion was deemed disease progression.
In patients with elevated CgA levels at week 48, serum CgA
levels were assessed every 12 weeks during year 2 using a
solid‐phase two‐site immunoradiometric assay (Cisbio
Bioassays, Codolet, France) with a lower limit of quantitation
assessed by internal validation of 10 ng/mL, an intra‐assay
precision of 4.2%, and an inter‐assay precision of 6.8–8.3%.

Data Analyses

A nonlinear mixed effect modeling (NLME), also known
as the population approach (21), was used to analyze LAN,
CgA, and PFS data. An NLME model consists of a structural
model, a random effects model, and a covariate model.
Interpatient variability was assumed to follow a log-normal
distribution. The SAEM algorithm, implemented in
NONMEM v7.2 (22), was used to estimate model parameters.

Analyses were performed sequentially: the PK model
was selected and then the corresponding empirical Bayes
parameter estimates were used to describe the time course of
CgA and PFS.

Lanreotide Pharmacokinetics

The LAN pharmacokinetic properties were character-
ized as part of a pooled analysis of four clinical trial including
patients with functioning and nonfunctioning GEP-NETs
(23). The popPK model selected consisted on a one-
compartment disposition model with an absorption process
characterized by two parallel absorption pathways, following
first- and zero-order kinetics, and was used to predict the
corresponding serum profiles in LAN to develop the models

Table I. Baseline Demographic and Disease Characteristics of
Patients

Characteristics
Lanreotide arm
(n = 101)

Placebo arm
(n = 103)

Age (years) [median (range)] 64 (30–83) 63 (31–92)
Male (n) 53 (52.5%) 54 (52.4%)
Weight (kg) [median (range)] 77 (46–128) 75 (40–133)
CgA level (ng/mL)

[median (range)]
157.6
(14.1–32,920)

187.7
(17.4–36,110)

Tumor origin (n)
Pancreas 42 (41.6%) 49 (47.6%)
Midgut 33 (32.7%) 39 (37.9%)
Hindgut 11 (10.9%) 3 (2.9%)
Unknown or other 15 (14.8%) 12 (11.7%)

Hepatic tumor load (n, %)
0% 18 (17.5%) 16 (15.8%)
0 to <10% 40 (38.8%) 33 (32.7%)
10 to <25% 17 (16.5%) 13 (12.9%)
25 to <50% 12 (11.7%) 23 (22.8%)
≥50% 16 (15.5%) 16 (15.8%)

Target lesions (n)
<2 33% 36%
3 or 4 23% 22%
5 or 6 37% 34%
>6 7% 10%

Progressive status (n, %) 4 (4.0%) 4 (3.9%)
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for CgA dynamics and PFS using the model parameters
represented in Supplementary Table S1.

Disease Progression Model—CgA Dynamics

A total of 1298 CgA measurements (placebo, n = 632;
LAN, n = 666) were included in the analysis. Each patient
contributed a median of seven samples (range 1–11).

CgA measurements followed a heavily right skewed
distribution and were Box-Cox transformed (24) for the
analysis (leading to a more normal distribution-like) accord-
ing to Eq. 1:

CgAi
0 ¼ CgAλ

i −1
λ

ð1Þ

where CgAi′ are the individual Box-Cox-transformed CgA
measurements and λ is the power transform parameter, which
was estimated to be −0.215 using the ‘powertransform’
function of the car package in R (25).

The first step in the model building process was to
describe a disease progression model using only CgA levels
from patients in the placebo arm. Disease progression
models explored included the following: (i) empirical
models where CgA levels increase either linearly, expo-
nentially with time, or following a Gompertz equation;
and (ii) semimechanistic models in which indirect response
(26) or an unobserved tumor mass drives CgA synthesis
(27).

After establishing the disease progression model, the
effect of LAN on CgA levels was assessed. Several models
(linear, EMAX, or sigmoidal EMAX) were tested to describe
the relationship between individual predicted LAN levels and
CgA dynamics. In addition, models including an effect
compartment approach to account for any delays between
LAN concentrations and reduction in CgA levels (28) or
considering the development of resistance mechanisms were
also explored.

