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We describe ABA (A-Bruijn alignment), a new method for multiple alignment of biological sequences. The major
difference between ABA and existing multiple alignment methods is that ABA represents an alignment as a directed
graph, possibly containing cycles. This representation provides more flexibility than does a traditional alignment
matrix or the recently introduced partial order alignment (POA) graph by allowing a larger class of evolutionary
relationships between the aligned sequences. Our graph representation is particularly well-suited to the alignment of
protein sequences with shuffled and/or repeated domain structure, and allows one to construct multiple alignments
of proteins containing (1) domains that are not present in all proteins, (2) domains that are present in different
orders in different proteins, and (3) domains that are present in multiple copies in some proteins. In addition, ABA
is useful in the alignment of genomic sequences that contain duplications and inversions. We provide several
examples illustrating the applications of ABA.

[Supplemental material is available online at www.genome.org.]

Multiple sequence alignment (MSA) is arguably among the most
studied (Sankoff 1975; Waterman et al. 1976; Feng and Doolittle
1987; Higgins and Sharp 1988; Lipman et al. 1989; Schuler et al.
1991; Vingron and Argos 1991; Kececioglu 1993; Thompson et al.
1994; Morgenstern et al. 1996; Pei et al. 2003; Schwartz et al.
2003a; Darling et al. 2004) and difficult (Wang and Jiang 1994)
problems in computational biology. An optimal MSA of t se-
quences, each of length n, can be computed in �((2n)t) time by
dynamic programming (Sankoff 1975; Waterman et al. 1976).
However, such an approach is not practical for more than a few
sequences. Consequently, a large body of research exists for the
design of efficient heuristics for MSA; see Notredame (2002) for a
recent review. Currently, popular programs include CLUSTALW
(Thompson et al. 1994), T-COFFEE (Notredame et al. 2000),
DIALIGN (Morgenstern et al. 1998), MultiPiPMaker(Schwartz et
al. 2003a), and MACAW (Schuler et al. 1991). However, these
programs (and the majority of alignment algorithms) consider
the sequences to be aligned as having resulted from an evolu-
tionary process that includes only point mutations and (small)
insertions/deletions. Accordingly, an MSA of t sequences is often
represented in row–column format: The sequences are listed in t
rows with “space characters” (dashes) inserted in positions of
indels, and columns indicating aligned positions.

This representation of the alignment as a linear sequence of
alignment columns implicitly assumes that all regions of all se-
quences are similar over their entire length. However, for many
biological sequences this assumption does not hold. For ex-
ample, multidomain protein families evolve not only through
mutation of individual amino acids but also through operations
such as domain duplications and domain recombinations
(Doolittle 1995). Experienced users of multiple alignment pro-
grams often manually clip their sequences into similar blocks
and compute a global alignment of each block (Eddy 1998). In a

sense, this manual procedure attempts to overcome the limita-
tions of the alignment program by trimming the sequences to
the parts that are related by point mutations and small indels. A
more attractive alternative is to change the alignment program to
include a larger set of operations that more accurately reflect the
changes that occur in biological sequences.

Recently, in a pioneering paper, Lee et al. (2002) asked the
question “Should MSAs be linear?” In answer to this question,
they proposed partial order alignment (POA), an algorithm that
replaces the row–column representation of a multiple alignment
by a directed acyclic graph (DAG). Figure 1 illustrates the intu-
ition behind the POA approach. An alignment is a mapping from
a set of sequences to a graph. In row–column alignment, the
graph is always a single directed path, whereas the POA approach
expands the allowable graph structures to include DAGs. The
POA approach opens a new perspective on the multiple align-
ment problem by removing the rigid structure of the linear row–
column representation that has been the basis for multiple align-
ment research over the three decades. POA permits domain re-
combinations, making it a useful tool for the alignment of
multidomain proteins and ESTs.

However, even the DAG representation used in POA is not
flexible enough to capture the full complexity of the similarities
between biological sequences. For example, related protein se-
quences frequently share common domains, but the order of the
domains may be different in different proteins (shuffled do-
mains), or a single domain may be repeated in a single protein
(repeated domains). To represent shuffled or repeated domains,
the alignment representation must permit directed cycles (Fig. 2).
Hence, neither the row–column representation nor the DAG rep-
resentation provides an accurate representation of shuffled or
repeated domains. We take the approach of Lee et al. (2002) a
step further and ask “Should multiple alignments be represented
by acyclic graphs?” In the case of proteins with repeated or
shuffled domains, the answer is no.

