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Abstract

Intercellular communication mediated by gap junction (GJ) proteins is indispensable during

embryogenesis, tissue regeneration and wound healing. Here we report functional analysis

of a gap junction protein, Innexin 2 (Inx2), in cell type specification during Drosophila oogen-

esis. Our data reveal a novel involvement of Inx2 in the specification of Border Cells (BCs),

a migratory cell type, whose identity is determined by the cell autonomous STAT activity.

We show that Inx2 influences BC fate specification by modulating STAT activity via Dome-

less receptor endocytosis. Furthermore, detailed experimental analysis has uncovered that

Inx2 also regulates a calcium flux that transmits across the follicle cells. We propose that

Inx2 mediated calcium flux in the follicle cells stimulates endocytosis by altering Dynamin

(Shibire) distribution which is in turn critical for careful calibration of STAT activation and,

thus for BC specification. Together our data provide unprecedented molecular insights into

how gap junction proteins can regulate cell-type specification.

Author Summary

Gap junction mediated intercellular communication modulates several processes during

development, morphogenesis and normal tissue homeostasis. While gap junction proteins

play an important role during intercellular communication, the underlying molecular

mechanism(s) as to how they regulate diverse signaling cascades are unclear. By employ-

ing the Drosophila melanogaster oogenesis model we have characterized the role of gap

junction protein, Innexin 2 (Inx2), in cell fate specification during Drosophila oogenesis.

Our data demonstrate that loss of inx2 affects border cell specification. Border cells are a

small group of 6–8 follicle cells that acquire migratory fate in response to the activation of

JAK-STAT signaling. We show that perturbing Inx2 levels in the follicle cells inhibits

JAK-STAT signaling thereby adversely influencing border cell fate specification. Using

live cell imaging and molecular genetic analysis, we have elucidated the molecular mecha-

nism underlying Inx2 function in this process. We show that Inx2 mediates inter-follicu-

lar calcium flux that is critical for border cell fate determination. Furthermore, our
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observations indicate that Inx2 regulates Domeless receptor internalization possibly via

influencing distribution of Drosophila Dynamin, Shibire in the follicle cells. Taken

together these results suggest a functional link between Inx2, calcium flux and receptor

endocytosis during border cell fate specification in Drosophila oogenesis.

Introduction

Multicellular development in higher eukaryotes is critically dependent upon proper cell fate

specification. Molecular mechanisms underlying cell fate specification fall into two broad cate-

gories. Cell autonomous mode of fate specification depends upon intrinsic factors that typi-

cally comprise of transcriptional regulators whereas non-autonomous mechanisms are

initiated by either paracrine or juxtacrine signaling between different cell types. Typically a

combination of cell autonomous and non-autonomous mechanisms is employed to achieve

proper specification of different cell types. Communication between different cell types is thus

critical to determine the molecular nature of the combinatorial code that ultimately decides

the cell type identity.

Proper specification of distinct cell types is hence thought to be a combined outcome of

canonical mechanisms that rely upon the cell autonomous transcriptional regulators and

ligand- receptor interactions between neighboring and/or surrounding cells. In addition,

recent data have suggested that intercellular communication mediated by the gap junctions

may also modulate cell fate determination in multicellular systems including C. elegans, mam-

mals and planaria [1–4].

Oogenesis in Drosophila melanogaster has emerged as an attractive model system to eluci-

date diverse mechanisms underlying cell fate specification in large part due to the heteroge-

neous cell types present in an adult ovary. A Drosophila ovary consists of both somatic and

germ line cells that are packaged into oval shaped structures called the egg chambers. Within

an egg chamber, a layer of somatic follicle epithelial cells surrounds 16 centrally located germ

line cells. As the oogenesis proceeds, the posterior germ line cell acquires oocyte fate while the

remaining 15, serve as the nurse cells that support oocyte growth and development.

By contrast, the follicle cells which are epithelial in nature, comprise of three main sub-

groups; the stalk cells, polar cells and the main body follicle cells [5]. Among these three

subtypes, the polar cells mark the poles of an egg chamber and aid in the specification of

migratory group of cells, termed as border cells (BCs) from the anterior follicle cells. Specifica-

tion of BCs is of special interest since this fate transformation involves partial epithelial to mes-

enchymal transition reminiscent of various developmental and pathological events including

morphogenesis and tumor metastasis [6].

The polar cells secrete diffusible cytokine ligand, Unpaired (Upd), which activates the JAK-

STAT pathway in the neighboring follicle cells. STAT activation transforms 6–8 anterior folli-

cle cells to acquire border cell fate [7]. Because of the intriguing phenotypic traits including

subsequent migratory behavior of the BC population, the modulation of the JAK-STAT path-

way in this context is under constant scrutiny. In this regard it is noteworthy that among the 8

gap junction proteins from the Drosophila genome {Ogre, Innexin (inx) 2–7}, several exhibit a

distinct spatial pattern of expression in somatic and germ line cells of the developing ovary [8].

In particular, inx2 transcripts have been detected in the anterior end of the early stage egg

chamber and appear to overlap with the follicle cells that eventually give rise to the BCs [8].

We therefore decided to investigate possible functions of some of these gap junction proteins

during acquisition of distinct cellular identities including BC fate during oogenesis in Drosoph-
ila melanogaster.
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The highly conserved gap junction proteins have been implicated in controlling diverse

functions such as embryonic patterning, morphogenesis and tissue homeostasis from sea

urchins to higher mammals [9,10]. In general, the functional gap junction channel is formed

by the head to head alignment of two hemichannels contributed by each participating cell.

Hemichannels are hexameric complexes that are formed by the oligomerization of four pass

trans-membrane gap junction proteins, which allow for a controlled passage of small mole-

cules/ions [9]. Consistent with this special structural configuration, the gap junctions have

acquired versatile functions. For instance, some members of the gap junction channel family

are involved in regulation of excitable cell populations such as neurons, which generate electri-

cally coupled rapid and synchronized responses [11]. On the other hand, different members of

the same family help execute efficient protein trafficking to facilitate metabolic coupling

[11,12]. To document the involvement of gap junction proteins, these studies have employed

either traditional ‘loss-of-function’ mutant analysis or application of small inhibitory mole-

cules. Consequently, while the contribution of the respective gap junction proteins during cell

type specification is apparent, our understanding of the underlying molecular mechanisms is

far from clear.

In this study, we report a novel function of a gap junction protein, Inx2, during specifica-

tion of BC fate. Our data demonstrate that Inx2 achieves this by modulating the JAK-STAT

signaling in the follicle cells. Furthermore, we posit a three-component regulatory module

between Inx2, Dynamin and calcium transport that influences the inter-follicular communica-

tion ultimately responsible for the determination of BC fate.

Results

Innexin2 is required for BC specification during oogenesis

The gap junction genes inx2, inx3, inx7 and ogre are known to be expressed in the follicle cells

and the migratory cells of the Drosophila egg chamber [8,13]. Among this group, the inx2 tran-

scripts are detected specifically in the anterior follicle cells of early stage egg chambers [8].

Since a subset of 6–8 anterior follicle cells acquire border cell fate, we were curious if the early

and localized expression of inx2, has any role in establishing the BC identity during Drosophila
oogenesis [8]. We initially tested this idea by over expression of inx2RNAi using c306-Gal4

driver that shows robust expression in the anterior follicle cells of the Drosophila egg chambers

[14]. Interestingly, down regulation of Inx2 function in the anterior follicle cells resulted in

smaller BC clusters with lesser number of cells in the migrating cohort as opposed to wild type.

Control BC clusters have around 6.2±0.1 nuclei (area 714±27μm2) whereas the Inx2-depleted

clusters consist of 3.7±0.2 nuclei (area 468±28 μm2) (Fig 1A–1C and S1A Fig). For optimum

expression, all the experiments involving inx2RNAi and the corresponding controls were car-

ried out at 29˚c unless otherwise stated. Next we sought to test if the inx2RNAi construct

indeed targets Inx2. We immunostained egg chambers with Inx2 antibody where random flip-

out clones over expressing the inx2RNAi construct were generated. Consistent with our expec-

tation, follicle cells over expressing inx2RNAi construct indeed exhibited lower levels of Inx2

protein compared to their wild type counterparts (Fig 1D–1F). To ascertain the specificity of

the inx2RNAi construct further, we performed a rescue experiment by expressing Inx2cDNA

in the Inx2-depleted follicle cells. On an average the Inx2-depleted border cell clusters exhibit

around 3.5 nuclei per cluster (average 3.5±0.4). Since BC clusters coexpressing Inx2cDNA and

inx2RNAi were larger with higher number of nuclei per cluster (average 5.8±0.2), it suggested

that increasing Inx2 levels rescues border cell fate in Inx2-depleted follicle cells (S1B–S1F Fig).