The base population model, which better described CgA
dynamics, was characterized by a linear (Box-Cox scale)
increase of CgA levels over time (representing disease
progression) and an inhibitory EMAX model (accounting for
LAN effects as represented by Eq. 2):

CgAt ¼ CgA0 þ λ� t−
EMAX � CLA

C50 þ CLA
ð2Þ

where CgA0 is the CgA plasma concentration at the time of
the start of the clinical trial, λ is the rate constant describing
the linear increase of CgA levels, EMAX is the maximum
inhibitory drug effects (i.e., maximum decrease in CgA levels
due to LAN), CLA is the predicted individual LAN concen-
trations in serum, and C50 is the LAN concentration required
to obtain half of maximum CgA inhibition.

Due to the study characteristics (first CgA measurement
was obtained after 12 weeks of the start of the study and
continuous treatment with LAN along the study without off-
drug periods), selection of more mechanistic models
(considering synthesis and degradation rates of CgA
(29)) was not feasible.

PFS—Informative Dropout

PFS was defined as time to disease progression or death
within 96 weeks after the first study treatment. Study
withdrawals due to disease progression were considered
informative dropouts. Study withdrawals due to other reasons
(e.g., protocol violation, consent withdrawal) were ana-
lyzed as censored information. We modeled informative
dropouts simultaneously with CgA to describe the link
between CgA dynamics and probability of having disease
progression (30).

A parametric time-to-event model was used to describe
PFS, allowing identification of the underlying hazard function
[h(t), i.e., instantaneous rate of event], from which the
survivor function (i.e., probability of remaining in the study)
can be easily obtained by integrating the hazard with respect
to time (31). Different distributions (exponential, Weibull,
log-logistic, and Gompertz) were explored to describe the
baseline hazard rate of progression. Parametric time-to-event
models allow predictors to be included directly in the hazard
function (both categorical/continuous and time-constant or
variable variables). Different expressions of CgA were
explored to relate the base hazard rate and CgA levels,
which included the following: (i) full time course of CgA
(CgAt), (ii) CgA levels at baseline (CgA0), and (iii and iv) the
difference and ratio between CgA levels at each time and
CgA levels at baseline (CgAt − CgA0 and CgAt/CgA0,
respectively).

A Weibull distribution better described the underlying
hazard. The Weibull model includes a scale parameter (β) and
a shape parameter (γ). If γ = 1, then the hazard is constant
over time, whereas values different than 1 allow the hazard to
change over time. The inclusion of the ratio between CgA
levels and CgA0 in the hazard function provided a better
prediction of PFS. Therefore, the base model for PFS
followed Eq. 3:

h tð Þ ¼ β � γ� t γ−1ð Þ
� �

� CgAt

CgA0

� �α

ð3Þ

where β and γ are the base and shape parameters of a Weibull
model, and the parameter α modulates the CgA effects.

Model Selection Criteria

Selection among models was based on the following:
(i) the minimum value of the objective function provided
by NONMEM, equal to −2 × Log(likelihood) (denoted –
2LL); −2LL differences of 3.84 and 6.67 are considered
significant at the 5% and 1% levels, respectively, for nested
models differing in one parameter; (ii) precision of
parameter estimates; and (iii) results from model perfor-
mance judged by visual exploration of goodness of fit plots
and predictive checks.

Covariate Selection

Once the base population models for CgA and
progression-free survival were developed, a covariate analysis
was performed. The following patient characteristics were
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considered for inclusion as covariates in the models: age;
sex; weight; total number of target lesions at baseline;
primary tumor location (categorized as pancreas vs. other
locations, due to predominant pancreas location in both
groups: 41.6% and 47.6% of the patients in the LAN and
placebo groups, respectively); baseline hepatic tumor load,
categorized either as mean <25% or ≥25% or by using
five different categories: (i) 0%, (ii) 0 to≤10%, (iii) 10 to≤25%,
(iv) 25 to ≤50%, and (v) >50%); and progressive status at
baseline, defined according to RECIST using a screening CT
scan obtained within a maximum of 14 weeks of baseline
(Table I).

