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Objective: X-ray mammography is a widely used and

reliable method for detecting pre-symptomatic breast

cancer. One of the difficulties in automatically computerized

mammogram analysis is the presence of pectoral muscles in

mediolateral oblique mammograms because the pectoral

muscle does not belong to the scope of the breast. The

objective of this study is to identify the boundary of obscure

pectoral muscle in mediolateral oblique mammograms.

Methods: Two tentative boundary curves are individually

created to be the potential boundaries. To find the first

tentative boundary, this study finds local extrema, prunes

weak extrema and then determines an appropriate thresh-

old for identifying the brighter tissue, whose edge is

considered the first tentative boundary. The second tenta-

tive boundary is found by partitioning the breast into several

regions, where each local threshold is tuned based on the

local intensity. Subsequently, both of these tentative bound-

aries are used as the reference to create a refined boundary

by Hough transform. Then, the refined boundary is parti-

tioned into quadrilateral regions, in which the edge of this

boundary is detected. Finally, these reliable edge points are

collected to generate the genuine boundary by curve fitting.

Results: The proposed method achieves the least mean

square error 4.886 2.47 (mean6 standard deviation)

and the least misclassification error rate (MER) with

0.004666 0.00191 in terms of MER.

Conclusion: The experimental results indicate that this

method performs best and stably in boundary identifica-

tion of the pectoral muscle.

Advances in knowledge: The proposed method can

identify the boundary from obscure pectoral muscle,

which has not been solved by the previous studies.

INTRODUCTION
Breast cancer continues to be the second most common
cause of death for females worldwide. According to
Breastcancer.org,1 approximately 12% of females may
suffer from invasive breast cancer over the course of
their lifetime and about 28% of female cancer patients
in the USA suffer from breast cancer. The statistics
indicates that one in eight females in the USA may de-
velop breast cancer in her lifetime. In 2013, the Amer-
ican Cancer Society reported that approximately 232,340
new cases of invasive breast cancer and 39,620 breast
cancer deaths occurred among US females in 2013.2

Although breast cancer is a fatal disease, patients still
have high chances of survival if malignancy is detected
at an early stage. Therefore, the National Cancer In-
stitute recommends that females aged 40 years and over
should have routine screening mammography every 1–
2 years.3 The US Preventive Services Task Force rec-
ommends biennial screening mammography for females
aged 50–74 years.4

X-ray mammography is a widely used and reliable method
for detecting presymptomatic breast cancer. Screening
mammography typically involves taking two views of the
breast, from above [cranial–caudal view (CC)] and from an
oblique or angled view [mediolateral–oblique (MLO)].
With the advance of technology, computer-aided diagnosis
(CAD) has been developed to offer more objective evidence
and increase the radiologist’s diagnostic confidence. More
importantly, CAD systems can improve the mammo-
graphic detection of breast cancer at screening by reducing
the number of false-negative interpretations.5 However,
one of the difficulties in automatically computerized
mammogram analysis is the presence of the pectoral
muscle in MLO mammograms because the pectoral muscle
does not belong to the scope of the breast. The success of
CAD systems relies on the differentiation between the
pectoral muscle and breast tissue.

Pectoral muscle segmentation can be roughly categorized
into three types of methods, intensity-based methods, line/
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curve detection methods and classification methods.6 Intensity-
based methods identify breast tissues and the pectoral muscle
based on intensity differences along the potential boundary
region.7–26 The success of this kind of method depends upon the
choice of an appropriate threshold. Inconsistent of intensity
change may affect the segmentation results. Under an assump-
tion that the muscle boundary is a line/curve, the line/curve
detection methods propose various methods to identify or
simulate the line/curve.27–34 The main difficulty in this kind of
methods is that if the pectoral muscle boundary is obscure,
a line approximation or curve fitting is also difficult to perform.
The classification methods regard the pectoral muscle seg-
mentation as a dichotomous classification problem, that is,
each pixel in the mammograms is classified into the target set
or the non-target set.8,19,35–50 In addition to the three types of
methods, other methods are also proposed, such as discrete
cosine transform.51 Readers can be referred to Ganesan et al6

for a detailed review on the methods of pectoral muscle
segmentation.