We emphasize that the real multiple alignment problem is
more difficult that the schematic representation in Figure 2. For
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example, when aligning multidomain protein sequences, the de-
lineation of the sequences into domains is not known in advance
and needs to be derived from raw protein sequences. Neuwald et
al. (1997) recognized this problem and developed a program that
can automatically identify local blocks of significant multiple
alignment. However, their program re-
stricts the blocks to be in the same order and
converges onto a single strongest domain.
Different domains may have different
lengths in different proteins, and pairwise
alignments between them are often incon-
sistent. Resolving these inconsistencies is a
major challenge in multiple alignment. In
proteins with preserved domain order, local
similarities should not “cross” (Fig. 3).
However, alignments of proteins with
shuffled domains often contain many such
crossing similarities. Because a row–column
or POA does not permit crossing similari-
ties, in building such an alignment one
must decide which of the crossing similari-
ties to represent in the alignment. Once we
allow cycles in our alignment representa-
tion, crossing local similarities are permis-
sible, and distinguishing the crossing simi-
larities that indicate domains from “spuri-
ous” similarities becomes much more
difficult. Therefore, the problem of dealing
with crossing local similarities calls for de-
velopment of a new MSA approach that ad-
equately reflects the varieties of domain ar-
chitectures in different proteins.

In this article, we describe a new rep-
resentation for a multiple alignment as a
weighted directed graph (possibly contain-
ing cycles) called the A-Bruijn graph. The
A-Bruijn graph was recently introduced and
applied to fragment assembly and de novo

repeat identification (Pevzner et al. 2004). Our work is the first
application of the A-Bruijn graph to MSA. The A-Bruijn graph is
an extension of the classical de Bruijn graph that has been suc-
cessfully applied to many bioinformatics problems (Pevzner
1989; Pevzner et al. 2001; Heber et al. 2002; Pe’er et al. 2002;
Shamir and Tsur 2002; Böcker 2003; Li and Waterman 2003).
Zhang and Waterman (2003) pioneered the use of the de Bruijn
graph approach for global multiple alignment of DNA sequences.
However, the question of how to generalize their approach for
highly diverged DNA or protein sequences remained open. In
this article, we show how the notion of A-Bruijn graph addresses
this problem. We describe A-Bruijn Aligner (ABA), a program to
produce an alignment representation from the A-Bruijn graph.
We apply ABA to multidomain protein sequences and genomic
sequences with repeated and shuffled elements. The alignment
representation produced by ABA is similar to the threaded block-
sets recently introduced by Blanchette et al. (2004) to represent
the complex multiple alignments of large genomic sequences.
We demonstrate that ABA provides a solution to the open prob-
lem posed by Blanchette et al. (2004) of how to automatically
generate threaded blocksets. The ABA software is available at
http://nbcr.sdsc.edu/euler/.

Results
The MSA problem involves two tasks: finding a graph that rep-
resents the domain structure and finding a mapping of each se-
quence to this graph. Our approach constructs this graph based

Figure 1. An alignment is a mapping from a set of input sequences to
a directed graph. Positions that map to the same vertex are aligned.
Standard MSA programs map each sequence to a single path. Each vertex
on the path contains either a letter or a gap character from each se-
quence. POA maps each sequence to a DAG. The structure of the DAG
permits alignments where a subset of the sequences is aligned at a po-
sition.

Figure 2. (A) Four “protein” sequences containing three “domains” (A, B, and C; shown as
boxes) and unique regions (shown as lines). (B) A row–column multiple alignment introduces gaps
(dotted lines) to align domains A and C but cannot represent the alignment of all three domains.
(C) The POA graph improves the alignment in B by reducing the number of gaps but does not align
all copies of the domains. (D) A representation of the domain structure as a graph with cycles. (E)
We obtain a representation of the multiple alignment of the four sequences by “gluing” together
similar regions in the sequences. However, the sequences do not align over their entire length, and
the shuffled domains create cycles in the resulting graph. (F) A simplified representation of the ABA
graph shows the domains as edges of high multiplicity, and the unaligned regions as edges of
multiplicity one.
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on a predetermined set of local similarities (e.g., pairwise align-
ments) between the input sequences. Intuitively, the A-Bruijn
graph is obtained for a collection of pairwise alignments by “glu-
ing” the aligned positions.

Although Figure 2F is illustrative of the alignment represen-
tation that we wish to obtain, it is not immediately clear how to
obtain such a representation. The major challenge is the deter-
mination of the regions of similarity that should be “glued to-
gether” in the graph to represent the protein domains (boxes in
Fig. 2). One cannot use a stringent criterion for similarity, such as
exact �-tuple matches, because relatively few, if any, exact
matches are present in distantly related sequences. Therefore, the
traditional de Bruijn graph approach that is based on perfect
�-tuple matches does not work for this application. With a less
stringent criteria (e.g., local alignments), local similarities will
frequently be inconsistent, and one must decide which local
similarities to respect in the multiple alignment, a nontrivial
task. Morgenstern et al. (1996) give a mathematical condition for
the consistency of a set of local similarities among sequences. A
number of heuristics have been proposed for selecting sets of
consistent local similarities and building alignments from these
sets (Vingron and Argos 1991; Sammeth et
al. 2003). The problem is compounded by
our desire to permit directed cycles that re-
sult from crossing alignments that indicate
domain structures. In the ABA approach, we
distinguish crossing alignments from local
inconsistencies by using graph heuristics
that remove the short cycles resulting from
local inconsistencies, whereas retaining
longer cycles that result from multidomain
organization.