Covariate selection was performed using the stepwise
covariate modeling implemented in the PsN software (32) by
means of the −2LL ratio test with significance levels of 0.05
and 0.001 for the forward inclusion and for backward deletion
approaches, respectively. For the case of continuous covari-
ates, linear and nonlinear relationships between model
parameters and covariates were evaluated as part of the
stepwise selection procedure.

Model Evaluation

Evaluation of the final model was based mainly on
simulation-based diagnostics. A total of 500 datasets with
the same study design characteristics as the original were
simulated based on the simultaneous biomarker-dropout
model. For the evaluation of the CgA model, the 5th,
50th, and 95th percentiles of the simulated observations in
each dataset were computed for the different time
intervals. Informative dropout was included in model
simulations. The 90% prediction interval of each calcu-
lated percentile was obtained and plotted against the 5th,
50th, and 95th percentiles of raw CgA levels. For the PFS
model, simulated event (i.e., disease progression) times
were obtained following the MTIME method (33) to
create Kaplan-Meier visual predictive checks (VPC).
Precision of parameter estimates was obtained from the
analysis of 200 bootstrap datasets.

RESULTS

Figure 1a shows the individual profiles of LAN, CgA,
and the empirical Kaplan-Meier curves describing PFS for the
two treatment arms. The model schematically represented in
Fig. 1b successfully described LAN time profiles, CgA
dynamics, and PFS.

LAN concentrations were adequately described by the
population PK model (23). The estimated half-life of LAN
was 0.59 h, and the model predicted trough (predose) value
(2.5th–97.5th prediction intervals corresponding to the
120-mg dose administered subcutaneously every 4 weeks)
was 6 (3–11) ng/mL. As shown in ref. (23), the selected
population pharmacokinetic model provided a good
descript of the concentrations vs. time data (non- and
steady state).

CgA dynamics were characterized by a linear disease
progression (Box-Cox scale) and an inhibitory EMAX model
induced by LAN concentrations. The disease progression
model for CgA dynamics during the study period (2 years)
was characterized by a linear increase of CgA (Box-Cox

transformed) over time; however, caution is recommended at
the time of extrapolat ion beyond that period.
Supplementary Fig. S1 shows the distributions of CgA
levels under natural, logarithmic, and Box-Cox transfor-
mation. Data supported the estimation of interpatient
variability in CgA0, disease progression rate (λ), and
EMAX. As EMAX and C50 parameters were not estimated
precisely, reparameterization after defining C50 as the ratio
between EMAX and a slope parameter was used (34). Values of
η-shrinkage were found to be 14.7%, 25.6%, and 42.7% for
CgA0, λ, and slope, respectively. The remaining parameters
were constrained to have a small degree of interpatient
variability to facilitate estimation via the SAEM algorithm. In
addition, interpatient variability was also included in the
residual error variability, which resulted to be additive on the
Box-Cox domain.

Parameters were estimated with adequate precision
(Table II); in no case did the 95% confidence intervals
(obtained by bootstrapping) include zero. Interpatient vari-
ability for rate of disease progression rate (λ) and the slope
were high (around 150%) despite precision of those param-
eter estimates being adequate.

Covariate analysis identified the number of lesions at
baseline (NLES) to be the most significant covariate in
CgA0 (32-point reduction in −2LL; i.e., P < 0.001) among all
covariates tested in the population CgA model. In addition
to the number of lesions affecting CgA0, patients’ age was
also identified as significant (30-point reduction in −LL; i.e.,
P < 0.001). Although primary tumor location and age were
found to have a significant effect on the rate of disease
progression (λ) initially (P < 0.05), they were removed
during the backward deletion step (P < 0.001) and there-
fore were not kept in the final model. Supplementary
Fig. S2 shows the relationship between baseline CgA
levels (on the Box-Cox scale) and the aforementioned
covariates found to be statistically significant. The selected
covariates were included in the model through linear
functions as shown in Eq. 4:

CgA0 ¼ θCgA0
� 1þ θBNLES � NLES−4ð Þ½ � � 1þ θAGE � AGE−63ð Þ½ � ð4Þ

where θCgA0 is the typical population estimate for CgA0, 4 is
the median number of lesions at baseline, and 63 is the
median age in the population studied.