The contribution of this study is to propose a curve detection
method to identify the boundary of the pectoral muscle. The
main advantage of the proposed method over other curve de-
tection methods is that the boundary at the obscure region can
still be identified by the curve-fitting method. This article is
organized as follows: the Materials and methods section presents
a description of the proposed methods for identifying the
boundary of the pectoral muscle; the Results section shows the
experiment results that are then discussed in the Discussion
section; and finally, the Conclusions section provides con-
clusions of this work.

MATERIALS AND METHODS
Overview of proposed methods
Since pectoral muscle segmentation requires the identification of
the pectoral muscle in the mammogram, this research issue can
be transformed into the question of breast boundary identifi-
cation between the breast and pectoral muscle. The rationale of
the proposed method is briefly described as follows: the tentative
pectoral muscle boundary is detected as the first boundary.
Then, another boundary curve is identified by another method.

If the two boundary curves have a great difference, they are used
to result in the final boundary. The framework of the proposed
method is shown in Figure 1. The proposed method starts with
the extraction of the region of interest (ROI) (i.e. the breast and
the pectoral muscle) in a MLO mammogram. Two tentative
boundary curves are individually created to be the potential
boundaries. To find the first tentative boundary, this study finds
local extrema, prunes weak extrema and then determines an
appropriate threshold for identifying the brighter tissue, whose
edge is considered the first tentative boundary. The second
tentative boundary is found by partitioning the breast into
several regions, where each local threshold is tuned based on the
local intensity. Subsequently, both of the tentative boundaries
are used as the reference to create a refined boundary by Hough
transform. Then, the refined boundary is partitioned into
quadrilateral regions, in which the edge of this boundary is
detected. Finally, these reliable edge points are collected to
generate the genuine boundary by curve fitting.

Extracting region of interest
A typical MLO mammogram contains a breast and a back-
ground. The non-black pixels represent the breast tissue in the
mammogram, whereas the black and near-black pixels are the
background of the image. The first step of this study is to
identify the breast tissue as the ROI in the image by using the
region-growing method. The region-growing method starts with
a set of the minimal pixel values (i.e. seed points) to group
neighbouring pixels with similar pixel values. Similar pixels are
iteratively grouped until the region-growing rate exceeds a pre-
defined threshold at the region-growing step. In this study, the
pre-defined threshold is set as 25 because the background is
normally visually close to black. The bright part is regarded as
the foreground of the image, whereas the dark part is the
background. The minimum bounding box of the foreground is
extracted to be the ROI, and the background region is not used
for the subsequent processing of this study. The process of
extracting the ROI is shown in Figure 2, where Figure 2a is the
original mammogram. The boundary of the ROI is identified in
Figure 2b. Figure 2c shows the minimum bounding box of the
foreground of the image, where the red region is the ignored
background.

Figure 1. The framework of the proposed method.
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First tentative boundary
To find the boundary for extracting out the pectoral muscle, the
ROI is used to create a histogram H of the gray-level pixels,
showing the number of pixels in an image at each different gray-
level value i, "i2½0; 255� found in that image. The method of
detecting the first tentative boundary is described in the fol-
lowing subsections.

Local extrema detection
Local extrema, known as maxima or minima, are those points
located at the hill and the valley along a curve. The corre-
sponding gray-level values of the local maxima Lmax can be
found as follows:

Lmax5ij argmax
i

HðiÞ; i2½i2m; i1m� (1)

Where i represents the ascending-sort ith element in Lmax, and m
is a constant. To find the local minimum Lmin between the two
neighbouring maximum points Ljmax and Lj1 1

max , the method for
corresponding gray-level values is expressed as follows:

Lmin5ij argmin
i

HðiÞ; i2�Ljmax; L
j1 1
max

�
(2)

Pruning weak extrema
The purpose of the first tentative boundary is to determine
a global threshold from the histogram H. However, those
weak extrema of the histogram H is likely to impede the
determination of the global threshold. Those weak extrema
must be removed in order to find the optimal global optimal
threshold.