In addition, we also observed rescue of migratory fate when we over expressed C terminal

tagged Inx2:RFP construct that is known to mimic the wild type protein, in the Inx2-depleted
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clusters [15] (S1E Fig). Altogether our data validated the specificity of the inx2RNAi construct

and suggested that phenotypes associated with inx2RNAi over expression are indeed due to

down regulation of Inx2 activity.

Since the average number of nuclei in Inx2-depleted clusters is consistently lower than the

control, we were curious if the early specification and recruitment of cells to the BC fate was com-

promised. Alternatively, BCs could fall off the moving cluster due to poor adhesion thus resulting

in smaller cohorts. To distinguish between the two possibilities, we stained the egg chambers with

Fig 1. Inx2 is required for border cell (BC) fate specification. (A, B, G, H): Stage 9–10 egg chambers of indicated genotypes. Arrowheads mark

the cluster. (A, B): anti-Armadillo (Red), GFP (Green). Inset shows magnified image of BC nuclei stained with DAPI. (C): Histogram compares the

number of BC nuclei of the genotype represented in (A, B). (D-F): Mosaic analysis employing Actin<Flipout >Gal4 resulting in overexpression of

inx2RNAi. Follicle cell overexpressing clones are outlined in white. GFP (Green) (D) and anti-Inx2 (Red) (E). (F): Merge of (D) and (E). Note the

down regulation in levels of Inx2 protein in clones over expressing inx2RNAi construct compared to nearby wild type cells. (G, H): anti-Slbo

antibody (Green) and DAPI (Blue). Inset represents magnified image of Slbo positive BC. (I): Corresponding histogram representing number of

BCs in (G) and (H). Note the decrease in the number of BCs in Inx2-depleted clusters. (J, K): MARCM analysis. Clones are identified by Moesin:

Cherry (Red) expression. Arrowheads mark BCs stained with anti-Slbo (Green). (J): Dotted line marks inx2 mutant cells. Inset is single channel

magnified image of the anterior end of the sample shown in (J). Note the absence of BC cluster. (K): Single plane image of stage 10 egg chamber of

inx2G0173a homozygous MARCM mutant clones co-expressing Inx2cDNA. The rescue of the Inx2-depleted phenotype is evident with conspicuous

BC cluster formation and their efficient migration. Inset represents magnified image of Slbo positive border cells (Slbo). ‘n’ represents number of

egg chambers analyzed. Error bar represents Standard Error of Mean. *** represents p-value <0.001.

doi:10.1371/journal.pgen.1006542.g001
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an antibody specific for a C/EBP transcription factor, Slow Border Cell (Slbo). Slbo is activated by

the JAK-STAT signaling in a subset of anterior follicle cells, which eventually acquires BC fate.

Consistent with our earlier observations, we found considerably reduced number of Slbo positive

cells (average 3.2±0.16) in the Inx2-depleted BC cluster compared to the control (average 6.2±0.1)

(Fig 1G–1I). Interestingly, although smaller in size, mutant clusters were always intact as in the

case of wild type. Moreover, we did not observe any lagging Slbo positive cell/s fallen off from the

migrating cluster. These observations suggested that small size of Inx2-depleted cluster was possi-

bly due to inefficient recruitment of the follicle cells to the BC fate.

Next we wondered if Inx2 protein functions as a channel during BC specification. To exam-

ine this possibility we decided to employ RFP tagged Inx2 (RFP:Inx2) construct that has been

shown to specifically compromise channel activity of Inx2 [15]. As in the case of inx2RNAi,
over expression of RFP tagged Inx2 (RFP:Inx2) construct also resulted in specification of fewer

border cells (5.04±0.18) in the migrating cluster as compared to control (6.6±0.07) [15] (S1G–

S1I Fig). This observation suggested that Inx2 likely functions as a component of a channel

during the specification of border cells.

Border cell specification defects usually lead to altered migration efficiency of the cluster.

Since the Inx2-depleted clusters are smaller we wondered if their migration efficiency is also

compromised. Indeed Inx2-depleted clusters exhibited migration defect as only 38% of the

clusters reached the oocyte boundary unlike 97% observed in the wild type control samples

(S1J–S1L Fig). This observation further supported our hypothesis that Inx2 modulates border

cell fate specification during Drosophila oogenesis.

To confirm the RNAi dependent phenotypes, we used two different inx2 alleles reported in

the flybase. Mosaic analysis with inx2G0059 (DGRC 114609) and inx2G0173a (DGRC 111858)

recapitulated the phenotypes induced by inx2RNAi. Anterior follicle cells homozygous for

inx2G0173a exhibited substantially reduced number of BCs, with complete absence of the cluster

in 45% of the egg chambers (n = 22) (Fig 1J). Similar observation was made when inx2G0059

(DGRC 114609) allele was employed. As in the case of inx2G0173a allele, 28% of the egg cham-

bers with inx2G0059 mutant anterior follicle cells completely lacked the border cell cluster

(n = 29). In addition, both the inx2G0173a (n = 22) and inx2G0059 (n = 29) mutant egg chambers

displayed migration defects in 82% and 76% of stage 10 egg chambers respectively. Over

expression of the Inx2cDNA using Actin-Gal4 rescued border cell fate resulting in the appear-

ance of near wild-type BC cluster in all the inx2G0173a mutant egg chambers. (n = 39). More-

over the frequency of migration defects was also reduced significantly from 82% to 39%

(n = 39). Taken together these data suggest that inx2G0173a is indeed a bonafide allele of inx2
(Fig 1K). Altogether these data support the conclusion that consistent with its expression in

the anterior follicle cells, inx2 plays a crucial role during BC fate specification and, probably as

a consequence, also influences their migratory behaviour.

Within the anterior follicle cells, the interaction between the polar cells and its adjacent fol-

licle cells is critical for the specification of BCs [7]. We were thus curious if Inx2 functions in the

polar cells to modulate the border cell fate. To test this we downregulated Inx2 function by over

expressing inx2RNAi using polar cell specific driver Upd-Gal4. To confirm that the Inx2 levels

were indeed affected in Inx2-depleted polar cells, we first stained the egg chambers with anti-

Inx2 antibody. At higher magnification, we observed punctate staining at the interface of the

two polar cells and this was reduced in Inx2-depleted background (S2A’ and S2B’ Fig). Quantifi-

cation of the egg chambers indicated that compared to the control (0%), 63% of the Inx2-de-

pleted polar cells exhibit reduction in Inx2 levels (number of egg chambers analyzed = 11).

Despite the reduction in the protein levels, overexpression of inx2RNAi by Upd-Gal4 didn’t

affect the border cell fate or border cell migration appreciably. (5.9±0.6 nuclei compared to

control of 6.2±0.7 nuclei) (S2C–S2E Fig). This observation suggested that Inx2 likely functions
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in the follicle cells adjacent to the polar cells that eventually acquire the border cell identity

(S2C–S2E Fig).

Next we were curious to know how Inx2 modulates border cell fate in the follicle cells.

Inx2 affects JAK-STAT signaling

Activation of the JAK-STAT pathway in the follicle cells is critical for the specification of BCs.

Cell autonomous STAT activity distinguishes the migrating population i.e. (BCs) from the

anterior follicle cells [7]. Since the total number of cells in the Inx2 compromised clusters was

significantly reduced compared to wild type, it was conceivable that JAK-STAT signaling is com-

promised in Inx2-depleted follicle cells. To assess this possibility, we examined 10XSTAT-GFP
reporter which has been routinely used for evaluating the level of JAK-STAT signaling in various

Drosophila tissues [16]. In the case of this reporter, the intensity of GFP is directly proportional to

the degree of activation of JAK-STAT pathway. In the wild type BCs we observe average reporter

activity of 1644±157 a.u. while in Inx2-depleted clusters, it was lower with an average activity of

around 727±32a.u. (S3A–S3G Fig). To confirm that 10XSTAT-GFP reporter is downregulated

prior to BC specification, we evaluated it’s activity in the younger egg chambers (Stage 8). Similar

to the late stage egg chambers with intact clusters, the intensity of the STAT reporter in stage 8

egg chambers in the anterior follicle cells was also diminished in the Inx2-depleted follicle cells.