The A-Bruijn and ABA graphs

ABA represents an alignment of t sequences,
S1, S2, …, St, as a directed graph (possibly
containing cycles) with t source and t sink
vertices. Each sequence Si corresponds to a
directed path in the graph from the ith
source to the ith sink. Aligned regions from
different sequences or repeated regions in a
single sequence correspond to high multi-
plicity edges in the ABA graph. This latter
feature—aligning regions in the same se-
quence—is not found in existing ap-
proaches to multiple alignment and is simi-
lar to the use of the A-Bruijn graph in repeat
analysis (Pevzner et al. 2004). Thus, our rep-
resentation reveals repeated and shuffled re-
gions in the input sequences, features that
are not apparent in a row–column or POA.

The input to ABA is a set of t sequences and their pairwise align-
ments. We first construct the A-Bruijn graph of the alignments
by “gluing” together the aligned positions in the sequences S1,
S2, …, St in the following way. We model each sequence
S = s1 … sn as directed path on n vertices. Each pairwise local
alignment between sequence Si and Sj can be viewed as a set of
instructions for gluing together the paths corresponding to Si and
Sj: glue together every pair of matched positions in the alignment
(Fig. 4A). Application of this gluing process to all pairwise align-
ments between the input sequences results in a rather complex
A-Bruijn graph, often containing many short cycles that result
from “weak” and inconsistent alignments (Fig. 4B).

These short cycles occlude the recognition of domains in
protein alignments or conserved segments in genomic align-
ments. Thus, we want to “clean” the A-Bruijn graph by removing
these short cycles while retaining the large cycles that indicate
multidomain organization. To accomplish this task, we simplify
the A-Bruijn graph by solving the maximum subgraph with large
girth (MSLG) problem as described in Pevzner et al. (2004). An
optimal solution to the MSLG problem gives a maximum weight
subgraph that does not contain any cycles of length less than a
fixed parameter, the girth. After removing short cycles, we col-
lapse each simple chain in the graph into a single edge, and
record the number of vertices on the simple chain as the length
of the edge (Fig. 4C).

Case study: Proteins with SH2, SH3, and Pkinase domains

The ABA graph can represent alignments of proteins with
shuffled domains. As an illustration, we first examine the pair-
wise alignment of two proteins: SHK1 protein in Dictyostelium
(SWISS-PROT ID no. Q9BI25) and the ABL1 protein in human

Figure 3. With a row–column or partial order representation, any local
similarities that “cross” are inconsistent. In our representation, these local
similarities are permissible and lead to cycles in the alignment.

Figure 4. (A) Three linear paths represent three sequences: S1, S2, and S3. Vertices represent
positions in each sequence and are labeled by the amino acid at that position. Vertices correspond-
ing to aligned positions in the set of pairwise alignments are joined by dark edges. These edges give
a set of “gluing” instructions, and we obtain the A-Bruijn graph by collapsing each set of glued
vertices into a single vertex. (B) The resulting A-Bruijn graph contains a short (undirected) cycle on
vertices I, R, and F. Edge labels indicate the multiplicity of the edge. (C) We remove short cycles and
collapse each simple chain into a single edge, obtaining a simplified A-Bruijn graph. Each multiple
edge has a label of the form l(m), where l is the length of the sequences represented by that edge
and m is the multiplicity of the edge.
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(SWISS-PROT ID no. ABL1_HUMAN). Both proteins function as
kinases in signal transduction pathways and contain a pro-
tein kinase domain and SH2 domain, but in different order
(Fig. 5A).

The ABA graph reveals the shared domains as edges of mul-
tiplicity two (Fig. 5B). Furthermore, the ABA graph reflects the
shuffled domain structure as a cycle consisting of two edges
of multiplicity two—corresponding to the shared domains—
and two edges of multiplicity one—corresponding to the unique
interdomain regions in each sequence. This cyclic structure can-
not be represented as a row–column alignment or as a POA
graph.

As a second example, we present an alignment of four hu-
man proteins: MATK, ABL1, GRB2, and CRKL. Lee et al. (2002)
use this example to illustrate the ability of the POA graph to
reveal domain structures and to demonstrate the advantage of
the partial order representation over a row–column representa-
tion. In their representation (Fig. 6A), the alignment of the SH2
domains present in all four sequences is shown as an edge in the
center of the graph. However, POA does not align the five SH3
domains present in these sequences. In fact, the acyclic property
of the POA graph prohibits an alignment with the five SH3 do-
mains aligned and the four SH2 domains aligned. The alignment
of the four SH2 domains by POA forces the five SH3 domains into
two alignments: one preceding the aligned SH2 domains, and
one succeeding the aligned SH2 domains. This rigidity is not
present in the ABA graph (Fig. 6B,C). The SH3 domains on both
sides of the SH2 domains align in a single unit. As a result, the

edges corresponding to the SH2 domain and SH3 domain form a
cycle in the ABA graph.