The way to prune these weak local maxima and minima is to
calculate the differences between the minimum intensity of
each region and its left and right neighbouring maximum.
The product Di of the two differences is then computed as
follows:

Di5
�
H
�
Ljmax

�
2H

�
Li;jmin

��
3
�
H
�
Lj1 1
max

�
2H

�
Li;jmin

��
(3)

Where Li;jmin represents the i
th element of ascending sort in the set

Lmin which belongs to ½Ljmax; L
j1 1
max �. The next step is to prune the

corresponding Li;jmin of the minimum Di in Lmin and
minðLimax; L

j1 1
maxÞ in Lmax, respectively.

If Ljmax is pruned, the search process goes back to the step in
Equation (2) to search for the corresponding gray-level value of
the minimum within the region ½Lj2 1

max ; L
j
max�. If Lj1 1

max is pruned,
the proposed method searches for the corresponding gray-level
value of the minimum within the region ½Ljmax; L

j1 1
max �. The search

process is iterated until only N elements are left in Lmin. The two

Figure 2. (a) Original mammogram; (b) the region of interest is identified; (c) the minimum bounding box of the region of interest.

Figure 3. Pruning weak extrema. (a) The detected local maxima

in red and minima in yellow; (b) pruning of weak local maxima

and minima. For colour image see online.
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parameters m5 3 and N5 4 were set from the empirical
experiments. N must be an appropriate value in searching for
the minimum or maximum. If N is too greater, relatively more
elements are left, thereby losing global meaning. If N is too less,
this loses the local meaning. The result of pruning weak local
maxima and minima is shown in Figure 3, in which red lines and
yellow lines represent local maxima and local minima, re-
spectively. The Figure 3a shows the detected local maxima and
minima in the histogram, whereas Figure 3b is the result of
pruning the weak local maxima and minima using the afore-
mentioned method. Note that the pixels in gray level #30 are
ignored because they are the background of the mammogram
without any feasible meaning.

Threshold determination
In a mammogram, the pectoral muscle and the glandular tis-
sues are not only separated but are also brighter than other
regions within the breast. If the two regions are individually
extracted out from the mammogram, the pectoral muscle re-
gion can be identified through the spatial information. The
pectoral muscle is located at the upper right/left of a mam-
mogram, whereas the glandular tissues are at the lower left/
right. With the prior knowledge, a threshold representing the
first tentative boundary is found through the gray intensity
histogram as follows. A local minimum is used to identify the
greatest region of the pectoral muscle which meets the spatial
features of the pectoral muscle. Another local minimum is the
maximal value in the set Lmin, but does not meet the spatial
features of pectoral muscle. The two regions are likely to be the
pectoral muscle and the glandular tissues. Finally, a binary
search method52 is used to determine a threshold for parti-
tioning the transition between the two local minima, which is
the intensity of the boundary of the pectoral muscle. Figure 4
shows the process of conducting the first tentative boundary.
Figure 4a is used to create a histogram of image intensity
shown in Figure 4b, where two local minima and the intensity
of the boundary are represented in blue lines and a green bold
line, respectively. In Figure 4c, the black point in the yellow
region represents the centroid of this region, whose spatial
position is (357.6, 135.0) in this image. The boundary orien-
tation is 63.10°, which is roughly estimated by fitting these
boundary points as a straight line.

Second tentative boundary
Owing to the vagueness of the boundary of the pectoral muscle,
the second tentative boundary serves as an alternative reference.
This method can not only deal with the case of boundary
vagueness but also increase the stability of the proposed method
for verifying the boundary of the pectoral muscle. The method
of detecting the second tentative boundary is as follows.

Region partition
To easily observe the details of the breast structure in the sub-
sequent process, the ROI image is rotated to the orientation in
which the breast nipple is towards the top. In the left-half/right-
half side of the ROI, each vertical line goes across the pectoral
muscle and breast tissue, where the pixels show two different
gray-level distributions. It is assumed that a ROI shows a bi-
modal distribution of gray-level values, which contains the two
statistical modes pectoral muscle and breast tissue. Since most of
the side region shows strong contrast between the pectoral
muscle and breast tissue, it is relatively easy to find a point at
which to partition the bimodal. For this reason, the ROI can be
divided into several regions. In this study, the ROI is divided into
four regions with an equal width. The intensity of each region is
used to create individual histograms, where the horizontal axis
represents intensity variations while the vertical axis is the
number of pixels in that particular intensity.