The average intensity of reporter activity in the control follicle cells was 710.4±40.7 a.u. while that

of Inx2-depleted follicle cells was observed around 533.5±23.4 a.u. (Fig 2A–2C). In wild type egg

chambers, a gradient of STAT reporter activity is observed in the anterior follicle cells [17]. We

thus wondered whether the establishment and/or maintenance of the gradient is disrupted in the

egg chambers compromised for the Inx2 activity. To examine this possibility we plotted GFP

intensity from 10XSTAT-GFP reporter as a function of the distance of the follicle cells from the

polar cells. As reported previously, in the wild type egg chambers, we observe highest level of

GFP in the cells adjacent to the polar cells (FC1), intermediate levels for next cells (FC2) and least

for cells (FC3) that are farthest [17] (Fig 2C, 2G and 2H). Though we observed a similar STAT

reporter gradient in the Inx2-depleted follicle cells, the overall GFP intensity was much lower

compared to control. Lower level of STAT is known to activate Apontic (Apt), which in turn,

represses expression of both slbo and STAT thus interfering with border cell specification [17].

These data suggest that downregulation of Inx2 function attenuates JAK-STAT signaling, which

is important for BC fate specification during Drosophila oogenesis.

Since 10XSTAT-GFP reporter is activated by the STAT transcription factor, we also exam-

ined the levels of STAT protein in Inx2-depleted follicle cells [18]. As reported previously, in

the wild type follicle cells, we observed a very distinct nuclear enrichment of STAT protein

with a readily detectable gradient from the anterior to posterior [17]. The highest STAT pro-

tein was observed at the anterior tip which progressively reduced as the distance from the

polar cell increased. By contrast, in the Inx2-depleted follicle cells, the nuclear enrichment of

STAT protein was weak and in some instances quite diffuse (Fig 2D–2E). Though the quantifi-

cation of the nuclear STAT levels indicated presence of a gradient, analogous to the 10XSTAT-
GFP reporter, the staining intensity was lower (Fig 2F, 2G and 2I). Taken together these data

suggest that Inx2 regulates STAT levels (and activity) to modulate JAK-STAT signaling in the

follicle cells during BC fate specification.

BC fate specification defects induced due to loss of Inx2 can be

alleviated by overexpressing STAT

Since Inx2 down regulation resulted in diminished levels of STAT in the follicle cells, we

decided to assess if STAT overexpression can rescue the BC fate in Inx2-depleted follicle cells.

Elucidation of Gap Junction Function in Cell Fate Specification Using the Drosophila oogenesis Model
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To test this we over expressed inx2RNAi and STAT in the anterior follicle cells. The control

ovaries display 6.25±0.18 border cells (i.e. Slbo positive cells) in the migrating cluster while

Inx2 depletion results in smaller clusters with an average of 2.6±0.28 Slbo positive cells only

(Fig 3A–3E). Over expression of STAT in otherwise wild type background results in larger

clusters with an average of 8.6±0.32 border cells (Fig 3C and 3E). Importantly, STAT overex-

pression rescued BC fate in the Inx2-depleted follicle cells to near wild type numbers (5.25

±0.45 Slbo positive cells) (Fig 3D–3E). While the near complete rescue, suggested that STAT

activation is likely to be a limiting factor, it is possible that there are additional targets of Inx2

during BC fate specification. Nevertheless, significant rescue observed upon co-expression of

STAT and inx2RNAi argues that Inx2 functions upstream of STAT in the JAK-STAT pathway

during BC specification. Next question we sought to address was how Inx2 can modulate

STAT levels and/or activity in the follicle cells.

Fig 2. Loss of inx-2 leads to compromised STAT signaling and STAT levels in the follicle cells. (A, B, D, E): White

dotted line outlines anterior follicle cells of Stage 8 egg chamber of indicated genotypes. (A-B): 10XSTAT-GFP expression.

PC denotes polar cells. (C): Histogram compares 10XSTAT-GFP levels for genotypes represented in (A) and (B). (D, E):

STAT expression (Red). (F): Histogram comparing nuclear STAT level for genotypes represented in (D) and (E). Note the

decrease in the levels of both 10XSTAT-GFP and STAT protein in Inx2-depleted follicle cells. (G): Schematic of anterior

end of stage 8 egg chamber. FC stands for follicle cell. (H-I): Graph represents 10XSTAT-GFP (H) and nuclear STAT (I)

level in FC1, FC2 and FC3 between control and inx2RNAi. Error bar represents Standard Error of Mean. ‘n’ indicates

number of egg chambers analyzed. ** p-value <0.01.*** p-value <0.001.

doi:10.1371/journal.pgen.1006542.g002
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Inx2 modulates domeless receptor internalization in the follicle cells

The strength of the JAK–STAT signaling can be regulated at various levels through distinct

mechanisms including interaction(s) with a variety of regulatory proteins that participate in

different cellular processes including secretion and endocytosis. For example, ligand depen-

dent internalization of the Upd receptor, Domeless (Dome) is shown to be required for proper

activation of JAK-STAT signaling during Drosophila oogenesis [19,20].

This prompted us to examine the spatial distribution of GFP tagged Dome protein in the

Inx2-depleted follicle cells. We decided to test if Inx2 modulates the internalization of the

Dome receptor in the follicle cells. If this is indeed the case, then perturbing Inx2 activity

should also affect the distribution of Dome:GFP in the follicle cells, which ultimately would

influence the STAT gradient. To this end, we quantified total number of the Dome:GFP vesi-

cles in the fixed samples from both the wild type and the Inx2-depleted follicle cells. To distin-

guish the Dome:GFP expression from the background signal reliably, only the vesicles larger

than 200μm2 and exhibiting an intensity� 50 a.u. were considered for analysis. We observed

fewer internalized Dome:GFP vesicles in the Inx2-depleted follicle cells {Average 9 vesicles

(8.8±0.43), n = 101 follicle cells} as compared to the wild type {Average 15 vesicles (14.5±0.86),

n = 76 follicle cells} (Fig 4A and 4B). To account for this reduction, we also compared the rela-

tive distribution of the Dome:GFP vesicles in the experimental and control samples. To esti-

mate the fraction of the apical vesicles in the wild type and Inx2-depleted follicle cells, we

stained the egg chambers with anti-Armadillo. Armadillo accumulates at the apical end of the

lateral surface and appears as a band around the apical side of the follicle cells [21]. In our anal-

ysis, the GFP vesicles that overlapped or were physically associated with Armadillo at the inter-

face of the follicle cells and nurse cells were considered apical. By contrast, the rest of the

vesicles that were physically distant from the apical surface were regarded as cytoplasmic. As

expected in the Inx2-depleted follicle cells, we observed higher percentage of apical vesicles

(42%) compared to control (34%) suggesting that internalization of the Dome receptor is prob-

ably compromised (Fig 4C). Though the difference between the control and inx2RNAi over

expressing samples is relatively modest, it should be noted that dome is haploinsufficient and

thus Dome activity and/or levels are likely regulated in a stringent manner [19].

Fig 3. Inx2 dependent loss of BC can be rescued by the overexpression of STAT. (A-D): Stage 9–10 egg chamber of the indicated

genotype stained with anti-Slbo antibody (Red) and DAPI (Blue). Arrowheads mark border cell cluster (BC); Inset represents magnified image

of BC stained with Slbo. (E): Histogram showing number of BCs in the indicated genotype. Error bar represents Standard Error of Mean. ‘n’

indicates number of egg chambers analyzed. *** p-value <0.001. Note the rescue in number of BCs when STAT is overexpressed in

Inx2-depleted clusters.

doi:10.1371/journal.pgen.1006542.g003
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Fig 4. Inx2 regulates Domeless internalization by modulating distribution of Shibire. (A-B): Maximum intensity projected images depict

localization of the Dome:GFP vesicles in the follicle cells in control (A) and inx2RNAi (B). Anti-Armadillo staining (Magenta) marks the outline of

respective egg chamber. White arrowheads indicate vesicles localized to apical membrane. Yellow arrowheads mark cytoplasmic vesicles. (C):

Histogram comparing the apical fraction of Dome:GFP vesicles. (D-F): Stage 9–10 egg chambers of indicated genotypes stained with anti-

Armadillo (Red) and DAPI (Blue). Inset depicts the number of border cell nuclei. (G): Quantification of border cell nuclei in the migrating cluster

for genotype represented in (D-F). Note the enhancement of Inx2 depletion phenotype in Shibire heterozygous background. (H-K): Mosaic

analysis employing Actin<Flipout >Gal4 resulting in overexpression GFP alone (H-I) and GFP cum inx2RNAi (J-K). Follicle cells overexpressing

clones are outlined in white. GFP (Green) (H, J) and anti-Dynamin (Red) (I, K). Note the change in the level and distribution of Shibire (Dynamin)

protein in clones over expressing inx2RNAi construct compared to nearby wild-type cells and the control clone in (I). Error bar represents

Standard Error of Mean. ‘n’ indicates number of egg chambers analyzed. *** p-value <0.001.

doi:10.1371/journal.pgen.1006542.g004
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To independently validate that vesicular traffic is affected by compromising Inx2 function,

we performed the FM4-64 dye labeling and uptake assay for quantifying endocytosis in outer

follicle cells [22,23]. Incubation of the egg chambers in live imaging media supplemented with

FM4-64 dye labeled the cell membranes and over time FM4-64 was internalized in the form of

small vesicles. In wild type follicle cells, the FM4-64 labeled vesicles appeared at the rate of 9

±0.3 vesicles/minute while in Inx2-depleted follicle cells, this rate was substantially lower at 5.6

±0.5 vesicles/minute (S4A–S4C Fig, S1 and S2 Videos). This observation corroborated that

Inx2 modulates the rate of appearance of endocytic vesicles including those containing Dome:

GFP in the outer follicle cells. Any alteration in the rate of internalization of Dome:GFP in

Inx2-depleted background, in principle, can impair STAT activation and thereby also has the

ability to influence BC fate specification.