Figure 2a shows the individual predictions of CgA
dynamics in eight randomly selected patients receiving either
placebo or LAN. Data for CgAwere analyzed simultaneously
with the informative dropouts and consequently were in-
cluded in the construction of the VPCs. As shown in Fig. 2b,
the model performs adequately in capturing the central trend
and the spread of the data.

Inclusion of the ratio CgA/CgA0 on the hazard
(Eq. 3) decreased the −2LL by 38 points (P < 0.001) and
was found to be a better predictor than the other
expressions tested relating CgA and PFS. In addition,
the inclusion of the CgAt/CgA0 ratio on the hazard
significantly improved model diagnostics of both CgA
(not shown) and PFS (Fig. 2c).

Among the covariates tested as potential predictors of
the PFS, hepatic tumor load and primary tumor location were
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found to be significant (P < 0.001). The inclusion of five
different hepatic tumor load categories (i.e., four parameters)
provided no significant improvement over using a single
parameter for the two categories tested (<25% or ≥25%).
Both covariates, hepatic tumor load (>25%) and pancreatic
tumor, were associated with a higher hazard rate and were
included in the hazard model according to Eq. 5:

h tð Þ ¼ β � γ� t γ−1ð Þ
� �

� CgAt

CgA0

� �α

� 1þ θHLOADð Þ � 1þ θPTLOCð Þ ð5Þ

where β � γ� t γ−1ð Þ� �� CgAt
CgA0

� �α
are explained in Eq. 3, and

θHLOAD and θPTLOC represent the parameters accounting for

the h(t) increase in patients with hepatic tumor load >25% and
patients with pancreatic tumors, respectively (both parameters
were set to 0 in case of baseline hepatic tumor load lower than
25% and primary tumor location outside the pancreas).

Table II also lists the parameters associated to the PFS
models, which as in case of the model for CgA dynamics,
were estimated with high precision. The observed Kaplan-
Meier curve (stratified by significant covariates) was com-
prised within the 95% confidence intervals of the model-
based simulated median Kaplan-Meier, suggesting that the
hazard model described in Eq. 5 successfully described the
probabilities of disease progression observed in the studied
population (Fig. 2d).

Fig. 1. a Representation of available data included in the analysis: time profile of LAN concentrations (left), serum
CgA biomarker profiles (center), and Kaplan-Meier of PFS (right). Dots in the left and center panels correspond to
individual observations. Blue and red lines in the center and right panels depict the median time profiles for
placebo- and LAN-treated patients, respectively. b Schematic representation of the PK/PD model for LAN, CgA,
and PFS
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DISCUSSION

We have developed a population model to describe the
PK/PD of LAN administered by deep subcutaneous injection
to patients with nonfunctioning GEP-NETS. The PD model
included the description of CgA profiles and the clinical
endpoint PFS. Figure 3 explores the link between LAN
concentrations (simulated C t rough concentrations
representing typical and 5th–95th percentile profiles given
interpatient variability in the pharmacokinetic model),
CgA levels, and PFS. Of note, different LAN concentra-
tions (Fig. 3a) lead to notable differences in the CgA time
profiles (Fig. 3b) and, consequently, a drastic change in
PFS (Fig. 3c).

