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Abstract

Accurate and detailed spatial soil information is essential for environmental modelling, risk
assessment and decision making. The use of Remote Sensing data as secondary sources
of information in digital soil mapping has been found to be cost effective and less time con-
suming compared to traditional soil mapping approaches. But the potentials of Remote
Sensing data in improving knowledge of local scale soil information in West Africa have not
been fully explored. This study investigated the use of high spatial resolution satellite data
(RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map
the spatial distribution of six soil properties—sand, silt, clay, cation exchange capacity (CEC),
soil organic carbon (SOC) and nitrogen—in a 580 km? agricultural watershed in south-western
Burkina Faso. Four statistical prediction models—multiple linear regression (MLR), random for-
est regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)—
were tested and compared. Internal validation was conducted by cross validation while the
predictions were validated against an independent set of soil samples considering the model-
ling area and an extrapolation area. Model performance statistics revealed that the machine
learning techniques performed marginally better than the MLR, with the RFR providing in most
cases the highest accuracy. The inability of MLR to handle non-linear relationships between
dependent and independent variables was found to be a limitation in accurately predicting soil
properties at unsampled locations. Satellite data acquired during ploughing or early crop devel-
opment stages (e.g. May, June) were found to be the most important spectral predictors while
elevation, temperature and precipitation came up as prominent terrain/climatic variables in pre-
dicting soil properties. The results further showed that shortwave infrared and near infrared
channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were
prominent predictors in digital soil mapping. Considering the increased availability of freely
available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and
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regional scales in data poor regions such as West Africa can be improved with relatively little
financial and human resources.

Introduction

Accurate and detailed spatial soil information is essential for sustainable land use and manage-
ment as well as environmental modelling and risk assessment. In West Africa, where land degra-
dation and loss in soil fertility has been reported by numerous studies [1-3], such information is
increasingly required by governments and development partners to aid in improving land man-
agement [4]. High resolution spatial information on soils can assist decision makers to better tar-
get areas for soil fertility interventions and implement knowledge-based policies that aim at
increasing agricultural production and improving livelihoods of small scale farmers in the sub-
region. This is even crucial for the sustainable use of the soil resources particularly in the context
of climate change [5].

Traditional soil mapping approaches have mostly relied on ground-based surveys. Classical
field surveys including soil sampling and laboratory analyses are reported to be time consum-
ing and expensive, especially when mapping is being done at national, regional or global scales
[6-8]. In view of this bottleneck, new techniques for obtaining high-resolution soil informa-
tion are being developed and still have to be optimized. Digital soil mapping, which incorpo-
rates secondary (non-soil) data sources into the mapping process, has been identified as a
potential means of overcoming the limitations of traditional approaches and improving the
detail and spatial coverage of soil databases [8-10]. Apart from its cost effectiveness, digital
approaches allow a determination of an objective quantitative measure of prediction uncertainty,
which is often not provided when traditional approaches are employed [11]. Remote Sensing
(RS) data have come up in the last few decades as promising secondary data sources for improv-
ing digital soil mapping at all scales. Remotely sensed data sources: (1) contain extractable soil
information, e.g. spectral reflectance, (2) have large spatial coverage and therefore permit map-
ping of inaccessible areas, (3) produce consistent and comprehensive data both in time and space
and (4) offer possibilities of supplementing or at least reducing traditional soil sampling in soil
surveys [12]. Based on these advantages, numerous studies have explored the use of RS data with
varying spatial, temporal and spectral characteristics in digital soil mapping [8,13,14].

Saadat et al. [15] combined imagery from the Advanced Spaceborne Thermal Emission and
Reflectance Radiometer (ASTER) sensor and a digital elevation model (DEM) for landform
classification in Iran. They found that the spectral information in the RS data increased the pos-
sibility of distinguishing topographically similar landforms and subsequently improved the clas-
sification. Ehsani and Quiel [16] arrived at a similar conclusion when they used Landsat and
Shuttle Radar Topographic Mission (SRTM) DEM for analysing landscape elements in Eastern
Europe. Dobos et al. [6] found the combination of coarse resolution AVHRR (Advanced Very
High Resolution Radiometer) data and DEM derived terrain derivatives to be promising data
for characterizing soil forming environments and delineating soil patterns at national and conti-
nental scales. Compared to the terrain derivatives, the spectral information in the AVHRR
bands were noted to have contributed more to the accurate delineation of soil types. Hahn and
Gloaguen [17] underscored the importance of remotely sensed terrain variables (e.g. altitude,
aspect, slope) as input to soil type classification in Germany. In a regional scale analysis, Scu-
diero et al. [18] found, among various variables, that surface reflectance of multi-year Landsat
data was a useful indicator for characterizing the spatial variability of soil salinity in the western
San Joaquin valley of California. Other studies also demonstrated the contribution of RS data in
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mapping soil properties such as sand, silt, clay and soil organic carbon (SOC) based on reason-
able correlations between soil properties and reflectance spectra [14,19,20].

Despite many advances, further exploration of the application of RS data to soil mapping is
required, especially in data poor regions such as West Africa. This is in light of the increasing
availability of RS data, some of which are provided free of charge (e.g. Landsat, SRTM, Senti-
nel-1, -2) [8,21]. Research on the potential of RS data to improve digital soil mapping in West
Africa is sparse [22]. Recent digital mapping initiatives on the continent (e.g. African Soil
Information Service - http://africasoils.net/) [11] and at national scales (e.g. [23]) have used RS
and other environmental variables in mapping soil units and properties. However, the spatial
resolution of these studies is still coarse (ca. 250-1000 m), and may be of limited use for local
scale (e.g. watershed) analysis. The derivation of digital soil data at local scales is important for
assessing landscape scale resource needs and subsequently aid in regional, national and global
soil and agricultural monitoring efforts [4,6]. Moreover, the success of digital soil mapping is
to a large extent dependent on the availability, quality and timing of RS data acquisitions [24].
Land surface characteristics, especially on agricultural lands, are subject to temporal changes
and it is not always clear which periods of the year are suitable for acquiring RS data for accu-
rate soil property prediction. The use of multi-temporal images permits an investigation on
the impact of the temporal window of RS data acquisition on prediction accuracies.