Inx2 interacts with shibire and modulates its levels/ distribution in the

anterior follicle cells

Since Dome internalization has been shown to be regulated by Drosophila Dynamin, Shibire

(Shi) [24], we were curious if loss of inx2 function also influenced shi function in BC fate speci-

fication. To assess this possibility, we overexpressed inx2RNAi both in the wild type and

shiFL54/+ anterior follicle cells. (It should be noted that unlike other experiments, this particu-

lar genetic interaction was conducted at 25˚C to be able to discern either positive or negative

interaction between inx2RNAi and shi). Over expression of inx2RNAi in wild type anterior fol-

licle cells results in clusters with 4.95±0.27 number of border cells (Fig 4D). BC specification is

further compromised if inx2RNAi is overexpressed in shiFL54/+ background (border cell nuclei

3.25±0.3) suggesting that inx2 genetically cooperates with shi in follicle cells during BC fate

specification (Fig 4D–4G).

Next we compared the distribution of Shi protein in wild type and Inx2-depleted follicle

cells. In wild type, Shi is localized both in the cytoplasm and at the cell membrane (Fig 4I).

Remarkably, we observed significant enrichment in the cytoplasmic levels of Shi in mosaic

clones over expressing the inx2RNAi (n = 13) compared to the control clones (n>13) (Fig 4K).

Quantification of the phenotype suggested that 80% of the inx2RNAi overexpressing follicle

cells exhibited noticeable enrichment of Shi protein. Similar differences in the cytoplasmic

level of Shi:GFP were observed when wild type fusion protein, UAS-Shi:GFP was expressed in

the follicle cells in the Inx2-depleted background (S4D–S4H Fig). These observations suggest

that Inx2 modulates the distribution and level of Shi in the anterior follicle cells.

Another member of endocytic machinery, Clathrin Heavy Chain (Chc) has been shown to

influence Dome internalization [20]. Thus to explore involvement of endocytosis in Inx2 func-

tion further we decided to alter Clathrin Heavy Chain (Chc) activity. Supporting the conclu-

sion that Inx2 modulates Dome internalization by influencing endocytic machinery in the

follicle cells, over expression of ChcRNAi in follicle cells resulted in smaller BC clusters with

3.93±0.24 border cells (S4I–S4K Fig).

Next we sought to determine the possible underlying mechanism(s) that Inx2 might employ

to regulate border cell fate in the follicle cells.

Inx2 mediates the transduction of calcium wave in outer follicle cells

Our data suggests that Shibire localization is sensitive to Inx2 activity. Intriguingly, calcium

levels are thought to regulate Shibire distribution and facilitate gap junction mediated intercel-

lular communication [25]. We thus wondered whether Inx2 exerts its influence on Shibire via

calcium transport.
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As an initial test of this idea we decided to examine if follicle cells display any free calcium.

We employed ultra sensitive green fluorescent calcium sensor, GCaMP6, to monitor calcium

levels in the outer follicle cells by live cell time-lapse imaging [26]. Curiously we observed peri-

odic wave of free calcium in a random subset of outer follicle cells (Fig 5A and S3 Video).

Interestingly, we never observed any initiation or transmission of the calcium flux in the polar

cells. Upon closer examination, we noticed that the free calcium wave initiated in a random

subset of 1–2 cells, which then spreads to adjacent follicle cells over time (Fig 5A). Since the

calcium wave travelled from a given cell to its neighbor, it seemed reasonable that the gap junc-

tion proteins expressed in these cells could help establish the connection between the follicle

cells to facilitate this movement. Down regulation of Inx2 function in the follicle cells using

c306-Gal4 driver indeed inhibited the calcium flux (Fig 5B and S4 Video). As can be seen from

the calcium reporter intensity plot over a function of time, we observed a drop in its peak

intensity in the Inx2-depleted follicle cells compared to control (Fig 5C and 5D). In addition,

unlike the control, where the calcium signal moved to the adjacent follicle cell, in Inx2-de-

pleted follicle cells we failed to detect any transmission of calcium signal to the neighbors (Fig

5B and 5D). Moreover, when the egg chambers were incubated with a well-known gap junc-

tion-uncoupling agent, 1-octanol, the calcium wave was inhibited supporting the conclusion

that the channel activity is required for the calcium flux in the follicle cells (Fig 5E and 5F, S5

and S6 Videos). Similar results were obtained when we incubated the egg chamber with

another well-known channel blocker, carbenoxolone [15] (S7 and S8 Videos). Altogether these

observations suggested that the gap junction protein Inx2 plays a role both in the activation

and mediation of the calcium flux in the somatic follicle cells during Drosophila egg chamber

development.

Next we decided to explore the source of calcium in the follicle cells that participates in the

generation of the flux. Specifically, we sought to determine whether the free Ca2+observed in

the follicle cells is of extracellular origin or if it was deployed from the intracellular reserves of

endoplasmic reticulum. To distinguish between the two possibilities, we analyzed the calcium

flux in the presence of drug U-73122 [27]. U-73122 inhibits Phospholipase C (PLC), which is

critical for the production of inositol 1,4,5-trisphosphate (IP3). As IP3 stimulates the release of

Ca2+ from the intracellular stores, we reasoned that application of drug might inhibit the flux

in the follicle cells, if the source of free Ca2+ was internal. Indeed, upon treatment with 5μM of

U-73122, follicle cells that initially exhibited the flux were completely devoid of the signal (S5A–

S5D Fig and S9 and S10 Videos). By contrast, application of Dimethyl sulphoxide (DMSO)

alone didn’t hinder the flux suggesting that the free Ca2+observed in the follicle cells is from the

internal stores of the cell and likely not from the extracellular milieu (S5A–S5D Fig).

Since Inx2 depletion affects both the BC fate specification and the calcium transients in the

follicle cells, we wondered if these calcium fluxes contribute to the specification of BC fate. To

test this we decided to perform a rescue experiment that allowed for increasing the intracellu-

lar levels of calcium. We then assessed if such an increase can ameliorate the BC phenotype

observed in Inx2-depleted follicle cells.

Elevation in the level of intracellular free calcium can be achieved either by opening the

store operated calcium channel (SOCE) or by increasing the inflow of calcium from the exter-

nal milieu. Orai, a component of SOCE complex, is a membrane associated calcium channel,

that opens under Ca2+ depletion thus activating Ca2+ entry [28–34]. To test our hypothesis, we

co-expressed the inx2RNAi along with UAS-Orai in the anterior follicle cells. As observed pre-

viously, overexpression of inx2RNAi in the anterior follicle cells results in smaller clusters with

an average of 3.5±0.32 BCs (Fig 6B and 6E). Interestingly, co-expression of UAS-Orai and

inx2RNAi resulted in larger cluster with 5.4±0.2 Slbo positive cells, suggesting that free Ca2+

functions downstream of Inx2 to regulate BC fate in anterior follicle cells (Fig 6A–6E). In
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Fig 5. Inx2 modulates Calcium flux in outer follicle cells. (A, B): Snapshots of time lapse imaging of calcium flux in the egg

chambers of indicated genotypes. Arrowheads mark the calcium flux. (C, D): GFP intensity calculation for Ca2+ levels. Insets show

anterior end of egg chamber of control and inx2RNAi respectively. 4 consecutive follicle cells (FC1-4) are marked which were

considered for calcium flux intensity calculation. Graph represents mean GFP intensity in FC1-4 measured over time (seconds). Note

the decrease in the GFP intensity in Inx2-depleted follicle cells (D). (E, F): Snapshots of Ca2+ flux in the egg chambers under various

conditions. Time interval is denoted in minutes. (E): prior to 1-octanol treatment (F): post 1-octanol treatment. White arrowheads mark

Ca2+ flux in the follicle cells. Note that incubation in 1-octanol results in the loss of flux in the follicle cells.

doi:10.1371/journal.pgen.1006542.g005
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addition over expression of Inositol 1,4,5-tris-phosphate receptor (Itpr) that mediates the

release of calcium from intracellular stores also rescues the BC fate in Inx2-depleted follicle

cells supporting our conclusion that elevation of calcium levels alone is sufficient to rescue the

Inx2 depleted phenotype [35] (S5E Fig related to Fig 6A–6E). We subsequently also addressed

if the calcium restores BC fate by elevating STAT levels in Inx2-depleted follicle cells. Consis-

tent with our expectation, we observed higher levels of STAT in the follicle cells overexpressing

the inx2RNAi and Orai compared to inx2RNAi alone suggesting that calcium likely functions

via the JAK-STAT pathway to modulate BC fate specification (Fig 6F–6J). This supports the

conclusion that rescue achieved by excess Ca2+ does not deploy any bypass mechanism and is

dependent on JAK-STAT pathway.