Multiple thresholds
In a bimodal histogram, a threshold can be found to partition
the bimodal distribution into two separate models. The
threshold represents the tentative boundary for the given region.
Figure 5 shows that gray-level histograms of the selected regions
were created to determine the thresholds. Figure 5a shows that
a ROI is divided into four regions A, B, C and D. The gray-level
histograms of the separate regions were created to determine the
thresholds.53

A pectoral muscle boundary in a ROI is expressed as a curve,
where points are connected with their neighbouring points.
Even if the curve is divided into several regions, the continuity
property still exists between any two neighbouring regions. This
property motivates the researchers of this study to use the stable

Figure 4. Detection of the first tentative boundary. (a) A region of interest is used to create a histogram; (b) the bold line is the

intensity of boundary in the mammogram; (c) results of identifying the first tentative boundary.
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line segment at the side-most region as a reference to calibrate
the line segment at the neighbouring region.

In Figure 6, the cyan points represent the corresponding pixels
of the threshold for each region. The cyan points compose the
second boundary, whereas the green points show the initial
boundary detected at the previous stage. Figure 7 shows the
results on detection of the pectoral muscle boundary by the
proposed multiple thresholds and the single threshold. In
Figure 7a, the boundary was detected by multiple thresholds and
drawn in blue; in Figure 7b, the boundary was detected by the
single threshold and drawn in green. In comparison, the
boundary detected by multiple thresholds is closer to the ground
truth than that detected by the single threshold. Figure 8 shows
how the line segments are connected. The line segment close to
the breast boundary is retained as the line segment at Region A.
The line segment at Region A is extended to Region B. At Region
B, the line segment close to the line segment of Region A is
retained. Figure 8 shows that the line segment at Region A
determines the line segment at Region B. The selected line
segments at Regions A and B conduct curve fitting to generate
a curve. The resulting curve at Regions A and B is used as the
reference for the line segment at Region C. Once again, the
resulting curve at Regions A, B and C is used to determine the
line segment at Region D.

Segment selection
At this stage, each divided region of the ROI contains two line
segments, the first tentative boundary and the second tentative
boundary. A detected line segment near the boundary is selected
for fitting the curve of the whole boundary. As described in the
previous section, the orientation of the line segment must meet
the condition that the pectoral muscle boundary is located
within the defined orientation. In the right breast MLO mam-
mogram, the orientation of the pectoral muscle falls between
235° and 285°, whereas the orientation is between 35° and 85°
in the left breast MLO mammogram. If the two line segments
both meet the orientation requirement, the line segments with
the lower gray level will be selected as the final line segment.

Reference curve by curve fitting
The reference curve at each region is created by the curve-fitting
method. In each region, the points along the selected line

Figure 5. Gray-level histograms of the selected regions were created to determine the thresholds. (a) The region of interest is

divided into four regions: A, B, C and D; (b) ThresholdA568 for Region A; (c) ThresholdB5 118 for Region B; (d) ThresholdC566 for

Region C; (e) ThresholdD594 for Region D.

Figure 6. The cyan points represent the corresponding pixels

of the threshold for each region. The cyan points compose the

second boundary, whereas the green points show the first

boundary detected at the previous stage. For colour image

see online.

Figure 7. Results on detection of pectoral muscle boundary by

single and multiple thresholds. (a) The boundary was detected

by multiple thresholds and drawn in blue; (b) the boundary

was detected by the single threshold and drawn in green. For

colour image see online.
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segment are fitted into a second degree polynomial equation,
expressed in Equation (4):

y5c0x
2 1 c1x1 c2 (4)

where ci (i5 0, 1, 2) are parameters computed by the least
squares method. If the farthest point from the line segment falls
beyond three standard deviations of the mean, this point is seen
as an outlier and removed from the set. The curve-fitting process
is iterated until all points reach the requirement that the residual
of each point is less than three. Once the reference curve is sim-
ulated, its band is also created, which is set as 30pixels. The edge
detection of the band of the reference curve was performed using
the Sobel operator. Among the edge points, the three greatest
values in magnitude were retained in each vertical line (Figure 9).