To obtain the ABA graph, we identify pairwise local align-
ments between the four protein sequences by using the BLAST
program with BLOSUM80 matrix. Hits with minimal length of 40
and at least 40% conserved (as defined by BLAST) are input to the
ABA algorithm. The resulting ABA graph (Fig. 6C) clearly shows
the domain structures as edges with high multiplicity. In the ABA
graph, the edge (2 → 1) of multiplicity four corresponds to the
SH2 domain shared by all four sequences. The edge (1 → 2) of
multiplicity five corresponds to the five SH3 domains in four
sequences. Notably, the two SH3 domains in GRB2 are glued
together on this edge. As a result, the path through the graph
corresponding to the GRB2 sequence contains a cycle signifying
duplication of the SH3 domain. Also note that there is a second
SH3 domain at the C-terminal end of CRKL that is not glued by
ABA to the other SH3 domains. The reason for the isolation of
this SH3 domain is that it is sufficiently diverged from the other
SH3 domains so that there are no significant pairwise local align-
ments (satisfying our criteria above) between this SH3 domain
and the other sequences detected by BLAST.

Figure 5. (A) Dot matrix representation of similarities between Q9BI25
and ABL1_HUMAN protein sequences as revealed by BLAST (Altschul et
al. 1997). The two diagonals of length 274 and 86 represent two do-
mains: Pkinase (gray) and SH2 (black). (B) The corresponding ABA graph.
Each multiple edge has a label of the form l(m), where l is the length of
the sequences represented by that edge, and m is the multiplicity of the
edge. Each single edge is labeled simply as l (length) for brevity. Source/
sink vertices are labeled A and Q for protein sequences ABL1 HUMAN and
Q9BI25, respectively. Other vertices are numbered. The gray path
through the graph corresponds to Q9BI25 and the black path through
the graph corresponds to ABL1 HUMAN. The Pkinase domain corre-
sponds to the edge (1 → 2) of length 274, and the SH2 domain corre-
sponds the edge (3 → 4) of length 86.

Figure 6. Comparison of POA and ABA representations of the domain
structure of four human SH2 domain containing proteins: MATK (M),
ABL1 (A), GRB2 (G), and CRKL (C). (A) A simplified representation of the
POA graph, as obtained in Lee et al. (2002). Each input sequence forms
a path through the graph. Edges with a high multiplicity are labeled with
protein domains. (B) A simplified representation of the ABA graph. Dotted
edges have length zero and connect nodes that are glued together in the
ABA graph. (C) The ABA graph with collapsed multiple edges. Boxed
vertices represent small subgraphs that have been contracted (cf. Meth-
ods). In this graph, high multiplicity edges correspond to protein do-
mains SH2, SH3, and Pkinase domains with estimated lengths of 79, 45,
and 274 nucleotides, respectively.
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Case study: Proteins with GAF, Response_reg, GGDEF,
and EAL domains

Because ABA has the ability to align proteins with shuffled do-
mains, we wanted to explore the prevalence of domain shuffling
in proteins from SWISS-PROT (Boeckmann et al. 2003), based on
the SwissPfam domains annotation (Bateman et al. 2004). The
domain shuffling network (Fig. 7) summarizes our findings. Verti-
ces in the domain shuffling network are Pfam domains, and a
pair of vertices are joined by an edge if they appear in different
orders in some proteins in the SWISS-PROT database; that is, they
are shuffled. The domain shuffling graph is similar to the domain
network (Wuchty 2001) or the domain graph (Ye and Godzik
2004), in which domains (vertices) are linked if they appear in
the same protein. Clearly, the domain shuffling network is a
subgraph of the domain graph.

To construct the domain shuffling network, we select a
subset of Pfam domains (7316 domains, as at February 2004)
according to the following criteria: (1) is >50 amino acids (aa); (2)
is > 21% conserved; and (3) contained in at least 500 proteins.
A total of 119 domains satisfy these criteria,
and 47 of these appear in different orders
in the Pfam annotation of some SWISS-
PROT proteins. There are a total of 56 edges
representing shuffles between these 47 do-
mains. The network has 10 connected com-
ponents. The largest connected component
of the domain shuffling network (Fig. 7)
prominently displays the protein kinase
domain (Pkinase) as the highest degree
vertex. This reflects the fact that domain
shuffling is a common feature in the kinase
family. However, the domain shuffling
network reveals that shuffling of domains
is not restricted to kinases. We now describe
an example of domain shuffling and du-
plication outside the protein kinase fa-
mily.

We analyzed the four proteins
Q82U13, ETR1_ARATH, PHY2_SYNY3, and
Q7MD98 from SWISS-PROT, each con-
taining some but not all of the Pfam
domains GAF, Response_reg, GGDEF and

EAL (Fig. 8). The BLAST program with the
BLOSUM80 matrix gives eight significant
pairwise local alignments between these se-
quences that satisfy the constraints that
alignment length is >40 aa and is >40% con-
served. We inputed these alignments into
the ABA program, and obtained the graph
shown in Figure 8.