This paper reports findings of a digital soil mapping effort that integrated RS data and con-
ventionally analysed soil samples to map the spatial distribution of soil properties (sand, silt,
clay, cation exchange capacity, SOC and nitrogen) in a 580 km” agricultural watershed in
south-western Burkina Faso. High spatial resolution multi-temporal RapidEye and Landsat
imagery together with ASTER Global DEM terrain derivatives were tested to determine their
suitability for improving the availability and accuracy of spatial soil information in rural Afri-
can landscapes. Since typical farm sizes in West Africa are small (i.e. less than one hectare
[25]), the use of such high spatial resolution RS data for digital soil mapping at local scales is
important and beneficial for optimizing farm management. However, such studies, to the best
of our knowledge, are rare.

Four statistical methods which have proved their suitability for digital soil mapping in previ-
ous studies—multiple linear (MLR), random forest regression (RFR), support vector machine
(SVM) and stochastic gradient boosting (SGB) [26-29] were explored to ascertain the most suit-
able method for high resolution RS data in the study region. Comparison of the traditional
regression method (MLR) and different machine learning methods to spatially predict soil
properties in West Africa are scarce. The research questions that the study addresses are: (1)
which regression method offers the best accuracy for predicting soil properties? (2) What is the
optimal time of RS data acquisition for predicting soil properties?

Materials and Methods
Study area

The study was conducted in a rural watershed that falls in the Ioba province in south-western
Burkina Faso (South-west Region). It has an area of about 580 km” and lies between latitudes
11° 21’ 50” and 11° 04’ 27”N and longitudes 003° 08’ 37” and 002° 50" 15”"W (Fig 1). Detailed
soil sampling was carried out in a sub-watershed which is about one-quarter of the watershed
(Fig 1). The watershed has a uni-modal rainfall distribution (May-October), with an annual
rainfall average of about 900 mm [30] while daily temperature ranges between 20.1 (mini-
mum) and 34° C (maximum). The lithology is composed of partly volcanic formations from
the middle precambrian period and is made up mainly of andesic rocks with massive texture,
basalt, diabase, gabbro and quartz-rich andesites. The study area is dominated by Plinthosols
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Fig 1. Map of the study watershed and locations of soil sampling.
doi:10.1371/journal.pone.0170478.9001

(70%) with inclusions of haplic Gleysols (15%), vertic Cambisols (14%), haplic Leptosols
(1.7%) and stagnic Lixisols (0.2%). The terrain is flat, with elevation below 600 m above mean
sea level and average slope of less than 5° [31].

Population density of the study area ranges between 40-60 persons/km?, most of whom
engage in small scale rainfed farming as their main source of occupation [32]. Agriculture is
the major land use and covers about 45% of the watershed, while different forms of vegetation
(e.g. forest, shrub, grass), artificial surfaces (e.g. settlements, bare areas) and water bodies cover
52%, 2% and 1%, respectively [25].

Input data

Soil sampling and analysis. Representative soil units were chosen for sampling based on
existing soil [33], land use [34] and DEM [31] data of the watershed. The focus of the sampling
was a sub-watershed (see Fig 1). A total of 1104 soil samples (1002 in sub-watershed and 102 out-
side) coming mainly from the topsoil (0-30 cm), were considered in this study. They were taken
from the topsoil of 35 profiles along with intensive auger sampling carried out from July to Octo-
ber 2012 and from July to October 2013. At each auger sampling point, composite samples were
taken from the topsoil (0-30 cm). These samples were dried at 40°C and sieved to 2 mm.

Because of the high number of soil samples, we analysed only 100 samples conventionally
for the soil properties under study (i.e. texture-sand, silt, clay; nitrogen (N), SOC, cation
exchange capacity (CEC)) following the procedures described in [35]. For the rest of the sam-
ple set, we used mid infrared spectroscopy (MIRS) to predict the above mentioned soil proper-
ties. The estimation of soil properties is generated by calibrating spectral information against
conventionally obtained data using multivariate statistical procedures such as partial least
squares regression (PLSR [36]).

For spectra measurement, about 20 mg of the soil samples were set into microplates and com-
pacted with a plunger to get a level and plain surface in five replicates. The spectra were recorded
using a Bruker Tensor 27 with an automated high throughput device (Bruker HTS-XT; Bruker
Optik, Ettlingen, Germany). For each spectrum, 120 scans were recorded from 8000 to 580 cm™ at
a resolution of 4 cm™ [37]. The software package OPUS QUANT (© 2006 Bruker Optik GmbH)
was used for spectra analyses and for the prediction of soil properties with PLSR. OPUS QUANT
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Table 1. Statistical parameters of the mid infrared spectroscopy-partial least squares regression prediction models (n = 100 samples) and of the
predicted dataset (n = 1104 samples).