Since a set of pixels may partially describe the boundary of the
pectoral muscle, the Hough transform can be used to simulate
the curve. The Hough transform, introduced in 196254 and first
used to find lines in images,55 can be used to detect parametric
curves. The Hough transform defines a mapping transformation
between the image space and the r2 u parameter space using
a polar co-ordinate system. This parameterization shows
a straight line of the image space (i.e. the x2 y space) by the
orientation u between its normal vector and the x-axis, and its
algebraic distance r from the origin (0,0). The straight line
corresponding to this geometry can be described as:

r5x cosðuÞ1 y sinðuÞ (5)

Considering u 2 [290°; 90°], given a straight line g in the image
space with its respective r and u parameters, say r0 and u0, it is
represented in the r2 u space by a single point, with co-
ordinates ðr0; u0Þ. Each point, with co-ordinates (x,y) in the
image space, is represented by a sinusoidal curve in the r2 u
space following Equation (5). It is easy to show that in the
parameter space, the sinusoidal curves that correspond to points
belonging to g have a common intersection point ðr0; u0Þ. Based
on this relationship, the problem of detecting straight lines in
the image space can be converted into the problem of identifying
intersection peaks in the parameter space. When working in
a discrete space, one can represent the parameter space by an
accumulator matrix. Furthermore, to find straight lines in the

Figure 8. The blue line segments are retained. For colour image

see online.

Figure 9. (a) Fitting the curve and determining the regional

band; (b) sampling the points within the regional band.

Figure 10. Hough transform of edge points within the edge

band.

Figure 11. (a) r2 u space; (b) the image space; (c) quadrilateral

regions are defined for each line segment.
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image, it is necessary to find peaks (i.e. positions with high values)
in the accumulator matrix. The results are illustrated in Figure 10.

With the features, the piecewise linear representation (PLR) al-
gorithm is utilized to collect the potential edge points as follows:

Initial set: collect the curve points in sequence P.

The leftmost point is assigned as 1, and the rightmost point
is N.

The set j5 {1, N} with the threshold. The PLR algorithm56 is
designed as follows:

PLRðP; iBgn; iEnd; j;ThresholdÞ

Begin

Let pb5PðiBgnÞ; pe5PðiEndÞ

Create a line between Pb and Pe

Sort all points along the line PbPe

and within the ½iBgn; iEnd�

Find the farthest point PðiÞ

with the distance d; in the region ½iBgn; iEnd�

If d,Threshold Then stop

Else

Put P(i) into j

If i 2 iBgn $ 2 Then PLRðP; iBgn; i; j;ThresholdÞ

If iEnd 2 i $ 2 Then PLRðP; i; iEnd; j;ThresholdÞ
End If

End

This study computes the (g,u) of the Hough transform of each
segmental line with threshold5 2 and j5fp1; p2…; png. The
results are shown in Figure 11. The figures in parentheses in
Figure 11 represent the corresponding (g,u) of the Hough
transform of the given segment between the two red points. The
co-ordinate (g,u) corresponds to the position in the image.
Taking Figure 11 as an example, the co-ordinate (0,0) is the upper
left of the image. In the co-ordinate ð102; 2 79�Þ, the first figure
102 indicates the distance on this segmental curve between the
position (0,0) and the red point. The second figure 279° is the
orientation between the segmental curve and the horizontal axis.

The technical meanings of Figure 11a–c are indicated as follows.
In Figure 11a, the six red points represent end points of line
segments, determined by the PLR method. Through the Hough
transform, each line segment is associated with a set of parameters
(r,u). For example, (102, 279) is a parametric set from the
Hough transform. Figure 11b illustrates the relationship between
the set of (r,u) and the co-ordinate system used for the image,
where the origin of the co-ordinate system is shown at the upper

Figure 12. The red points are used for curve fitting, whereas the

green points are discarded. For colour image see online.