According to parameter estimates (Table II), typical
CgA0 corresponds to 3.13 ng/mL on the Box-Cox scale, which
translates to 181.5 ng/mL on the linear scale. The covariate
effect results in a predicted CgA0 of 96.4 or 382.9 ng/mL,
corresponding to a 63-year-old patient with one or seven
target lesions at baseline (5th and 95th percentile of number
of lesions in the studied population), respectively. A 1-year
change from the median population age (63 years) correlates
with a 5% change in CgA0.

The typical LAN concentration required to produce one
half of the maximum effect was 5.53 ng/mL, corresponding
approximately to the typical predose steady-state LAN
concentration at steady-state in GEP-NET patients receiving
120 mg subcutaneous LAN every 4 weeks (Fig. 3a, red
dashed line). The profiles shown in Fig. 3b indicate that LAN
slows disease progression over the time period studied. On
the contrary, CgA levels in an untreated individual would be
increased by 20% after 1 year.

During the development of the model, it was confirmed
that inclusion of informative dropouts in the biomarker
analysis improved model diagnostics significantly. Note that

in Fig. 1a, the central tendency of CgA levels in patients in
the placebo group appears to be constant over time—giving
the illusion of lack of disease progression. However, this can
be explained by informative dropout: patients with CgA
levels higher than baseline are more likely to drop out of the
study; therefore, those patients remaining in the study at
later time points will be those with smaller increases in
CgA. In addition, it has been shown that ignoring
informative dropout can potentially bias biomarker pa-
rameters (35).

The probability of disease progression in GEP-NETs was
successfully described by an underlying Weibull model
modified by three predictors. The ratio between predicted
CgA levels and individual CgA at baseline (CgA0) was found
to be the most significant predictor for PFS and accounted for
the difference in PFS curves observed between the treatment
and placebo arm (Fig. 2c). Interestingly, the treatment arm
was not included as a covariate on the hazard since that
information was implicitly included in the link between the
CgA ratio and the PFS: CgA levels were typically reduced
with respect to baseline in patients receiving LAN, whereas
the main tendency in placebo patients was an increase of CgA
levels from baseline. We found that PFS was significantly
longer for patients receiving LAN than those patients
receiving placebo, thus corroborating previous findings (6).
The other two predictors of PFS were hepatic tumor load
>25% at baseline and primary tumor located in the pancreas.
These results are consistent with previous knowledge, which
correlate hepatic tumor load and pancreatic tumors with
worse prognosis in GEP-NETs (3,9,11,16,18,36).

To visualize the effect of CgA ratio on PFS, we
performed simulations of median expected time to event
(MTTE) given the observed range of CgA ratios at steady
state (Fig. 4) in the different subpopulations (hepatic tumor
load and pancreatic tumors). Assuming stable biomarker

Table II. Population PD Parameter Estimates of CgA and PFS Models

Parameter/covariate model Estimates 5th–95th percentilea

CgA0 ng=mLð Þ ¼ θCgA0
� 1þ θBNLES � NLES−4ð Þ½ ��

1þ θAGE � AGE−63ð Þ½ �b
θCgA0 = 3.13 3.08–3.18
θNLES = 2.4 × 10−2 (1.8–3.2) × 10−2

θAGE = 4.9 × 10−3 (3.5–6.1) × 10−3

λ (ng/mL/day)b 1.7 × 10−4 (1.2–2.1) × 10−4

EMAX (ng/mL)b 5.3 × 10−1 (4.6–6.7) × 10−1

Slope 9.5 × 10−2 6.6 × 10−2–1.5 × 10−1

C50 (ng/mL)c 5.53 4.39–7.00
Residual error (ng/mL)b 6.5 × 10−2 (6.0–7.1) × 10−2

IIV_CgA0 [CV(%)]b 11.6 10.4–12.6
IIV_λ [CV(%)]b 127 106–151
IIV_Slope [CV(%)] 153 116–217
IIV_Res. error [CV(%)] 57.6 50.4–65.0
β 7.6 × 10−4 (6.7–8.9) × 10−4