Fig 6. Elevation of Ca2+ rescues border cell fate in Inx2-depleted clusters. (A-D): Stage 9–10 egg chamber of indicated genotype

stained with anti-Slbo antibody (Red) and DAPI (Blue). Arrowheads mark BC cluster. Inset represents magnified image of BC. (E): Histogram

comparing the number of Slbo positive cells in genotypes (A-D). Note the rescue of BC fate in Inx2-depleted cluster over expressing Orai.

(F-I): Anterior end of stage 8 egg chamber stained with anti-STAT antibody (Red). Dotted line outlines anterior follicle cells. Arrowheads mark

follicle cell nuclei. (J): Quantification of levels of nuclear STAT for genotypes in (F-I). Error bar represents Standard Error of Mean. **
represents p-value <0.01, *** represents p-value <0.001. ‘n’ indicates number of egg chambers evaluated.

doi:10.1371/journal.pgen.1006542.g006
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Thus, our data argue that calcium functions downstream of Inx2 to regulate BC fate as

the phenotype associated with Inx2-depletion can be substantially rescued by increasing the

intracellular levels of free calcium. Hence we were curious if the elevation of Ca2+ in the follicle

cells also leads to stimulation of endocytosis that eventually results in activation of STAT and

ultimately leads to BC fate specification. To test this, we analyzed the internalization rate of

Dome:GFP vesicles in the follicle cells over expressing Orai. In the fixed samples, we compared

the distribution and localization of Dome:GFP vesicles in the control and Orai over expressing

follicle cells. We observed lower fraction of apical vesicles of Dome:GFP in the Orai over ex-

pressing follicle cells (12.5%) compared to control (22.5%) supporting the conclusion that Orai

stimulates Dome:GFP internalization in the follicle cells (Fig 7A–7C). Similar results were also

obtained with Clathrin light chain:GFP (Clc:GFP) construct in the follicle cell over expressing

Fig 7. Elevation of Ca2+ stimulates vesicle internalization in the follicle cells. (A-B): Maximum intensity projected images depicting the

localization of Dome:GFP (Green) vesicles in the anterior follicle cells of indicated genotypes. Rhodamine Phalloidin staining (Magenta)

marks the outlines of respective egg chambers. White arrowheads indicate vesicles localized to apical membrane of follicle cells. Yellow

arrowheads mark cytoplasmic vesicles. (C): Histogram comparing apical fraction of Dome:GFP vesicles in the follicle cells for genotypes (A,

B). (D): Proposed model of Inx2 mediated border cell fate specification. ‘n’ indicates number of egg chambers analyzed. Error bar represents

Standard Error of Mean. ** represents p-value <0.01.

doi:10.1371/journal.pgen.1006542.g007
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Orai (S6A–S6C Fig). We subsequently analyzed endocytosis by live cell imaging in FM4-64

labeled follicle cells over expressing GCaMP6 reporter. Interestingly, we observed several

instances where the calcium flux was followed by internalization of labeled vesicles suggesting

that the free Ca2+ likely stimulates endocytosis in the follicle cells (S6D Fig and S11 Video).

Taken together these observations suggest that Inx2 mediates the calcium flux, which in turn

probably stimulates endocytosis in the follicle cells.

Based on these data we reasoned that enhancing the levels of endocytosis regulators could

potentially modify the BC phenotype induced by Inx2 depletion. Consistently, over expression

of Rab5 and Rab7, partially rescued the number of cells recruited to BC fate when Inx2 levels

are compromised (S7A–S7E Fig). The modest yet consistent rescue with Rab5 and Rab7 over-

expression indicated that Inx2 likely contributes to modulation of the activities of individual

endocytosis regulators during border cell fate specification. It is also noteworthy that unlike

Rab5 and Rab7, increasing the levels of Rab11 in Inx2-depleted follicle cells didn’t rescue the

BC fate appreciably. This observation is consistent with a previous report that JAK-STAT sig-

naling in the follicle cells is independent of recycling endosomes [20].

Since JAK-STAT signaling has been shown to regulate Ca2+ levels in Hippocampal neurons,

we were curious if similar kind of regulation also existed in the follicle cells [36]. To test this,

we co expressed the GCaMP6 reporter and Janus kinase RNAi (JAKRNAi) in the follicle cells

and examined the calcium flux. Over expression of JAKRNAi in the anterior follicle cells

impeded border cell movement, however, relatively normal (i.e. similar to the control), cal-

cium flux persisted in the follicle cells. Thus, unlike the hippocampal cells, JAK-STAT signal-

ing does not seem to contribute to the free calcium wave in the follicle cells. (S7F and S7G Fig,

S12 Video).

Taken together our results suggest that gap junction protein Inx2 regulates both the trans-

mission and intensity of calcium flux in the outer follicle cells. Since calcium is known to medi-

ate the formation and recruitment of the Dynamin-Calcineurin complex to the endocytic

complex, we propose that as the flux moves, it stimulates membrane localization of Shi fol-

lowed by Dome internalization in the follicle cells [25]. Dome endocytosis subsequently acti-

vates STAT in the anterior follicle cells, thus resulting in the specification of BCs (Fig 7D).

These data are largely consistent with the model that Inx2 influences calcium flux, which in

turn regulates endocytosis. However, at present, we can’t rule out the possibility that Inx2

influences the two events i.e. generation of calcium flux and Domeless receptor endocytosis

independently.

Discussion

Recent observations have suggested that gap junction proteins are involved in regulation of

cell fate decisions in various cellular contexts including neuroectoderm differentiation in stem

cells, generation of asymmetry in worm neurons and subdivision of neocortex in mammalian

brain [1,2,37,38,39]. Our observations have elucidated a possible molecular mechanism under-

lying function of a gap junction protein involved in cell fate determination. We show that the

gap junction protein, Inx2, regulates JAK-STAT pathway in the Drosophila follicle cells to

specify BC fate. Importantly, our data demonstrate that intercellular communication between

the follicle cells is mediated by calcium wave. We show that one of the possible outcomes of

calcium flux is stimulation of Dome internalization resulting in STAT activation and BC fate

specification (Fig 7D). In this regard it is also important to note that inx2 transcripts are

enriched in the anterior follicle cells, which are the BC precursors [8]. Our results thus provide

a novel mechanistic insight into how gap junction mediated intercellular communication can

regulate JAK-STAT signaling pathway to ultimately influence BC specification
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Intercellular communication important for modulation of JAK-STAT

pathway

Our study provides novel insight into the nature of intracellular signaling that is activated in

gap junction coupled cells during diversification of cell fate. During Drosophila oogenesis, BCs

are specified in response to Unpaired (Upd) secreted from the polar cells that stimulate JAK--

STAT pathway in the neighboring follicle cells. The responding group of follicle cells activate

JAK-STAT pathway, and as a result, transform into a migratory population to acquire the BC

fate. Our results suggest that one of the outcomes of intercellular communication mediated by

transmission of calcium wave is ultimately crucial for the STAT activation and specification of

BCs. Similar horizontal inputs from other cascades could prove to be a general theme in coor-

dinating growth and development during pattern formation in a variety of multicellular

organisms.