Figure 13. The pectoral muscles boundary is identified on each mammogram though the boundary is obscure.
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left of the image, and the first quadrant is located at the lower
right of the origin. The rightmost point (102,279) of the red
tentative curve is extended as a straight red line, whose shortest
distance to the origin is 102. The distance is computed by drawing
the blue perpendicular line from the red line to the origin. The
orientation between the light blue line and the horizontal axis is
279°, shown as the shorter red arrows. This method is also used
for the other points of the tentative curve in green. The green
straight line is extended from the point (62,269) and the magenta
line is drawn to compute the shortest distance and the orientation.
Figure 11c shows the method for sampling reliable data points. The
method firstly partitions the tentative curve into several line seg-
ments and then sets the middle of each line segment as the centre
point. As each line segment based on the centre point rotates 6a

(a55° in this study), each point can result in a quadrilateral re-
gion. Those located within the quadrilateral region can be seen as
the reliable points for curve fitting.

Once the quadrilateral regions are determined, the points located
within the quadrilateral regions can be collected for curve fitting
in a fifth order polynomial, making it possible to create more

bending for the boundary of the pectoral muscle. In Figure 12, the
red points are used for curve fitting, whereas the green points are
discarded. The advantage of the proposed method is to identify
the boundary between the obscure pectoral muscles. Figure 13
shows that the pectoral muscles boundary can be found on each
mammogram although the boundary is obscure.

Performance evaluation
For the boundary identification of the pectoral muscle, this
study compares the performance of the proposed method with
two other methods, the methods by Ferrari et al29 and Liu
et al47. The boundary of the pectoral muscle can also be seen as
a curve for this research issue. For this reason, the simulation
results of a polynomial curve using sampling points are evalu-
ated. The boundary of the pectoral muscle in each mammogram
was manually delineated by a senior researcher who has at least
5 years’ of experience in digital mammogram processing and
analysis. The delineative curves of the pectoral muscle boundary
are used as the standard of reference to evaluate the proposed
method and earlier methods for the detection of the pectoral
muscle. Mean square error (MSE) is a measure of the differences

Figure 14. Results of the proposed method and the compared methods for identifying pectoral muscle in the mammogram.
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between the values predicted by an estimator and the values
actually observed from the curve modeled.57 An MSE value
indicates the stability of the segmentation quality in breast
images. As the MSE of the curve-fitting method is less, its per-
formance quality is better.

MSE5

+
n

i51

�
ðxGi 2 xMiÞ2 1

�
yGi 2 yMi

�2�1
2

n
(6)

where ðxGi; yGiÞ represents the ith data point of the ground truth,
and ðxMi; yMiÞ is the nearest data point from ðxGi; yGiÞ.

In addition, the boundary segmentation of the pectoral muscle
can be regarded as a binary classification problem. The mis-
classification error rate (MER), the percent of misclassified

records out of the total records in the validation data, is esti-
mated using Equation (7):

MER5
FN1 FP

TP1 FN1TN1TP
(7)

where TP, TN, FP and FN represent true positive, true negative,
false positive and false positive, respectively. The relative fore-
ground area error (RFAE) indicates the region mismatch be-
tween the extracted object and the ground truth object and is
defined in Equation (8)

RFAE5

8>><
>>:

ðTP1 FNÞ2 ðFP1TPÞ
TP2 FN

5
FN2 FP

TP1 FN
if ðFP1TPÞ, ðTP1 FNÞ

ðFP1 FNÞ2 ðTP1 FNÞ
FP1TP

5
FP2 FN

FP1TP
if ðFP1TPÞ$ ðTP1 FNÞ

(8)

Figure 15. The best six pectoral muscle lines proposed based on the method by Ferrari et al.29

Table 1. Comparison of different methods on mean square error in mean, maximum, minimum