γ 1.72 1.52–1.88
α 16.0 12.4–18.1
θHLOAD> 25% 1.84 0.74–3.44
θTLOC(PANCREAS) 1.21 0.34–2.36

CgA0 CgA levels at baseline, λ disease progression rate, EMAX maximum effect on CgA decrease induced by LAN concentrations, Slope
parameter used to estimate C50 as the ratio between EMAX and Slope C50, LAN concentration required to exhibit half of maximum inhibitory
effect, IIV interpatient variability, β base parameter in Weibull model, γ shape parameter in Weibull model, α parameter governing the link
between CgA and PFS
a 90% confidence intervals calculated from 200 bootstrap datasets
b Parameters in the Box-Cox domain
c Secondary parameters (i.e., derived from C50 =EMAX / θC50)
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levels (i.e., CgAt/CgA0 = 1), hepatic tumor load >25% is
predicted to be associated with 44% lower MTTE relative
to hepatic tumor load <25%. Similarly, pancreatic tumor
MTTE is 38% relative to primary tumors in other locations
without treatment or disease progression.

The general trend in all populations is that increasing
levels of biomarkers leads to a reduction in PFS. The required
level of biomarker inhibition to achieve a specified increase in
MTTE is also dependent on the subpopulation. However,
when considering substantial increases of MTTE (e.g., of

Fig. 2. a Individual CgA observations (points) and CgA model predictions (light blue lines) vs. time from patients receiving placebo (top panel)
or LAN (bottom panel). Dashed lines represent typical model predictions. b VPC corresponding to the selected final population PD model for
CgA effects (including the model for dropout). Dots depict observations; lines correspond to 2.5th, 50th, and 97.5th percentiles of the
observations; and gray shaded areas represent the 95% prediction intervals of the 2.5th–50th–97.5th percentiles of 500 simulated datasets.
c Kaplan-Meier plot of observed progression-free survival in placebo (blue) and LAN arms (red) and 95% prediction intervals (shaded areas)
based on 500 simulations for base hazard following a Weibull distribution (left panel) and hazard influenced by the ratio of CgA levels from
baseline (right panel). d Kaplan-Meier plot of the final population model for PFS, stratified by the two main prognostic factors found in the
model: hepatic tumor load (left panel) and primary tumor location (right panel). Lines depict observed PFS and shaded areas represent 95%
prediction intervals based on 500 simulations
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more than 100%), the required inhibition is similar between
populations. For example, to increase median time to event
by 100, 48% and 65% inhibition of CgA levels is required for
patients with hepatic tumor load <25% and hepatic tumor
load >25%, respectively. Similarly, 48% and 61% inhibi-
tion of CgA levels is required for increasing median time
to event by 100% for patients with pancreatic tumors and
nonpancreatic tumors, respectively. This suggests that
although hepatic tumor load and tumor location signifi-
cantly affect PFS, LAN may be suitable for a broad
population of patients if substantial biomarker inhibition
can be achieved.

Currently, CgA is the most commonly accepted bio-
marker for monitoring patients with GEP-NET. Although
CgA has been evaluated as surrogate marker of response
(previous studies found that an early decrease of CgA levels
is linked with favorable outcomes (37) and elevated CgA
levels with poor overall prognosis (3,11,38)), it is deemed
category 3 (i.e., Bbased upon any level of evidence, there is
major disagreement^) by the National Comprehensive
Cancer Network (NCCN) (39). None of these studies
included either longitudinal analysis of CgA levels or a
quantitative relationship integrating CgA time profiles with
clinical outcome. In the present work, we used NLME
modeling to assess the putative use of CgA as a marker for
patient follow-up. The use of NLME models allows the
integration of different sources of knowledge to describe the
underlying time course of the disease. Indeed, the use of
mathematical models to assess the predictive performance of
circulating biomarkers has been highlighted previously (40–

42). Certainly, there are several recent examples where
mathematical models have been used to describe the time
course of tumor markers and their link with clinical outcomes
in different cancer indications. Some include human chorionic
gonadotropin as an early predictor of methotrexate resistance
in low-risk gestational trophoblastic neoplasia patients (43),
mathematical models to personalize vaccination regimens to
stabilize prostate-specific antigen (PSA) levels (42,44), solu-
ble VEGF receptor 3 to monitor adverse events and clinical
response in patients with imatinib-resistant gastrointestinal
stromal tumors (45,46), a semimechanistic model involving
lactate dehydrogenase (LDH) and neuron-specific enolase
(NSE) dynamics to individualize disease monitoring in small
cell lung cancer patients (27,47), and CA-125 as an early
predictive biomarker of recurrent ovarian cancer (48).