Edges of high multiplicity (or a chain
of high multiplicity edges) in the ABA graph
corresponds to domains shared by the se-
quences. Table 1 shows four edges (chain
of edges), each representing a significant
local multiple alignment. We emphasize
that the correspondence between these
edges and known protein domains is ap-
proximate, because the edges result directly
from significant alignments from BLAST.
We can extract the subsequences corre-

sponding to high multiplicity edges, and refine the multiple
alignment using an existing tool like CLUSTALW. We remark
that ABA eliminates a time-consuming, manual clipping proce-
dure.

Domain shuffling creates directed cycles in the ABA graph.
In this example there are two domain shuffles: Response_reg ver-
sus GAF, and EAL versus GAF/GGDEF represented by two di-
rected cycles (2 → 0 → 1 → 2 and 2 → 3 → 4 → 5 → 7 → 2) in
Figure 8. The different domain orders in individual sequences are
reflected by the different paths traversing the ABA graph that
visit edges in different orders.

When we align these four sequences by using POA (Lee et al.
2002), we observe that the DAG representation used by POA can-
not adequately represent the shuffled domain structure (Supple-
mental Fig. S1a,b). Among the four significant local alignments
listed in Table 1, POA correctly identifies the first one: an align-
ment between the GGDEF-EAL domains in the three sequences.
However, depending on the order that the sequences were input
into the iterative alignment procedure, POA detects either align-
ment 2 or 3 in Table 1, but not both. Alignment 4 (self-

Figure 7. The largest connected component of the Domain Shuffling Network of Pfam domains.
Only long, conserved, and common domains are shown. Pfam domains that appear in different
orders in proteins from SWISS-PROT are connected by an edge. We omit loops in the network that
indicate repeated domains.

Figure 8. Four proteins with shuffled domains and their ABA graph. (A) The domain structures
are derived from the SwissPfam database (Bateman et al. 2004). We show only well-annotated
PfamA domains. Domains that appear in only one of the four sequences are not shown. (B) Cycles
in the ABA graph reveal the extensive domain shuffling in these sequences.
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alignment) is always missing. We emphasize that the ABA graph
(Supplemental Fig. S1c), in contrast to the POA graph, is inde-
pendent of the order in which the sequences are considered.

Case study: Proteins with condensation, AMP-binding,
and PP-binding domains

We use ABA to align 16 protein sequences from SWISS-PROT
containing the condensation domain. Supplemental Table S1
gives the SWISS-PROT ID for each of the 16 proteins. The con-
densation domain is 249 aa long and is found in multidomain
enzymes that synthesize peptide antibiotics. Many of these pro-
teins also contain an AMP-binding domain, a 330-aa-long do-
main that covalently binds AMP to their substrates in an ATP-
dependent manner, and a PP-binding domain, a short domain

(65 aa) that serves as a “swinging arm” for the
attachment of activated fatty acid and amino-
acid groups.

We obtain the ABA graph shown in Figure
9 by using the same BLAST parameters as the
previous case studies. Most of the long edges in
the graph correspond to the long domains:
condensation and AMP-binding. These do-
mains are typically not well conserved over
their full length, and ABA reveals the well con-
served parts as high multiplicity edges (e.g.,
A → B and C → D) and splits the less conserved
parts into multiple edges, for example, B → C,
E → F, and G → A.

Genomic sequences

ABA is also applicable to the alignment of genomic sequences,
and the ABA graph directly reveals duplications and inversions
that are often found in alignments of long mammalian genomic
sequences. The input to ABA is a set of t DNA sequences (with the
t reverse complements) and the pairwise local alignments be-
tween the 2t sequences. The resulting ABA graph is a collection
of 2t paths—corresponding to the t input sequences and their
t reverse complements—that are glued together according to
the local alignments. A duplication in a single sequence corre-
sponds to a directed cycle in the path corresponding to this se-
quence, whereas an inversion corresponds to a gluing of the di-
rect strand of one sequence to the reverse strand of another se-
quence.

Table 1. Four high multiplicity edges in the ABA graph

No. Edge Length Conservationa Domain(s)

Domain occurrenceb

Q7 P E Q8

1 2 → 3 → 4 → 5 → 6 420 53% GGDEF-EAL 1 1 1
2 0 → 1 58 51% Response_reg 1 1
3 7 → 2 49c 60% GAF 1 1
4 2 → 3 157 43% GGDEF 2

aAverage pairwise percent of conserved amino acids.
bNumber of occurrences of domain or domain combinations in the proteins.
cThe alignment corresponding to this domain extends into block 2 in the graph (data not
shown), and thus the alignment is longer than the length of the edge 7 → 2 in Figure 8B.