Parameters Full cross-validation
R? (%) RMSECV

Sand (%) 70.5 6.8

Silt (%) 75.8 4.9

Clay (%) 77.6 6.2

CEC (cmolc kg™ 75.6 3.6

SOC (%) 95.3 0.1

Nitrogen (%) 85.5 0

Test-set validation (V = 10%) Predicted dataset

RPD Slope R2 (%) RMSEP RPD Slope Min Max Mean SD
1.8 0.7 80.9 5.7 2.5 0.7 3.5 66.2 37.6 9.6
2 0.8 88.2 3.9 3 0.8 22.4 67.1 451 8.6
2.1 0.8 80.6 5.5 2.4 0.8 0 54.5 20.8 8

2 0.8 90.5 3.2 3.6 0.8 0 36.3 12.5 5.9
4.6 0.9 92.2 0.2 3.6 0.9 0 4.4 1.5 0.6
2.6 0.9 85.7 0 3 0.8 0 0.3 0.1 0.1

RMSECYV: root mean square error of cross validation, RMSEP: root mean square error of prediction, RPD: ratio of performance to deviation, V: validation

set, SD: standard deviation.

doi:10.1371/journal.pone.0170478.t001

uses a routine that automatically tests combinations of varying spectral ranges and data treatments
for the optimum prediction power of the model. For each soil parameter, we conducted calibra-
tion procedures employing a leave—one—out, full-cross validation as well as a test-set calibration
for checking model robustness as described by Bornemann et al. [37] (Table 1). The quality of the
different models for each soil property was assessed based on their predictive ability with the R,
ratio of performance to deviation (RPD) and the standard error of prediction (SEP). For more
technical information, readers are referred to [38]. Only models exhibiting good predictive ability
(RPD>2) or close to that (RPD 1.7-2.0) [39] were used to make predictions for the remaining
samples (Table 1). As seen in the table, the MIRS cross validation showed that SOC, followed by N
presented the best prediction accuracy based on the R* and the RPD. Additionally, the error met-
rics from the MIRS test-set validation confirmed the robustness of the different calibration models
for all soil properties with R* > 80% and with RPD>2.

Satellite spectral data. Multi-temporal data from two optical sensors, RapidEye and
Landsat, were used in this study. The images were acquired on 1* March, 1" April, 3" May
2013 (RapidEye) and 13" June 2013 (Landsat). This period was selected to coincide with the
peak of the dry season and the ploughing/planting period during which there’s little or no veg-
etation especially on croplands. RapidEye was obtained from the RapidEye Science Archive
team of the German Aerospace Center (DLR) (https://resa.blackbridge.com/), while Landsat 8
was downloaded from the United States Geological Survey’s GLOVIS website (http://glovis.
usgs.gov). The RapidEye data has five spectral channels (blue, green, red, rededge and near
infrared (NIR)) and a spatial resolution of 5 m (i.e. orthorectified, level 3A) [40], while Landsat
has eleven spectral channels [41] and a spatial resolution of 30 m, which was later resampled to
5 m to ensure integration with the RapidEye data. Six out of the eleven spectral channels of
Landsat (see Table 2) were used in the analysis. Images from both sensors were atmospheri-
cally corrected using the ENVI ATCOR software [42]. In addition to the original spectral
bands, six soil and vegetation indices were calculated for each image. In all, twenty-one spec-
tral bands and twenty-four spectral indices were derived (i.e. six indices for each of the four
images). Table 2 provides further details of the spectral bands of RapidEye and Landsat as well
as formulae and definitions of the spectral indices calculated. These spectral indices have been
found to be useful in digital soil mapping [43].

Terrain and climatic variables. Terrain variables were extracted from the 30 m resolution
ASTER GDEM (http://asterweb.jpl.nasa.gov/GDEM.ASP) [30]. Although previous studies have
shown that the 90 m resolution SRTM DEM [45] has a superior absolute accuracy than ASTER
GDEM [46], the latter was selected for this study due to its superior spatial resolution. Although
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Table 2. Spectral bands of satellite images used and definitions of soil and vegetation indices calculated.

Spectral bands
Band number

1 2 3 4 5 6

RapidEye band Blue Green Red | Rededge (RAE) | Nearinfrared (NIR)
name (B) (G) (R)
Landsat band name | Blue Green Red | Nearinfrared Shortwave infrared 1 Shortwave infrared 2
(B) (G) (R) | (NIR) (SWIR 1) (SWIR 2)

Spectral

indices
Indices Formula Index property Reference
Brightness Index (BI) (R?+G2%+B?/3)° Average reflectance [43]

magnitude

Saturation Index (SI) (R-B)/(R+B) Spectral slope [43]
Hue Index (HI) (2 * R-G-B)/ (G-B) Primary colors [43]
Coloration Index (Cl) (R-G)/(R+G) Soil color [43]
Redness Index (RI) R2/(B * G%) Hematite content [43]
Normalized Difference Vegetation Index (NIR-R)/(NIR + R) Health and amount of [44]
(NDVI) vegetation

doi:10.1371/journal.pone.0170478.1002

the 30 m SRTM data has been made freely available, it came at a time that this manuscript was
at an advanced development stage. The data was pre-processed to generate a depressionless
DEM prior to the calculation of terrain variables. Climatic data (i.e. mean annual precipitation
and temperature over 50 years) at 1 km resolution were obtained from worldclim [47].

In order to ensure integration with the RapidEye data, the DEM and climatic variables were
resampled to 5 m resolution using the bilinear and bicubic interpolation methods, respectively.
Table 3 lists the 29 terrain and climatic variables that were used in this study together with the
relevant references. Most derivatives were calculated using the System for Automated Geos-
cientific Analysis (SAGA) software, while few were calculated with ArcGIS.

Models

Multiple linear regression (MLR). Linear regression models aim at explaining the spatial
distribution of a dependent variable by means of a linear combination of predictors (indepen-
dent variables). In the case of this study, the various soil parameters are considered the depen-
dent variables while the spectral and terrain/climatic variables are the independent variables.
Linear regression models generally have the form:

n
y=a+Zbi*xiiei (1)
i=1
where “y” is the dependent variable (soil parameter), “x;”are the predictors, “n” is the number
of predictors, “a” is the intercept, “b;” are the partial regression coefficients and “g” is the stan-
dard error of estimate. The regression equation is used to predict the spatial distribution of the
parameter of interest based on the independent variables.