Circulating tumor markers such as CgA are easily
measured in peripheral blood and do not present the same
limitations of imaging procedures regarding the frequency of
measurement and, therefore, in conjunction with imaging
techniques (i.e., CT scans), provide a powerful strategy to
monitor disease. Indeed, the search for emerging tumor
markers that can be used as prognostic and predictive factors
of clinical outcome has increased substantially in the last
decades. This urge has been driven by the ultimate objective
to attain personalized medicine. In order to achieve this
personalized approach to cancer management, the identifica-
tion of significant prognostic and predictive factors that allow
us to reliably separate, for example, those patients with more
aggressive diseases or more likely to respond to certain
treatments, is strictly required.

Fig. 3. Simulated profiles to explain the link between lanreotide concentrations, CgA levels, and PFS. a Simulated
lanreotide Ctrough concentrations after 120 mg subcutaneous injections every 28 days (time of administrations represented
by gray arrows). Black line depicts LAN concentrations in patients receiving placebo; red line represents typical LAN profile
in the population studied; blue and yellow lines depict 95th and 5th percentiles of possible Ctrough LAN concentrations given
interpatient variability in the PK model. b Simulated CgA time course levels corresponding to LAN concentrations shown
in a. c Simulated PFS curves according to the predose CgA levels shown in b for the main prognostic factors included in the
final model (pancreatic tumors and hepatic tumor load >25%)
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A strength of this investigation is the availability of
biomarker and clinical outcome data from untreated patients
in the CLARINET study (this is not frequent in the oncology
field). Data on placebo patients allowed us to estimate the λ
parameter which corresponds to the natural increase of CgA
over time in the absence of treatment. Although published
works in which NLME models have been applied to data
from randomized placebo-controlled clinical trials in oncol-
ogy are scarce, a recent example that includes data from
placebo patients is the mathematical model of tumor growth
kinetics in renal cell carcinoma patients after treatment either
with placebo or pazopanib (49). Modeling tumor growth or
biomarker dynamics data from untreated patients provide
additional knowledge of the underlying disease proliferation
and therefore enable a more realistic description of the
behavior of the disease.

The results of the current investigation suggest that the
change in CgA over time is a relevant covariate/predictor of
PFS in GEP-NETs at the population level, in both untreated
and treatment-naive patients. In addition, we found that
patients with a primary tumor in the pancreas and patients
with a baseline hepatic tumor load >25% are likely to have a
worse prognosis.

The relationship established in this work between the
biomarker CgA and PFS is limited by its restriction to
treatment-naive patients. Further studies to identify how
CgA levels affect clinical outcomes at the individual level
are needed. In addition to the likely contribution of CgA to
PFS, factors such as time elapsed from diagnosis, previous
treatment with LAN or another somatostatin analog, and
duration of treatment should be expected to show predictive
effects.

CONCLUSIONS

Our results provide confirmatory evidence of the efficacy
of LAN in GEP-NETs. To the best of our knowledge, this is
the first analysis which develops a framework linking PK of
LAN to biomarker dynamics and uses the latter to describe
PFS. This framework offers a better understanding of the
effect of treatment on a surrogate endpoint of PFS (CgA) and
ultimately the clinical endpoint (PFS). One of the main
advantages of this type of model-based framework combining

LAN, CgA, and PFS is that models can be used to conduct
simulations to predict PFS in new settings, predict long-term
clinical outcome in phase III trials (50), or explore different
dosing schedules.
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