Figure 9. ABA graph of 16 proteins, each containing a condensation domain. Edges A → B and C → D (highlighted) indicate well-conserved parts
of the AMP-binding domain. A long directed cycle (A → B → C → D → E → F → G → A) indicates repetition of these well-conserved sequences.
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We apply ABA to a pair of plant chlo-
roplast genomes, Arabidopsis thaliana and
Oenothera elata, and produce the graph in
Figure 10A. We compare our results to the
alignment obtained by the Threaded Block-
set Aligner (TBA) of Blanchette et al. (2004)
(Fig. 10B). TBA represents a multiple align-
ment as a set of alignment blocks (a block-
set) that is ordered according to one of the
input sequences; namely, one “threads”
one of the input sequences through the set
of blocks. Blocksets in TBA are analogous to
long edges in the ABA graph. We observe a
striking correspondence between long
edges in the ABA graph of the chloroplast
genomes (Fig. 10A) and the blocks obtained
by Blanchette et al. (2004) (Fig. 10B). A
single block (block 3) is missing from the
ABA graph, which probably could be res-
cued by a more sensitive parameter setting
when computing the pairwise BLASTZ
alignments that are input to ABA. Thus, in
this example ABA automatically generates
threaded blocks as long edges of high mul-
tiplicity in the ABA graph.

We note that the current implementa-
tion of TBA produces a limited type of
threaded blockset, namely, TBA “does not
accommodate inversions2 and duplications,
and it is restricted to finding matches that
occur in the same order and orientation in
the given sequences”. ABA has no such re-
strictions. Indeed, in the ABA graph of the
chloroplast genomes, block 7 appears twice
along the path corresponding to the Arabi-
dopsis genome, once in the direct strand
and once in the reverse strand. (TBA now
can handle reverse-strand matches and in-
versions [W. Miller, pers. comm.]).

To further our comparison of the
blocks extracted from the long edges of the
ABA graph with the blocks produced by
TBA, we examined the human, mouse, and
rat sequences from the NISC target region
T1. The complete set of sequences from 12
species was first analyzed in Thomas et al.
(2003). The ABA graph (Supplemental Fig.

Figure 10. Alignment of genomes of chloro-
plasts Arabidopsis thaliana and Oenothera elata.
(A) ABA graph. We use BLASTZ (Schwartz et al.
2003b) with parameter “B = 1 C = 2” to generate
pairwise local alignments. Gray path corresponds
to the direct strand of Arabidopsis DNA. The num-
ber in bold font close to an edge corresponds to
the block number in B, the blockset of Blanchette
et al. (2004) (Reproduced from Figure 2A in Blan-
chette et al. [2004]). (B, top) A dot plot of the
Arabidopsis genome (horizontal axis) and Oeno-
thera genome (vertical axis). (middle, bottom)
Nine “alignment blocks”; each block contains se-
quence segments labeled by the genome of ori-
gin (a) = Arabidopsis, (p) = Oenothera and the
coordinates of the segment in the genome.
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S3) contains 13536 edges (for both strands of the three genomic
sequences), whereas TBA generates 4445 blocks. When projected
on the direct strand of human genome, the ABA graph (Supple-
mental Fig. S2) has 3726 multiple edges (i.e., edges of multiplicity
larger than one) and TBA has 1624 multiple blocks (i.e., blocks
containing more than one sequence). We display the ABA and
TBA blocks in the UCSC genome browser (Kent et al. 2002) as
custom tracks (http://www.cse.ucsd.edu/groups/bioinformatics/
browser-tba-aba-human.bed) for a visual comparison. A region
surrounding the CAV2 gene along human genome is shown in
Figure 11.

ABA and TBA use different algorithmic approaches to block-
set generation (discussed below), yet most of the blocks produced
by TBA and ABA have significant overlaps. However, we observe
three differences. First, ABA generates blocks of multiplicity
higher than three (dark gray blocks in Fig. 11), demonstrating the
ability of ABA to handle duplications and inversions. Second,
TBA detects a few blocks that are missed by ABA: These blocks
represent short three-way alignments. ABA misses these short
alignments because it uses only pairwise alignments, whereas
TBA implements a progressive multiple alignment engine
(MULTIZ). Third, ABA generally produces longer blocks (or con-
catenations of blocks).

The above results demonstrate that (1) ABA is able to auto-
matically generate threaded blocksets for genomic sequence
alignment, and (2) ABA handles duplications and matches of
sequences that are in different orders in different genomes. A
more detailed comparison of the two approaches and the possi-
bility of synergistic combinations of both approaches are impor-
tant questions for future study.

Discussion
The important feature of ABA is the ability to produce multiple
alignments of sequences that include shuffled and repeated re-
gions, a feature lacking in other alignment methods. We now
compare ABA with other approaches to MSA, and describe fur-
ther applications and extensions of ABA.

Alignment representation

ABA represents a multiple alignment as a directed graph, possibly
containing cycles. This is in contrast to most existing alignment
programs that use a linear row–column representation. Recently,
Lee et al. (2002) introduced POA that uses a variation of network
alignment (first presented in Sankoff and Kruskal [1983] and ana-
lyzed in Myers [1996]) to align a sequence to a DAG representa-
tion of an alignment. The method is order dependent, as each
sequence is aligned to the graph in turn. In a later article, Grasso
and Lee (2004) generalized the method to include alignment of
two partial order graphs and thus implement a progressive align-

ment. However, their partial order graph is not able to represent
shuffled or repeated domains.