Image number Ferrari et al29 Liu et al47 Proposed method

mdb110 (33.16, 70.38, 0.00) (6.85, 21.93, 0.00) (5.53, 14.87, 0.00)

mdb115 (60.55, 116.50, 0.00) (30.15, 35.23, 25.00) (0.75, 3.16, 0.00)

mdb152 (135.40, 326.00, 0.00) (39.10, 86.37, 2.00) (8.00, 22.02, 0.00)

mdb180 (59.36, 61.85, 55.71) (13.68, 28.30, 3.00) (4.56, 12.00, 0.00)

mdb263 (15.74, 69.06, 0.00) (28.78, 40.31, 1.41) (3.08, 12.04, 0.00)

mdb278 (19.88, 66.85, 0.00) (7.98, 16.00, 0.00) (7.33, 19.00, 0.00)

Mean6 standard deviation 54.026 40.33 21.096 12.21 4.886 2.47
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The extraction error rate (EER) expresses the failure rate of the
algorithm in Equation (9).

EER5FN=ðTP1 FNÞ1 FP=ðTP1 FNÞ (9)

RESULTS
In the experiments of this study, the breast images were selected
from the database of the Mammographic Images Analysis So-
ciety.58 The size of each image is 10243 1024 pixels. All of the
images have been annotated for class, severity and location of
abnormality, character of background tissue, and radius of circle
enclosing the abnormality.

This study compares the performance of the proposed method
with the methods be Liu et al and Ferrari et al. In the method by
Liu et al, the region of the pectoral muscle is roughly identified
by recursively finding the threshold of the image intensity. In-
tensities greater than the threshold are considered the potential
pectoral region, whereas intensities less than the threshold are
the background. The recursion process is ended when the region
at two consecutive iterations varies by ,5%. Then, the mor-
phological erosion method is used to separate the pectoral
muscle from the breast as well as to remove noise. Finally, the
pectoral muscle boundary is simulated by the fifth order poly-
nomial curve fitting. Figure 14 shows the results of the proposed
method and the compared methods for identifying pectoral
muscle in the mammogram.

The method by Ferrari et al is based on two assumptions. The
first assumption is that the pectoral muscle boundary is

a straight line within the orientation range [120–170°]. The
second assumption is that the pectoral muscle displays as
brighter than the breast region. Furthermore, the gray level of
this region is relatively high compared with the other regions
of the breast. With these two assumptions, Ferrari et al used
the Sobel operator to detect the pectoral muscle boundary,
and then applied the Hough transform to find the potential
straight line. The major drawback of this method is that the
pectoral muscle may not be a straight line. In addition, this
method can generate .4000 straight lines using the Hough
transform. Based on the selection criteria, the six best po-
tential lines were selected to be shown in Figure 15, where the
green line is the optimal one. Both the upper leftmost and
lower leftmost images show fair results, where the resulting
lines are close to the actual boundary. For the other four images,
the resulting lines are limited to the second assumptions. This
method can obtain fair boundary results only if the pectoral
muscle is present in a straight line. When this method applied the
Hough transform on an image, .4000 straight lines were created
for each image. Based on the criteria proposed by Ferrari et al, the
best six pectoral muscle lines were selected from these resulting
lines, as shown in Figure 15.

Table 1 shows the MSE in mean, maximum and minimum for
the three different methods, the proposed method and those by
Ferrari et al and Liu et al. Among the three methods, the pro-
posed method achieves the least MSE of 4.886 2.47 (mean6
standard deviation), indicating that this method performs best
and stably in boundary identification of the pectoral muscle.
Tables 2–4 show the comparison of the different methods

Table 2. Comparison of different methods on the relative foreground area error (RFAE)

Image number Ferrari et al29 Liu et al47 Proposed

mdb110 0.29163 0.05487 0.05158

mdb115 0.36020 0.18037 0.00118

mdb152 0.17508 0.35756 0.06938

mdb180 0.56591 0.91347 0.05439

mdb263 0.04856 0.18036 0.01259

mdb278 0.32116 0.05487 0.10240

Mean6 standard deviation 0.2937576 0.159918 0.290256 0.296617 0.00485876 0.033946