The “Im” function implemented in the R software [61] was used for MLR analysis. A matrix
of predictors was developed by superimposing the training samples on the spectral and ter-
rain/climatic spatial layers and extracting the corresponding values. One soil property was
modelled at a time as the response (dependent) variable with the developed matrix as the pre-
dictors. For each model, the adjusted R* and residual standard error were recorded. In addi-

tion, the predictors that were significant at 1% significance level were noted.
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Table 3. Terrain and climatic variables considered in this study.

Parameters
Slope*

Steepest slope

Curvature
General curvature

Plan curvature*
Maximum curvature
Minimum curvature
Total curvature
Parallel curvature
Rectangle curvature
Flow line curvature
Profile Curvature
Horizontal curvature
Flow direction*
Aspect

Cose Aspect

Sine Aspect
Elevation

Protection index

Topographic position index

Saga Wetness Index
Flow accumulation*

Channel network base Level
Temperature (mean annual)
Precipitation (mean annual)

Definition Units Authors
Inclination of the land surface from the Radians/% [48]
horizontal

Maximal rate of elevation change radians [49]
ingravitational field

Curvature degree m™ [6]
Combination of horizontal and vertical degree m™ [26]
curvature

Horizontal (contour) curvature degree m™ [27]
Maximum Curvature degreem™ [50]
Minimum Curvature degree m™ [50]
Curvature of the surface itself degree m’ [51]
Parallel curvature degree m™ [52]
Rectangle curvature degree m™ [52]
Flow line curvature degree m™ [52]
Vertical rate of change of slope degree m™ [53]
Measure of flow convergence and divergence | degree m™ [54]
Path of water flow - [55]
Direction the slope faces degree [53]
Direction the slope faces: eastness Degree [56]
Direction the slope faces: northness degree [56]
Vertical distance above sea level m [53]
Extent at which a cell is protected by relief [52]
based on the immediate surrounding cell

Location higher or lower than the average of [27]
their surroundings

Ratio of local catchment area to slope - [57]
Ultimate flow path of every cell on the - [58]
landscape grid

Channel network base level elevation m [59]
Temperature °C [60]
Precipitation mm [60]

The variables with (*) were calculated in SAGA as well as ArcGIS due to slight differences in the computational algorithms used by the two software

packages.

doi:10.1371/journal.pone.0170478.t003

A common limitation of regression models is the problem of multicollinearity, which
occurs when there is significant correlation between the predictors. Since the number of pre-
dictors identified in this study are many (seventy-four), and there could be high correlation
between some of them, a stepwise regression analysis was first conducted to produce uncorre-
lated predictors needed to model each soil parameter and thereby minimize the problem of
multicollinearity. Stepwise regression identifies a subset of predictors based on the statistical
significance of the predictors (using stepwise, forward selection, or backward elimination)
[62]. In this study, the “stepAIC” function as implemented in the “MASS” package [62] of the
R statistical package was used for the stepwise regression. For each soil parameter, a subset of
uncorrelated predictors were identified for subsequent analysis. Table 4 presents the number
of spectral and terrain/climatic predictors that were eventually used in the MLR for each soil
property. On average, less than 50% of the initial predictors were eventually selected for each
soil property with the exception of carbon, for which 53% were selected. In order to ensure
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Table 4. Number of spectral and terrain/climatic predictors used in modelling each soil parameter.

Data/Parameter Sand Silt Clay CEC SoC Nitrogen
Spectral 17 22 21 12 26 19
Terrain/climatic 9 10 5 13 12 12
Total 26 32 26 25 38 31

doi:10.1371/journal.pone.0170478.t004

comparison with the Random Forest Regression (RFR), the same set of predictors were main-
tained for the RFR analysis, although it (RFR) does not greatly suffer from the multicollinearity
problem.

Random forest regression (RFR). The RFR analysis was conducted using the “Random
Forest” (RF) function as implemented in the RF package [63] of the R software [61]. RF [64]
belongs to the family of ensemble machine learning algorithms that predicts a response (in
this case the respective soil parameters) from a set of predictors (matrix of training data) by
creating multiple Decision Trees (DTs) and aggregating their results. Each tree in the forest is
independently constructed using a unique bootstrap sample of the training data. Whereas
other machine learning algorithms (e.g. bagging and boostrapping [65]) use the best split
among all predictors for node splitting, RF chooses the best split from a randomly selected sub-
set of predictors. The introduction of this additional randomness decreases the correlation
between trees in the forest, and consequently increases accuracy [66]. Additionally, RF
requires no assumption of the probability distribution of the target predictors as with linear
regression, and is robust against nonlinearity and overfitting, although overfitting may occur
in instances where noisy data are being modelled [67]. For RF modelling, parameters requiring
tuning such as the number of trees to grow in the forest (ntree) and the number of randomly
selected predictor variables at each node (mtry) were set using the grid search method in the R
“caret” package [68] using tenfold cross validation with 5 repetitions.

RF optionally provides information on the relative importance of the predictors (variable
importance) used in the construction of the forest [63]. Two importance measures—%IncMSE
and IncNodePurity—are frequently computed. To calculate %incMSE (increase in mean stan-
dard error), each tree is constructed with and without a predictor. Then, the difference
between the two cases is averaged over all trees and normalized by the standard deviation of
the differences. The second measure (IncNodePurity) represents the total decrease in node
impurity from splitting on a predictor in the tree construction process, averaged over all trees.
In RFR, the node impurity is measured by the residual sum of squares [63]. RF computes an
internal accuracy measure based on the samples that are omitted from the bootstrapped sam-
ples used in the tree construction (i.e. out-of-bag, OOB). The accuracy of the model is given by
the mean square error (MSEpop) of the aggregated OOB predictions generated from the boot-
strap subset and is computed as follows [63]:

MSEqop =1 ' 320 (7 — 2,'003)2 (2)
Where “n” is the number of observations, z; is the average prediction of the ith observation
and z??" is the average prediction for the ith observation from all trees for which the observa-
tion was OOB.