Several reports have indicated that intercellular communication could be critical for Dro-
sophila oogenesis [40]. For the first time, our results with GCaMP6 reporter demonstrate that

the follicle cells, in fact, communicate via a calcium wave. Though at present we don’t under-

stand the mechanism underlying the initiation of the wave i.e. calcium flux, an attractive possi-

bility in this regard is potential signaling from the nurse cells. Two observations argue in favor

of this option. First, down regulation of Inx2 function in the follicle cells hinders the flux inten-

sity. Second, it has been reported that Inx2 in the follicle cells is localized at very close proxim-

ity to Inx4 in the nurse cells [13]. Since the apical surface of the follicle cells is in close contact

with the nurse cells, signal(s) from the germ line can possibly activate the calcium flux. As

germ line clones for Inx2 didn’t influence BC fate, it is likely that Inx2 plays a significant role

only in the follicle cells where as another germ line specific gap junction family protein may

partner with Inx2. Interestingly, gap junction mediated germline-soma interaction of this

nature has been reported in Drosophila spermatogenesis [41]. In this instance, Inx2 from the

somatic cells and Inx4 from male germ line form a heterotypic channel critical for mediating

effective germline-soma communication during spermatogenesis. Our results suggest the pos-

sibility of similar heterotypic interaction between Inx2 and Inx4 during oogenesis and future

experiments will explore this avenue in detail.

Positive influence of endocytosis on JAK-STAT pathway in the follicle

cells

Internalization of the JAK-STAT receptor ligand complex and their trafficking through the

endosomal compartment is critical for STAT activation [20]. By contrast, another study in

Drosophila imaginal discs suggests that down regulation of the endocytic components upregu-

lates the JAK-STAT pathway [42]. Our findings establish that vesicle internalization in the fol-

licle cells is important for potentiating JAK-STAT activity. Importantly, our data suggest an

unanticipated functional loop involving gap junction protein Inx2, endocytic machinery com-

ponent Shi and, calcium flux during border cell specification. It will be of interest to determine

whether Inx2 mediated calcium flux is directly responsible in changing endocytosis and future

experiments will test whether the effect of Inx2 on calcium levels can be functionally uncou-

pled from its impact on endocytosis.

In distinct developmental contexts, several signaling pathways are reiteratively deployed

to achieve remarkably diverse outcomes. For instance, signaling ligands such as Wnt and

Hedgehog not only control cell fate specification but can also moonlight as guidance cues. The

signaling machinery components adopt both canonical and non-canonical modes of signal

transduction in a context dependent manner. Thus in order to be able to modulate the signal-

ing pathways, several mechanisms ought to be in place that either potentiate or dampen the

Elucidation of Gap Junction Function in Cell Fate Specification Using the Drosophila oogenesis Model

PLOS Genetics | DOI:10.1371/journal.pgen.1006542 January 23, 2017 16 / 26



response to achieve the appropriate outcome. To name a few, post-translational modifications,

nuclear transport, protein degradation and controlled release via secretion are among numer-

ous strategies, which are employed for this purpose. In a number of different contexts, the

components of the endocytosis machinery as well as calcium have been reported to be major

players involved in the modulation of the signaling pathways. Future studies should focus on

how the endocytic regulators affect activity of JAK-STAT signaling in different systems to elicit

qualitatively distinct responses.

Gap junction proteins: unique conduits during development and disease

For any multicellular organism, proper tissue differentiation and organogenesis are two critical

aspects during early embryonic and subsequent adult development. Though gap junctions

serve at critical junctures during organismal development, recent studies have revealed an

unexpected functional link between gap junction proteins and progression of various cancers

[43–46]. Since tumor progression has been closely linked with aberrant differentiation, it

would be interesting to examine if loss of cellular identity in tumorigenesis is causally related

to impaired gap junction function. That such a connection is indeed a possibility was sug-

gested by recent studies on colon cancer cells, where restoring the gap junction function could

reestablish the differentiation [47]. It will be interesting to examine if intercellular communica-

tion mediated by gap junctions is responsible to acquire and/or maintain their epithelial fate.

Future studies will thus focus on mechanistic underpinnings of involvement of gap junction

proteins in cell fate specification in both normal and disease contexts.

Materials and Methods

Drosophila stocks and genetics

Fly stocks and crosses were maintained under standard conditions (25˚C) unless otherwise

stated. c306-Gal4, Actin-Gal4 and Upd-Gal4 used for the expression of various transgenes were

crossed with UAS-GFP reporter to test if the drivers were functional. P{UAS-Inx2}, P{UAS-

RFP:Inx2}, P{UAS-Inx2:RFP} were kindly provided by Dr Andrea Brand. P{UAS-Inx2:GFP}

and P{UAS-Inx2} were also provided by Reinhard Bauer (University of Bonn, Germany). P

{UAS-Domeless:GFP} was obtained from Prof. Stéphane Noselli (Institute of Biology Valrose,

France). P{UAS-Itpr} and P{UAS-Orai} were received from Prof. Gaiti Hasan (NCBS, India).

inx2 alleles P{w[+mC] = lacW}inx2G0173a (DGRC-111858), P{w[+mC] = lacW}inx2G0059

(DGRC-114609) were obtained from Drosophila Genetic Resource Centre, Kyoto. Rest of the

fly lines including UAS-inx2RNAi {P(TRiP.JF02446), Bl- 29306} and P {EPgy2}Stat92EEY14209/

TM3Sb Ser (Bl-20915) line were obtained from Bloomington Drosophila Stock Centre, Indi-

ana University. It should be noted that this particular inx2RNAi construct hasn’t been pre-

dicted to have off targets based on in-silico methods [15].

Immunohistochemistry

Ovary dissection, fixation and staining were performed using standard protocol [48]. The fol-

lowing primary antibodies were used: mouse anti-Armadillo [Developmental Studies Hybrid-

oma Bank (DSHB), 1:25, N27A1]; rat anti-Slbo 1:400 (gift from P. Rorth); rabbit anti-STAT

1:700 (gift from Steven Hou), rabbit anti-GFP 1:1000 (Life technologies), guinea pig anti-Inx2

1:1000 [41] and mouse anti-Dynamin 1:500 (BD, gift from Dr Richa Rikhy). Secondary anti-

bodies conjugated with Alexa-488 and Alexa-568 (Molecular Probes) were used at 1:250 and

1:400 dilutions respectively. Rhodamine Phalloidin staining was performed using standard

procedure [48].
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Statistics

Two-tailed Test of unequal variance was used in Excel to assess statistical significance. Graphs

were plotted using Origin Pro 8. � Indicates p value <0.05, �� indicates <0.01, ��� indicates

<0.001. We also carried out non-parametric Mann-Whitney test (employing Past3 applica-

tion), which is used for populations that are not normally distributed. Consistent with the T

Test results, we observed statistically significant differences with Mann-Whitney test too. Stan-

dard Error of Mean (S.E.M.) was calculated and represented for each data.

Fly genetics and mutant analysis

For mutant analysis, P{w[+mC] = lacW}inx2G0173a FRT 19A/FM7 flies were crossed with

hsFLP,tubP-Gal80,neo FRT19A; Actin-Gal4 UASp-Moesin:Cherry/TM3Sb. F1 flies were sub-

jected to heat-shock for 1 hour thrice a day for 3 consecutive days. Flies were incubated at

25˚C for 5 days followed by fattening at 25˚C. For MARCM rescue experiment UAS-Inx2 was

combined with P{w[+mC] = lacW}inx2G0173a FRT 19A/FM7 stock and crossed as mentioned

earlier.

For flip out clonal analysis, flies of genotype hsFLP UAS-mCD8: GFP; Actin<flipout>Gal4/

UAS-inx2RNAi were subjected to heat-shock for 1 hour duration thrice a day for 3 consecutive

days. The flies were dissected on the 6th day after the last heat shock and ovaries were immunos-

tained with Inx2 or Dynamin antibody.

For experiments in which the F1 genotype was lethal (ChcRNAi with c306-Gal4), tempera-

ture-sensitive Gal80 was used to downregulate Gal4 activity during early development. Crosses

were kept at 16˚C till progenies emerged. F1 flies were shifted to 31˚C (restrictive temperature)

for 18 hours to inactivate Gal80 before dissection.

In all of the RNAi experiments, desired F1 genotype flies were fattened at 29˚C for 18 hrs.

UAS-Moesin:GFP [49] or UAS-mCD8:GFP were used to normalize the number of UAS

constructs in the cross. All imaging were performed with Apotome & LSM 710 confocal

microscope.

Quantification of BC in the cluster

To quantify the number of nuclei, only stage 9–10 egg chambers, where BC cluster had

detached, were considered. For scoring migration defect, stage 10 egg chambers were identi-

fied and quantification carried out as reported previously [48]. Based on the distribution of

migration efficiency, adequate weightage was given to each phenotypic class for quantifying

the BC nuclei.