Lee et al. (2002) commented that their partial order repre-
sentation “expresses a more complex set of relationships than
can easily be discovered by phylogenetic tree”, and accordingly
introduced a new edit operator: domain recombination. In a
similar fashion, ABA implements two other operations: domain
rearrangement (change in order of two domains in a single se-
quence) and domain duplication (repetition of a domain in a
single sequence). Both domain rearrangement and domain du-
plication are common in protein sequences. Domain rearrange-
ment is similar to “string edit distance with moves” (Cormode et
al. 2000) or block edit distance (Ergün et al. 2003) studied in
string matching. However, to our knowledge, ABA is the first
multiple alignment program that implements the domain rear-
rangement operation.

Zhang and Waterman (2003) were the first to propose a
multiple alignment method based on the de Bruijn graph ap-
proach for DNA sequences. Following the Eulerian method for
fragment assembly in DNA sequencing (Idury and Waterman
1995; Pevzner et al. 2001), their EulerAlign algorithm starts with
the de Bruijn graph of k-mers contained in the set of sequences to
be aligned. Their algorithm transforms the de Bruijn graph into
a DAG and then aligns all sequences to a consensus represented
by a high weight path through the DAG. Thus, their method
aligns all sequences to a single consensus and removes all cycles
present in the de Bruijn graph.

The Zhang and Waterman (2003) algorithm presents a pow-
erful new technique for alignment of similar DNA sequences that
eliminates the time-consuming task of performing pairwise
alignments. Thus, their method is suitable for aligning a large
number of DNA sequences. However, the question of how to
generalize their method to align highly diverged DNA sequences
(e.g., DNA sequences that are <70% to 80% similar) remains
open. Furthermore, although the similarity between DNA se-
quences can often be captured by shared k-mers, protein se-
quences typically share very few k-mers and the similarity be-
tween protein sequences often requires nontrivial scoring matri-
ces. Furthermore, shared k-mers are very sensitive to indels. Our
A-Bruijn graph approach bypasses these limitations by abandon-
ing the k-mer analysis.

Very recently, Blanchette et al. (2004) introduced the TBA
for multiple alignment of megabase-sized regions of genomic se-
quences. The development of TBA and ABA share a common
philosophy: overcoming the limitations of the row–column rep-
resentation of a multiple alignment. The blocksets used by TBA
are analogous to the high multiplicity edges in the ABA graph,
and the threading procedure in TBA to create “ref-blocksets” is
analogous to following the path in the ABA graph from source i
to sink i. However, the current implementation of TBA—similar
to POA—handles only alignments of blocks that occur in the

Figure 11. Comparison of blocks produced by TBA and ABA. A region on human genome surrounding the CAV2 gene is displayed on the “zoo
genome” (NISC target region T1) of the UCSC genome browser (Kent et al. 2002). We use BLASTZ with parameters “B = 1 C = 2” to include reverse
strand matches. Blocks of multiplicity greater than one are shown with shades of gray indicating the multiplicity of the blocks. Most of the blocks have
multiplicity of three, corresponding to three-way alignments. Darker gray blocks indicate higher multiplicity and include duplications and inversions
(matches on the reverse strands).
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same order and orientation in the sequences. They leave open
the problem of “automatically, accurately, and reliably” identi-
fying blocksets in genomic sequences that resulted from inver-
sions, duplications, and other complex rearrangements. We dem-
onstrate that ABA solves this problem for protein and genomic
sequences, and it is possible to use ABA to automatically generate
blocksets for TBA.

The algorithmic approach of TBA is very different from ABA.
TBA progressively aligns input sequences along a phylogenetic
tree from leaves to the root. The blocks in the blockset at a parent
node result from intersections or exclusive-ORs of the blocks at
its children. The blocks are only split into smaller blocks during
the progressive steps of TBA. There is no mechanism to merge
blocks—TBA follows the maxim “Once a block boundary, always
a block boundary.” In contrast, ABA permits the merging and
simplification of very small blocks.

Every blockset represented by TBA is a somewhat simplified
linear view of a multiple alignment. In reality, some alignments
within a blockset may extend over several blocks, whereas other
alignments may be significantly shorter. In a sense, the indi-
vidual blocks in a blockset have the same limitations as the row–
column alignment, in comparison to a DAG alignment that was
discussed in the introduction. ABA has a more flexible approach
to defining the block boundaries that are expressed as “tangles”
in the ABA graph.

Applications and extensions

ABA integrates well with existing multiple alignment tools and
can serve as a preprocessor for these multiple alignment pro-
grams. For example, given a set of sequences with complex do-
main structure, we can first run ABA to uncover this structure
and then apply an existing multiple alignment program such as
CLUSTALW to refine the alignments given by high multiplicity
edges in the ABA graph. In this scenario, ABA automates the
time-consuming clipping of sequences frequently recommended
for multiple alignment tools and performs this clipping in a rig-
orous way.