The explained variance is expressed as follows:

MSE 3)
Var

resp

Var =1 —
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For each soil parameter modelled, the MSEgop explained variance and variable importance
measure were recorded for subsequent analysis and discussion.

Support vector machines for regression (SVM). [Initially used for classification, the sup-
port vector machine (SVM) has been extended for regression with the prediction of soil prop-
erties [28,69]. Relying on Kernel functions, input data are plotted into a new hyperspace where
separations are performed. The ultimate purpose is to get an optimal hyperspace for data fit-
ting and prediction using the e-insensitive loss function, which tolerates errors smaller than
the constant € set as a threshold. Detailed information about SVM can be found in Hastie et al.
[70]. The determination of the best parameters (bandwidth cost parameter, insensitive loss
function,) for tuning the model for each soil parameters was carried out using the grid search
method in the R “caret” package [68]. For this purpose, ten random partitions of the training
data with five repetitions was carried for leave-one-group-out cross-validation of the model.
Parameters resulting in the lowest root mean square error were considered for modelling.

Stochastic gradient boosting (SGB). Stochastic gradient boosting (SGB; [71,72]) is a
hybrid method incorporating both boosting and bagging approaches. First, small classification
or regression trees are sequentially built from the residuals of the preceding tree (s). Instead of
focusing on the full training set, the SGB carries out a boosting by selecting (without replace-
ment) at each step a random sample of the data leading to a gradual improvement of the
model. More details related to the background and mathematical functions behind the SGB
can be found in Ridgeway [73]. The required parameters for model fitting (interaction depth,
shrinkage rate) were set by using the tenfold cross validation with five repetitions also with the
R “caret” package [68]. For each soil property, parameters with the lowest error metric (root
mean square error) were used for the final model.

Accuracy assessment

The performance of the four models-MLR, RFR, SVM, SGB-in predicting the soil properties
was assessed by using 80% of the detailed soil samples in the sub-watershed (which was the
focus of the sampling) (Fig 1) for cross validation. A 10-fold cross-validation scheme with 5
repetitions was applied to ensure model stability and reliability using the “caret” R Package
[68]. The remaining 20% served as an independent validation dataset. In order to assess the
predictive strength of the models outside the sub-watershed (i.e. the core sampled area), all the
soil samples outside the sub-watershed (102 samples) (Fig 1) were reserved for the purposes of
accuracy assessment and used as a second independent validation dataset.

Though R” is a valid statistic for assessing the prediction accuracy of a model, a high R-
squared model may not necessarily lead to accurate predictions. This is because the model
could systematically and significantly over- and/or under-predict the data at different points
along the regression line. An over-fitted model could also lead to poor predictions [74]. It s,
therefore, important to evaluate the models with other performance statistics, preferably based
on an independent set of observations, to provide additional information on the prediction
accuracy of the models.

For each soil parameter, two error statistics—root mean squared error (RMSE) and the
symmetric mean absolute percentage error (SMAPE)—were calculated (see Eqs 4 and 5). The
two statistics served as the basis for comparing the performance of the two models in predict-
ing the spatial distribution of the different soil properties. Although RMSE is a frequently used
statistic in the literature to indicate the average error of a model [75], its dependence on scale
makes it difficult to calculate a model’s error in percentage terms. The sMAPE [76], on the
other hand, provides a percentage-wise error and facilitates a comparison of the accuracy with
which each soil property is predicted. The sMAPE (as defined in this paper), however, can
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provide unreliable estimates if either observed or forecasted value is negative [70].

n

1/2
RMSE = [%Z (P, — o,)Z] (4)

i=1

1<~ [0 —P|
MAPE = — —t 5
: 220, 7 B)2 2

i=1

where “P” is the predicted value and “O” is the observed/true value.

Results and Discussion
Model performance

The performance of the four models investigated was assessed based on: (1) model internally
generated accuracy statistics and (2) independent validation samples.

Assessment based on internal accuracy statistics. This assessment was achieved by com-
paring the RMSE and the adjusted R (hereinafter referred to as R?) derived from the four
models for the respective soil parameters. Table 5 presents results of the comparison. R* ran-
ged between 21 and 53% for MLR, 18 and 53% for RFR, 20 and 51% for SVM and 16 and 51%
for SGB. Silt was the only soil parameter that achieved an R of greater than 50% for all models.
The other soil parameters recorded relatively lower R, with sand, clay, SOC and nitrogen con-
sistently having R® below 40%. The generally low R? obtained in this study independently of
the models can be attributed to a complex interplay and high variability of environmental fac-
tors in the studied watershed and surrounding regions [12,77]. High variability in agricultural
soil management practices, nutrient application, vegetation cover and climatic factors (tem-
perature, precipitation) are believed to be among the factors that resulted in the low correla-
tions observed. Nonetheless, the range of R values obtained in this study is comparable to
other studies that considered only terrain/climatic covariates [26,77] or only spectral data
[43,78].

Table 5 shows that RFR performed marginally better than the other models in generating a
model for the soil parameters with relatively lower RMSE and higher R*. The only exception
was in the case of sand and clay, where MLR performed better than the RFR recording better
error metrics. Generally, the machine learning methods (RF, SVM, SGB) were found to be
more accurate than MLR using the RSME of cross validation for assessing model performance
[79,80].