Calculation of nuclear STAT intensity

From the Z-stacks of the anterior end of stage 8 egg chambers, a region of interest adjacent to

the polar cells was selected and the outlines of the cells were marked. The three dimensional

extent of each nucleus, corresponding to its height in z direction was noted down, and those

particular z-planes bearing the cells were extracted separately. From these planes the cumula-

tive mean intensity of STAT was calculated using software (Zen 2010) by examining a maxi-

mum intensity projection (MIP) image for each cell.

Quantification of Slbo positive i.e. border cells

Numbers of Slbo positive cells were quantified from stage 9–10 egg chambers. All reference

images were captured in single plane and high magnification inset images in the figures are

maximum intensity projection of whole cluster in 2D.
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10XSTAT GFP intensity calculation

For the quantification of 10XSTAT-GFP in the follicle cells anterior end of stage 8 egg cham-

bers were captured keeping polar cells at the center plane. For intensity calculation, cells

were outlined on the basis of Armadillo staining and the mean intensity of STAT GFP was

extracted. For quantifying 10XSTAT-GFP in migrating border cell cluster, various Z stacks

were captured for the whole border cell cluster. The 3D images were projected in 2D employ-

ing maximum intensity projection (MIP) algorithm of Zen 2010. In the MIP images the border

cell clusters were outlined with reference to Armadillo staining and the mean intensity of

STAT GFP was extracted.

Domeless GFP vesicle count

Egg chambers were stained with Armadillo or Phalloidin and anti-GFP antibody. Imaging was

performed in Apotome microscope with 40X Plano-Apochromat objective (0.95 N.A.) by

keeping polar cells at the center with 340nm z interval. Vesicle quantification was done for

each z plane manually or using cell counter plugin from Image J. Vesicles that overlapped in

successive z planes were considered only once. Armadillo or Rhodamine Phalloidin was used

to label the follicle cell membrane.

Clc: GFP vesicle count

Egg chambers were stained with Phalloidin and anti-GFP antibody. Imaging was performed in

Apotome microscope with 40X Plano-Apochromat objective, (0.95 N.A.) by keeping polar

cells at the center with 340nm z interval. Vesicle quantification was done for each z plane man-

ually. Vesicles that overlapped in successive z planes were considered only once. Rhodamine

Phalloidin was used to label the follicle cell membrane.

Endocytosis imaging

Flies were dissected in live imaging media {Schneider medium supplemented with 15% FBS,

0.5mg/ml insulin (sigma)} and incubated in media supplemented with FM4-64 dye (life tech-

nologies) (10μg/ml in S2 media) for 2 minutes [50]. Egg chambers were transferred to fresh

Schneider media and immediately mounted on a glass bottom dish coated with poly-D-lysine

(sigma) [50]. The anterior part of the stage 8-egg chamber was captured with polar cells mark-

ing the central z plane. 5Z stacks were captured, equally distributed on both sides of the central

z plane under the confocal microscope CLSM 710 (Carl Zeiss, Germany) with a Plan-Apochro-

mat 100X oil immersion objective (N.A. 1.4). The z intervals were 740nm apart and 12 bit

images of frame size 512X512 were captured. This was followed by time lapse imaging with

3.15μs pixel dwell having time interval of 15.0 seconds per frame. In Zen 2010, a median filter

(3X3) was applied to lower the noise in the image sequences before vesicle counting was per-

formed manually for each z stack. Newly formed vesicles were counted in each frame and 3

cells on either side of the polar cells were included. Each vesicle was considered only once.

Calcium imaging and FM4-64 internalization assay

P{UAS-GCaMP6m} (Bl-42748) line was over expressed by c306-Gal4 or Actin-Gal4 for detect-

ing free Ca2+ in the follicle cells. 12 bit images of frame size 512X512 were captured with

CLSM 710 (Zeiss) with Plan-Apochromat 63X oil immersion objectives (N.A. 1.4). Argon

laser line 488 nm was used for GCaMP6 reporter and DPSS 561 nm laser employed for FM4-

64 dye (pinhole diameter 187 μm). Fast continuous live imaging with 6.3 μm pixel dwell at

frame interval 5 seconds for 5–6 minutes was used for recording the calcium flux alone.
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Sequential imaging was performed using Argon 488 laser and DPSS 561 nm laser with time

interval 7 seconds per frame for recording calcium flux and FM4-64 dye internalization.

For calcium flux graph, one Region of Interest (ROI) was chosen and the mean intensity of

the signal in each follicle cell through which the flux moves was plotted against time.

PLC inhibitor treatment

After egg chambers were imaged for 5 minutes to record the calcium flux they were treated for

15 minutes with live imaging media containing 5μM PLC inhibitor (or DMSO control). Post

treatment with PLC inhibitor, the calcium flux was again recorded for the same Region of

Interest.

1-octanol treatment

The pretreatment flux was recorded for the egg chambers prior to incubation with 2mM

1-octanol (Sigma-297887). After 15 minutes of incubation in 1-octanol, the egg chamber was

washed and imaged in normal live imaging media.

Carbenoxolone treatment

Control calcium flux was recorded for the egg chamber just after the addition of 125μM carbe-

noxolone (Sigma-C4790) to the live imaging media. After 20 minutes of incubation, calcium

flux was again recorded for the same egg chamber.

Quantification of shibire: GFP vesicles

The entire anterior end of stage 10 egg was captured using the Z stack imaging. The 3D images

were projected in 2D employing maximum intensity projection (MIP) algorithm and cells

expressing Shibire:GFP were outlined. The GFP vesicles greater than 0.25μm diameters in size

were quantified using cell counter plugin in Image J. Number of vesicles per unit area (per

100 μm2) was used to compare the control and inx2RNAi expressing follicle cells.

Supporting Information

S1 Fig. Channel activity of Inx2 modulates border cell fate in the follicle cells. (A): Histo-

gram compares the area of the control and Inx2-depleted border cell cluster (in μm2). (B-E):

Single plane image of stage 9–10 egg chamber of indicated genotype stained with anti-Arma-

dillo antibody (Red) and DAPI (Blue). Inset represents magnified image of BC nuclei. Arrow-

heads mark border cell cluster. (F): Quantification of border cells for the genotypes (B-E).

Note the rescue in the number of cells in migrating cluster when Inx2cDNA and Inx2:RFP are

overexpressed in Inx2-depleted follicle cells. (G, H, J, K): Single plane image of egg chamber of

indicated genotype stained with DAPI (Blue), anti-Slbo (Green) (G, H) and anti-Armadillo

(Red) (J, K). Arrowheads mark the border cell cluster. Inset represents the DAPI staining in

(G, H). (I): Histogram compares the number of border cells in the control (G) and RFP:Inx2

(H) overexpressing clusters. (L): Histogram compares the migration efficiency for control (J)

and inx2RNAi (K) border cell cluster respectively. ‘n’ indicates number of egg chambers ana-

lyzed. Error bar represents Standard Error of Mean. ��� represents p-value <0.001.

(TIF)

S2 Fig. Down regulation of Inx2 function in polar cells doesn’t affect border cell fate speci-

fication. (A, B): Stage 8 chamber of the indicated genotypes stained with anti-Inx2 (Red) and

DAPI (Blue). (A’, B’): Magnified image of the anterior of the egg chamber shown in (A) and

(B) respectively. Arrowhead marks the interface of two polar cells in (A’) and (B’). Note the
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absence of punctate staining for Inx2 in (B’) compared to (A’). (C, D): Single plane image of

stage 9–10 egg chamber of indicated genotype stained with anti-Armadillo antibody (Red).

Inset represents magnified image of BC nuclei in DAPI. Arrowheads mark border cell cluster.

(E): Quantification of number of nuclei in border cell cluster of indicated genotype in (C) and

(D). ‘n’ indicates the number of egg chambers analyzed. n.s. stands for statistically not signifi-

cant.

(TIF)

S3 Fig. Inx2 affect the 10XSTAT-GFP expression in border cell cluster. (A, B): Single plane

image of stage 9–10 egg chambers of indicated genotypes stained with anti-Armadillo antibody

(Red) and GFP (Green). Arrowheads mark border cell cluster. (C-F): Maximum intensity

projections of border cell cluster shown in (A) and (B). Control (C, D) and inx2RNAi (E, F)

stained with anti-Armadillo (Red) and GFP (Green). (G): Histogram displays difference in the

intensity level of 10XSTAT-GFP in control (D) and inx2RNAi (F) border cell cluster respec-

tively. ‘n’ indicates number of egg chambers analyzed. Error bar represents Standard Error of

Mean. �� represents p-value <0.01.