The ability of the ABA graph to succinctly represent proteins
with shuffled and repeated domains makes it useful for de novo
domain finding and studies of domain structure. Galperin and
Koonin (1998) highlighted how the multidomain organization
of proteins can trigger mistakes in functional annotation, and
thus ABA graphs may be useful in this context. Because some
protein domains cannot be determined solely from pairwise simi-
larity, alternative similarity measures will be necessary for these
applications. ABA can use different measures of similarity in the
construction of the A-Bruijn graph. In this article, we focus on
similarities given by pairwise sequence alignments, but we can
also use k-way similarities, or similarity measures given by pro-
files (e.g., PSI-BLAST), structural comparisons, Hidden Markov
Models, etc. In particular, we can use reverse position–specific
BLAST (rpsBLAST) with profiles found in domain libraries such as
the Conserved Domain Database (Marchler-Bauer et al. 2003).
Use of rpsBLAST will reveal alignments corresponding to known
domains. Other high multiplicity edges in the ABA graph might
suggest novel domains.

Further refinements in the ABA algorithm will be required to
extend its application. One possible improvement to ABA is the
implementation of an iterative refinement procedure: After we
construct the initial ABA graph using pairwise similarities, we
identify the important edges and refine the alignment at each

important edge using more accurate alignment procedures. Fi-
nally, we rethread individual sequences through the important
edges; if the topology of the graph changes, the procedure is
repeated.

Methods
We describe the construction of the A-Bruijn and ABA graphs
that we use to represent a multiple alignment. Our presentation
follows that in Pevzner et al. (2004). Let S1, …, St denote the
sequences to be aligned. The goal is to obtain a directed multi-
graph with multiple edges corresponding to the aligned regions
in the sequences. We begin with a similarity matrix (dot matrix)
that describes a set of similarities between the sequences S1, …, St.
For simplicity, we assume that we use pairwise similarities, but
our model is more general and may include any l-way similarity
with l � t.

Let � denote the set of significant pairwise local alignments
between the sequences. For convenience, we concatenate S1, …,
St into a single sequence S = s1s2 … sN of total length N. We rep-
resent these alignments � in a similarity matrix A. We set entry
aij of A equal to one if positions si and sj are aligned in at least one
alignment in �; otherwise we set aij equal to zero. We think of
the similarity matrix A as the adjacency matrix (incidence ma-
trix) of a graph, called the A-graph. The vertices of the A-graph
are the positions s1, s2, …, sN of S, and (si, sj) is an edge if and only
if aij = 1.

The main obstacle to combining these local similarities into
an alignment is finding consistent sets of similarities. We now
form a multigraph G = (V,E) with vertices that are the connected
components of the A-graph. Accordingly, let V denote the con-
nected components of the A graph, and for si in S, let vi denote
the connected component containing si. The set E of edges of G
are (vi → vi + 1) for i = 1, …, �S� � 1 provided si and si + 1 belong to
a single sequence Sk; that is, we do not have edges that cross the
sequence boundaries in the concatenate S. The resulting graph G
is a directed multigraph, containing at most t sources and t
sinks.3 The directed path in the graph from source i to sink i
correspond to the sequence Si for 1 � i � t.2

In the case of inconsistent and “weak” alignments the re-
sulting A-Bruijn graph is often very complex and contains many
short cycles. We distinguish directed short cycles, whirls, and
undirected cycles, bulges. Whirls result from inconsistencies in
pairwise alignments. Often these inconsistencies can be removed
by moving gaps or removing matches in the alignment. Bulges
result from gaps in pairwise alignments. Bulges and whirls can
form complex structures of overlapping bulges/whirls, compli-
cating their removal. We solve the MSLG problem, using the
method described in Pevzner et al. (2004), to remove bulges and
whirls from the graph, setting the parameter girth equal to 50.

After removing bulges and whirls, the resulting graph may
still contain many short edges, due to ambiguities at the ends of
aligned regions. These edges add unnecessary complexity to the
A-Bruijn graph. To reveal aligned regions, we are interested in
important edges: edges of high multiplicity and edges with length
greater than some threshold. Therefore, we apply a two-step re-

2To avoid the situation when two sources or two sinks are glued into a single
vertex (i.e., when the ends of two different sequences are aligned in one
alignment in �), we add virtual vertices at the ends of a sequence with zero
length edges.
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threading procedure: (1) remove the unimportant edges, and (2)
thread each sequence Si through the remaining important edges.

Finally, for visual display purposes, we apply a short edge
removal heuristic that simply collapses any connected compo-
nent of short edges in the graph into a single super-vertex, repre-
sented by boxes in the figures. We use the Graphviz package
(Gansner and North 1999) to draw the resulting ABA graph. As an
illustration, the construction of the ABA graph in Figure 8 is
shown in Supplemental Figure S4.

For short sequences (e.g., protein sequences) the running
time of ABA is negligible compared to the time taken in comput-
ing all local pairwise alignments that form the input to ABA. For
longer sequences (e.g., megabase-sized genomic sequence), the
major constraint is memory. The human–mouse–rat sequences
considered above required 2 h of processing time and three gi-
gabytes of memory on an Alpha ES40 workstation. Improve-
ments in memory usage will be necessary for scaling ABA to
larger genomic regions. We are currently implementing a version
of ABA with reduced memory requirements.
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