Assessment based on independent validation samples. Tables 6 and 7 present model
performance statistics for the external validation inside (20% of the dataset) and outside the
small catchment, respectively (see Fig 1). Here, the symmetric mean absolute percentage error
(sMAPE) (Eq 5) was calculated and used as the basis for comparing the four models. Inside the
small catchment, the RFR generally performed better than the other models, achieving the

Table 5. Internal model validation based on 80% training data (All Spectral and topographic/climate predictors).

Model

MLR
RFR
SVM
SGB

doi:10.1371/journal.pone.0170478.t005

Sand

RMSE
7.566
7.586
7.592
7.707

R2
0.346
0.342
0.342
0.318

RMSE
5.940
5.937
6.091

6.094

Silt Clay CEC socC Nitrogen
R? RMSE R? RMSE R? RMSE R? RMSE R?
0.537 6.946 0.212 4.786 0.357 0.546 0.348 0.038 0.352
0.538 7.022 0.185 4.689 0.383 0.528 0.39 0.038 0.354
0.519 6.993 0.206 4.889 0.333 0.551 0.341 0.038 0.339
0.514 7.164 0.162 4.767 0.360 0.539 0.367 0.038 0.339
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Table 6. External validation in small catchment based on 20% testing data with spectral data and terrain/climatic variables.

Model Sand Silt Clay CEC SOC Nitrogen
RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE
MLR 8.482 0.189 5.900 0.107 6.708 0.239 4.787 0.415 0.541 0.285 0.043 0.290
RFR 7.764 0.180 5.708 0.103 6.590 0.242 4.593 0.318 0.512 0.261 0.041 0.273
SVM 8.415 0.188 5.899 0.107 6.667 0.234 4.897 0.394 0.549 0.283 0.043 0.287
SGB 7.954 0.189 5.819 0.107 6.791 0.242 4.562 0.314 0.526 0.272 0.041 0.286

doi:10.1371/journal.pone.0170478.t006

highest prediction accuracy (i.e. 100-sMAPE) for four soil properties (sand, silt, SOC, nitro-
gen) while SVM and SGB produced the best prediction for clay and CEC, respectively. Predic-
tion accuracies by the RFR model ranged from a low of 68% for CEC to a high of 90% for silt,
with an average accuracy of 77%. Compared to the MLR, for example, RFR improved predic-
tion accuracy by 0.9% for sand, 0.4% for silt, 9.7% for CEC, 2.4% for SOC, and 1.7% for N.
Generally, SVM and SGB also outperformed the MLR. In assessing the models’ performance
outside the small catchment, Table 7 reveals that RFR achieved a better prediction accuracy for
silt (85%) and clay (52%), SVM for sand (81%) and SOC (53%), and SGB for CEC (60%) and
nitrogen (55%) with prediction accuracies of 69%, 85%, and 52%, respectively. The RFR model
achieved an average accuracy of 62% for the validation outside the small catchment.
Compared to MLR, the high performance of RFR and the other machine learning models
could be due to the existence of a non-linear relationship between soil parameters and the pre-
dictors which MLR could not adequately resolve. Although MLR is widely used in statistical
predictions, its limitation in handling non-linear relationships between response and predictor
variables, especially in heterogeneous landscapes, has been noted in literature [74,81,82]. Non-
parametric models such as RFR, SVM and SGB have been found superior to MLR due to their
ability to handle non-linear relations and multi-source data [17,80,83]. In general, many stud-
ies reported RFR as providing better predictions compared to SVM [29,84-86]. However,
Were et al. [87] found SVM as best predictor for the spatial distribution of SOC stock com-
pared to RFR. Rossel et al. [88] reported RFR as having better prediction accuracy compared
to SGB, while Hitziger et al. [89] found the latter superior to the former in soil property predic-
tion. Similarly, SVM and SGB occasionally outperformed RFR in this study. This, and previous
results, suggest that no single machine learning algorithm might serve best for every landscape
and that many models should be calibrated to identify the most accurate model for prediction.
A comparison of Tables 6 and 7 reveals a general reduction in the predictive accuracy of the
models outside the small catchment (which was the focus of sampling), although the magnitude
of reduction varies depending on the model and soil property. Taking RFR, for example, the
magnitude of reduction in prediction accuracy (i.e. 100-sMAPE) equalled 13% for sand, 4% for
silt, 24% for clay, 10% for CEC, 21% for SOC, and 18% for nitrogen. In general, all models per-
formed relatively poor in predicting clay, SOC and nitrogen outside the small catchment, with
average accuracy reductions of 28%, 20% and 19%, respectively. On the other hand, the models

Table 7. External validation based on 102 samples outside the small catchment with spectral data and terrain/climatic variables.

Model Sand Silt Clay CEC soC Nitrogen
RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE RMSE sMAPE
MLR 17.341 0.547 9.350 0.157 11.804 0.548 5.597 0.469 0.847 0.505 0.059 0.496
RFR 14.115 0.314 8.713 0.146 10.623 0.478 4.891 0.415 0.765 0.472 0.053 0.457
SVM 20.257 0.193 9.106 0.153 14.738 0.566 5.669 0.448 0.750 0.471 0.057 0.488
SGB 15.184 0.341 8.846 0.148 10.875 0.497 4.960 0.398 0.759 0.476 0.051 0.454

doi:10.1371/journal.pone.0170478.1007
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performed well in predicting silt and CEC outside the small catchment, showing minimal accu-
racy reductions of 4% and 7%, respectively. These results suggest that the accuracy of extrapolat-
ing soil predictions outside the sampled area may differ depending on the soil property as well
as on the non-comparability of the small catchment with regard to surface, land use and other
characteristics.