(TIF)

S4 Fig. Inx2 regulates vesicles internalization and Shibire localization. (A, B): Snapshot of

time-lapse imaging of follicle cells of stage 8 egg chambers labeled with lipophilic dye FM4-64

(Red). Time interval is indicated in minutes (min). 0 min is the merged image of the Moesin:

GFP and FM4-64 for the indicated genotypes. White arrows mark newly formed vesicle at the

apical end. (C): Histogram compares the rate of appearance of vesicles per minute for geno-

types indicated in (A) and (B). (D-G): Overexpression of UAS-ShiWT:GFP by c306-Gal4

driver in wild type (D, E) and Inx2-depleted (F, G) follicle cells. Follicle cell overexpressing

ShiWT:GFP are outlined in white. GFP (Green) (D, F) and anti-Armadillo (Red) (E, G).

Arrowheads mark the Shibire:GFP puncta. Note higher number of Shibire:GFP puncta in

Inx2-depleted follicle cells compared to the control. (H). Quantification of Shibire:GFP puncta

for genotypes represented in (D) and (F). (I, J) Stage 9–10 egg chamber of indicated genotype

stained with anti-Slbo (Red) and DAPI (Blue). Arrowheads mark BC cluster and inset shows

Slbo staining of the border cell cluster. (K) Histogram depicting the comparison of Slbo posi-

tive cells for genotypes represented in (I) and (J). ‘n’ indicates number of egg chambers ana-

lyzed. Error bar represents Standard Error of Mean. ��� represents p-value <0.001.

(TIF)

S5 Fig. Intracellular calcium in the follicle cells regulates the border cell fate specification.

(A-D): Snapshots of Ca2+ flux in the egg chambers of indicated genotype under various condi-

tions. Time is denoted in seconds. (A, B): pre- and post-DMSO treatment. (C, D): pre- and

post-PLC inhibitor (PLCi) treatment. White arrowheads mark Ca2+ flux. The observed flux

in the follicle cells is due to the release of intracellular Ca2+. (E): Histogram representing num-

ber of Slbo positive border cells in the indicated UAS lines driven by c306-Gal4. Note the

rescue in border cell fate in Inx2-depleted clusters overexpressing UAS-Itpr. ‘n’ indicates num-

ber of egg chambers analyzed. Error bar represents Standard Error of Mean. ��� represents

p-value <0.001.

(TIF)

S6 Fig. Increase in calcium level triggers vesicle internalization. (A, B): Maximum intensity

projection of egg chambers of indicated genotypes showing cellular distribution of Clathrin

light chain GFP (Clc:GFP) vesicles in the anterior follicle cells. Rhodamine Phalloidin (Magenta)

marks the outline of the egg chamber. White arrowheads indicate vesicles localized to apical

membrane of follicle cells. Yellow arrowheads mark cytoplasmic vesicles. (C): Histogram
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compares apical fraction of Clc-GFP vesicles in the control and UAS-Orai over expressing folli-

cle cells. (D): Snapshot of time lapse imaging of calcium flux in the presence of FM4-64 dye.

Arrows mark the follicle cells with active calcium flux and it correlates with FM4-64 dye inter-

nalization. ‘n’ indicates number of egg chamber analyzed. Error bar represents Standard Error

of Mean. ��� represents p-value<0.001.

(TIF)

S7 Fig. Overexpression of Rabs rescues border cell fate in Inx2–depleted follicle cells.

(A-D) Stage 9–10 egg chamber of indicated genotypes stained with anti-Armadillo (Red).

Arrowheads mark border cell cluster and inset shows DAPI staining of border cell cluster. (E):

Histogram showing number of nuclei in border cell clusters in the indicated genotypes. Note

the rescue in BC number when endocytosis regulators are overexpressed. (F, G): Snapshots of

time lapse imaging of calcium flux in control (c306-Gal4; UAS-GCaMP6) and Janus Kinase
(JAK) RNAi (c306-Gal4; UAS-GCaMP6/ UAS-JAKRNAi) follicle cells. Arrowheads mark the

calcium flux. No appreciable difference in the calcium flux was observed in follicle cells overex-

pressing JAKRNAi. ‘n’ indicates number of egg chamber analyzed. Error bar represents Stan-

dard Error of Mean. ��� represents p-value <0.001, � represent p-value <0.05.

(TIF)

S1 Video. Visualizing endocytosis using FM4-64 labeled vesicles. Time lapse imaging of

anterior follicle cells in a control egg chamber of the genotype c306-Gal4; UAS-Moesin:GFP

stained with membrane dye FM4-64 (Red). Green is Moesin:GFP expression that outlines the

anterior follicle cells. Note the appearance of new FM4-64 labeled vesicles (Red) in the follicle

cells. Time is denoted in minutes. Arrow marks the appearing vesicles.

(MOV)

S2 Video. Inx2 depletion impedes the appearance of newly formed vesicles. Time lapse

imaging of the anterior follicle cells. Genotype: c306-Gal4; UAS-inx2RNAi/ UAS-Moesin:GFP.

FM4-64 dye (Red) labels the membrane. Green is Moesin:GFP expression that outlines the

anterior follicle cells. Time is denoted in minutes. Arrow marks the appearing vesicles.

(MOV)

S3 Video. Follicle cells exhibit calcium wave. Time lapse imaging of an egg chamber

(Nomarski) expressing genetically encoded calcium indicator (Green). Genotype: c306-Gal4;

UAS-GCaMP6. Note the random subset of follicle cells exhibiting the calcium flux (Green).

Time is denoted in seconds.

(MOV)

S4 Video. Inx2 mediates the calcium flux in the follicle cells. Time lapse imaging of an egg

chamber (Nomarski) expressing genetically encoded calcium indicator (Green). Genotype:

c306-Gal4; UAS-GCaMP6/ UAS-inx2RNAi. Intensity and transduction of calcium flux

(Green) in the follicle cells is appreciably decreased. Time is denoted in seconds.

(MOV)

S5 Video. Follicle cells exhibiting calcium flux before treatment with 1-octanol. Time lapse

imaging of an egg chamber (Nomarski) prior to the treatment with 1-octanol. Genotype:

Actin-Gal4; UAS-GCaMP6. The calcium flux is observed in the follicle cells. Time is denoted

in minutes.

(MOV)

S6 Video. 1-octanol impedes calcium flux in the follicle cells. Time lapse imaging of the

same egg chamber captured in S5 Video, after treatment with 1-octanol. Note that intensity
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and transduction of calcium flux (Green) in the follicle cells is appreciably decreased. Time is

denoted in minutes.

(MOV)

S7 Video. Control follicle cells exhibiting calcium flux. Time lapse imaging of an egg cham-

ber (Nomarski) just after the addition of carbenoxolone to medium (0 time point). Genotype:

c306-Gal4; UAS-GCaMP6. The calcium flux is observed in the follicle cells. Time is denoted in

seconds.

(MOV)

S8 Video. Carbenoxolone impedes calcium flux in the follicle cells. Time lapse imaging of

the same egg chamber captured in S7 Video after incubation with carbenoxolone for 20 min-

utes. Genotype: c306-Gal4; UAS-GCaMP6. Note that intensity and transduction of calcium

flux (Green) in the follicle cells is decreased. Time is denoted in seconds.

(MOV)

S9 Video. Control; Source of Calcium is from the internal stores of the follicle cells. Time

lapse imaging of an egg chamber (Nomarski) prior to the treatment with PLC inhibitor. Geno-

type: c306-Gal4; UAS-GCaMP6. The calcium flux is observed in the follicle cells. Time is

denoted in seconds.

(MOV)

S10 Video. Source of Calcium is from the internal stores of the follicle cells. Time lapse

imaging of the same egg chamber captured in S9 Video, after treatment with PLC inhibitor.

Note the loss of calcium flux in the follicle cells. Time is denoted in seconds.

(MOV)

S11 Video. Calcium flux stimulates dye internalization. Sequential time- lapse imaging of

the egg chamber of the genotype c306-Gal4; UAS-GCaMP6 (Magenta) stained with membrane

dye, FM4-64 dye (Cyan). Internalization of FM4-64 dye is readily visible in the follicle cells

(Arrows) that exhibit the calcium flux. Time is denoted in minutes.

(MOV)

S12 Video. Calcium flux is independent of JAK-STAT signaling. Time lapse imaging of the

experimental egg chamber (Nomarski). Genotype:c306-Gal4;UAS-GCaMP6/ UAS-JAKRNAi.
Calcium flux (Green) is present in the follicle cells overexpressing the JAKRNAi. Time is

denoted in seconds.

(MOV)
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