Despite these differences, the accuracies achieved in the external validation can be assumed
to be reasonably good considering the heterogeneity and size of the watershed in this study.
Barnes and Baker [14] noted that the use of multi-spectral data for predicting the spatial distri-
bution of soil properties can achieve optimal results when the study is conducted in an area
with uniform soil surface characteristics. Consequently, several of such studies have been con-
ducted at plot level or on relatively small watersheds [19,43,81], apparently to reduce the effect
of varying surface characteristics.

Based on their study within a 350 ha demonstration farm in Arizona, Barnes and Baker
[14] found that variations in surface characteristics such as crop residue, soil moisture and row
orientation between fields limited the accuracy with which soil properties were mapped. These
differences in surface characteristics may have influenced the results of this analysis, considering
that the study area is an agricultural watershed populated by smallholder farmers who use
diverse farm management practices [32,34]. The mode and time of land preparation (e.g. trac-
tor, bullocks, manual) [90], nutrient application (e.g. fertility) [91] and water management strat-
egy [92] can differ to a high degree from field to field due to availability of labour, crops to be
cultivated or farm inputs utilized. Model calibrations based on samples from such localized and
highly variable conditions can limit its predictive capacity outside the sampled areas [19,93].

Limited accuracy could also be related to potential error propagation from the MIRS mod-
els to the maps. Digital soil mapping based on mid infrared spectroscopy—partial least squares
regression (MIRS-PLSR) prediction models might be affected by uncertainties at varying level
of the mapping process such as spectra collection, model building and resulting prediction.
Due to the heterogeneity of the landscape both in the small catchment and even more in the
bigger catchment all the spectral variability might not have been covered resulting in possible
teedback on the accuracy of MIRS-PLSR prediction models. Based on the classification of
MIRS models by Reeves and Smith [94], the MIRS-PLSR calibration models in the present
study (Table 1) range from models with very high predictive ability as for SOC (R* = 95%,

RPD = 4.6) to models with high (R* = 85%, RPD = 2.6) to medium predictive ability (R* = 70~
77%, RPD = 1.8-2.1) respectively for Nitrogen and for the remaining soil properties (CEC,
sand, silt and clay). In some other studies, MIRS provided better prediction models for SOC, N,
CEC (R* > 0.77) compared to clay, silt and sand (R? = 0.22-73%) [95,96]. Though uncertainty
propagation analysis as carried out by Brodsky et al. [97] was out of the scope of the present
study, the error metrics from the test set validation provided satisfactory evidence on the predic-
tive ability of the MIRS-PLSR models (R2 > 80%, RPD > 2). These results indicated that the
calibrations were consistent especially for SOC, CEC, N and silt (R2 > 85%, RPD > 3). In their
study, Brodsky et al. [97] found PLSR (with visible and near infrared) to cause lower uncertain-
ties in the final map compared to uncertainty originating from ordinary kriging used as map-
ping model. Based on the SMAPE, the RFR and remaining machine learning models displayed
quite satisfactory accuracy from the prediction of MIRS-PLSR models. This is obviously to their
ability to handle both linear and non-linear patterns in dataset.

Variable importance and temporal window for acquisition of RS data

The 5 top spectral and terrain/climatic variables which contributed most to the accuracy of
digital soil mapping in the studied watershed are discernible from Table 8. Though RFR
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Table 8. First five predictors that were highly significant for RFR (based on “IncNodePurity” importance measure) and MLR analysis.

Model Rank Sand Silt Clay CEC SoC Nitrogen
MLR 1 june_SWIR2 june_SWIR2 june_NIR june_SWIR2 Elevation Elevation
2 june_green June_RI June_RI May_RI prep March_NDVI
3 June_CI may_red may_blue may_RE march_NIR march_NIR
4 may_green june_red June_SI June_BI March_NDVI march_green
5 April_HI June_BI June_ClI june_red june_SWIR1 March_ClI
RFR 1 june_SWIR2 June_RI june_NIR june_SWIR2 june_red june_NIR
2 may_NIR May_SI June_RI june_blue june_NIR June_SI
3 june_green june_SWIR1 june_blue May_RI Elevation Elevation
4 May_SI june_SWIR2 june_SWIR1 March_NDVI June_SI march_green
5 may_green May_ClI temp june_red June_BI may_red

The names of the spectral predictors (see Table 2) here are a concatenation of the month of satellite acquisition and a spectral channel or indice. For
example, “May_BI” represents the brightness index calculated from the May RapidEye image. prep: precipitation, temp: temperature.

doi:10.1371/journal.pone.0170478.t008

generally provided better predictions, variable ranking from the MLR model was included in
the table for comparison purposes. The data in Table 8 reveal that both models include eleva-
tion in the list of the five most significant predictors for SOC and N while the other soil param-
eters had only spectral predictors. The only exception was for clay for which the RFR recorded
also temperature among its driving factors while the MLR also displayed precipitation as key
factor following elevation.

Similar to the findings of this study, Hengl et al. [11] also recorded elevation as the most
important variable influencing SOC contents of topsoil in Africa. Wang et al. [98] found that
elevation and slope, along with soil clay and water contents, were among the most significant
factors affecting SOC and N variability. Terrain/climatic variables are reported to have control
on soil water status, dynamics of plant litter mineralisation as well as erosion and deposition
processes [11,98]. The influence of elevation on predicting SOC and N, for example, can be
related to corresponding variations in soil temperature as well as the intensity of cultivation
which is higher in the lower areas as compared to the higher areas because of accessibility.

Table 8 reveals that generally, satellite images acquired in June and May were the most
important in developing a model for predicting the soil properties under consideration. Spec-
tral bands of the June Landsat image consistently came up as important predictors for the soil
properties. The prominence of June and May images can partly be explained by the coinci-
dence with the ploughing period or early stages of crop development when the soils of most
agricultural plots are exposed. This allows satellite sensors to directly measure soil reflectance;
hence, a good correlation between laboratory processed soil samples and satellite derived spec-
tral reflectance is possible. The March imagery was the most important spectral predictor for
SOC and N in MLR and was listed also for CEC and N in RFR (Table 8). March and April are
the hottest months in the studied watershed, thus the prominence of the March imagery could
be attributed to a higher loss of biomass with consequent higher mineralisation rate and SOC
input.

Table 8 further reveals that the shortwave infrared (SWIR) and near-infrared (NIR) chan-
nels of Landsat, as well as soil specific indices like brightness, redness and saturation index
were important spectral predictors in developing the respective models. The importance of the
SWIR and NIR channels in this analysis confirms the findings of other studies. Liao et al. [99]
used Landsat ETM bands as covariates in modelling soil textural properties (sand, silt, clay)
and found that NIR (band 4) and SWIR (band 5, band 7) had a significant correlation with the
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analysed soil properties and explained most of their variability. Soil specific spectral indices
were also found useful in digital soil mapping by other studies [43].

Maps of the spatial distribution of the soil properties

In our study, the spatial distribution of soil properties does not display a clear pattern of hot
and cold spot areas for all soil properties, but rather a patchy distribution (Fig 2). However,
along the western border of the study area, medium to higher values of clay, CEC, SOC and N
are observed as evidenced by a continuous yellowish band and reddish spots on the boundary
line while the proportions of silt, on the contrary, recorded their lowest values in these areas.
These zones correspond to the most elevated terrain where natural vegetation is prominent
and accessibility is difficult for farming activities. This suggests a higher net primary produc-
tion providing the input for nitrogen and carbon whose stability is reinforced by a higher clay
content resulting in a higher CEC. It is widely acknowledged that SOC input is higher where
substantial net primary productivity deposit occurs [83,84]. The remaining areas of lower ele-
vation are settlement zones and cultivated areas and consequently displayed relatively medium
(yellowish areas) and lower values (greenish areas) for the soil properties with some spots of
high values in certain places.

Improving predictive accuracy with remote sensing data

The results of the present study point out the potential of terrain and spectral data for soil
property mapping at high resolution at local scales. However, the prediction accuracy of the
different models, though satisfactory, requires further improvement. The high intrinsic spatial
fluctuation in soil properties, the heterogeneity of the landscape as well as highly variable man-
agement practices by farmers are among the potential sources of noise affecting model perfor-
mance. Improving prediction accuracy might require partitioning the landscape into relatively
homogeneous areas based on the covariates used as predictors. The latter could be carried out by
considering land surface segmentation [100] or the conditioned Latin hypercube (cLHS) [101]
using the key variables driving each soil property. Moreover, though the present study considered
a vast array of predictors including topographical and spectral data, a single analysis scale was
applied as generally carried out in DSM. However, some studies point out the fact that the spatial
distribution of soil properties is subject to various factors operating at different levels of scale
[56,102]. Therefore, multi- or hyper-scale data (terrain and spectral information) which account
for different spatial scales might further improve prediction as recorded in other studies such as
those of Behrens et al. [103] and Miller et al. [104]. The latter authors, however, did not focus on
the stratification of the land surface which in addition to multi- or hyper-scale approaches have
great potential in ameliorating prediction accuracy. Further investigations are therefore required
in that regards.

Conclusion

Accurate and detailed spatial soil information is essential for environmental modelling, risk
assessment and decision making. This study explored the use of high spatial resolution satellite
(RapidEye and Landsat) and terrain/climatic data as well as laboratory analysed soil samples to
map the spatial distribution of six soil properties—sand, silt, clay, CEC, SOC and N-in a 580
km? agricultural watershed in south-western Burkina Faso. Four statistical prediction models—
multiple linear regression (MLR), random forest regression (RFR), support vector machine
(SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was
conducted by cross validation while the predictions were validated against an independent set
of soil samples considering the modelling area and an extrapolation area.
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Fig 2. Spatial distribution of sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC)
and total nitrogen (N) in the topsoil of the studied watershed.

doi:10.1371/journal.pone.0170478.9002

Results indicate that the RFR performed marginally better than the remaining models at
modelling stage for most soil properties except for sand and clay for which MLR offered a bet-

ter predictive ability. However, the RFR achieved a higher performance statistics for the
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external validations in the considered areas but not for all soil properties in the extrapolated
area. Beyond the modelling area, the SVM better predicted SOC while SGB performed better
for CEC and N.

The machine learning algorithms performed generally better than the MLR for the prediction
of soil properties at unsampled locations. Inability of MLR to handle non-linear relationships
between dependent and independent variables is believed to be the source of this limitation. Pre-
diction accuracies from the RFR model ranged from 68% for CEC to 89% for silt.

These prediction accuracies can be deemed to be reasonable, considering the high variability
in farm management practices and environmental variables in the studied watershed. Satellite
data acquired during ploughing or early crop development stages (e.g. May, June) were found
to be the most important spectral predictors while elevation, temperature and precipitation
came up as prominent terrain/climatic variables in predicting soil properties. The shortwave
and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and
saturation were prominent spectral channels.

The accuracies obtained in this study are promising for future local scale digital soil mapping
efforts in data poor regions such as West Africa, considering the increasing availability of free
high resolution remote sensing data. The use of remote sensing data can reduce soil sampling
efforts and therefore reduce soil mapping costs. Further research is, however, required on the
effect of high variability in farm management practices and environmental variables on the
accuracy of digital soil maps. In addition, the potential of land surface stratification and multi-
or hyper-scale analysis approaches in improving prediction accuracy are worth investigating.
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