Table 3. Comparison of different methods on misclassification error rate (MER)

Image number Ferrari et al29 Liu et al47 Proposed

mdb110 0.02819 0.00591 0.00482

mdb115 0.07995 0.03673 0.00094

mdb152 0.05422 0.02173 0.00442

mdb180 0.04897 0.91347 0.00483

mdb263 0.02770 0.03673 0.00564

mdb278 0.02964 0.00591 0.00729

Mean6 standard deviation 0.044786 0.01889 0.170086 0.33269 0.004666 0.00191
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in terms of the relative foreground area error (RFAE), mis-
classification error rate (MER) and extraction error rate (EER).
The proposed method still achieves the least RFAE, MER and
EER among the three methods.

DISCUSSION
Effectiveness of multiple thresholds for region partition: the
proposed method attempts to find the thresholds of in-
dividually smaller regions as the second tentative boundary.
The boundary detected by the multiple thresholds is closer to
the ground-truth than that detected by the singular threshold
of the whole region because fewer errors or outliers in the
smaller regions were introduced in the process of de-
termining the threshold. The results in this study demon-
strate the advantages of the multiple thresholds and the
region partition.

Simulation of the curve or straight line
In most cases, the pectoral muscle boundary is present as
a curve. To precisely simulate such a curve, this study parti-
tions the whole boundary into several smaller segments,
simulates the curves individually and then connects the in-
dividual curves to form a singular curve. For the case where
the pectoral muscle is almost a straight line in the mammo-
gram, this method can also generate that straight line because
a straight line is a special case of a curve with curvature5 0.
This proposed method can still perform well in the cases of
both a straight line and a curve.

Disturbance of noise
The points for curve fitting are the key to simulating the
shape of the fit curve. To prevent disturbance of noise, the
sample boundary points were only collected from the quad-
rilateral regions. In addition to the limitation of the sampling
region, another way is to increment not only the Hough ac-
cumulator cell Accðui; giÞ for a given orientation u but also
the neighbouring cells ðui1 1; giÞ and ðui; gi1 1Þ. This makes
the Hough transform more tolerant against inaccurate point
co-ordinates.

Setting of parameter a for size of
quadrilateral regions
The setting of parameter a is associated with the area size
of the quadrilateral region. As parameter a is small, the
resulting area becomes small, thereby narrowing the region of
sampling points. The resulting curve is likely to be closer to the
tentative curve. Another idea is that each quadrilateral region
can also set its own parameter a, which is appropriate to its
sampling requirement. As the mechanism is applied to the
mammograms, where the upper breast and the upper pectoral
muscle are clearer than the lower parts, more points were
collected from these clear parts than from the obscure parts.

Image contrast in breasts
Since the intensity-based methods attempt to identify the
regions with different intensities, the performance of the com-
pared method is greatly affected by image contrast. This can ex-
plain why the methods by Liu et al and Ferrari et al cannot work
well on number mdb152, because it is present in low contrast.
The proposed method can work well because two tentative
boundaries are utilized for two-step verification.

CONCLUSIONS
The contributions of this study are two-fold. First, a novel
method was proposed to identify and segment the pectoral
muscle in X-ray MLO mammograms. The proposed method
does not straightforwardly detect the boundary curve of the
pectoral muscle due to the obscure image content. Instead, it
narrows down the curve region and finds the curve orientation
step by step. Second, a method is proposed to sample reliable
points from the noisy space for curve fitting. The experimental
results indicate that the proposed simulation method can
perform better than the other edge detection methods in terms
of the RME, meaning that the fitting curve can be close to the
boundary delineated by the medical doctor.
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Table 4. Comparison of different methods on extraction error rate (EER)

Image number Ferrari et al29 Liu et al47 Proposed

mdb110 0.30451 0.06384 0.05203

mdb115 0.39261 0.18037 0.00461

mdb152 0.89216 0.35756 0.07272

mdb180 0.56591 10.55731 0.05581

mdb263 0.08235 0.18036 0.01677

mdb278 0.41742 0.06384 0.10263

Mean6 standard deviation 0.4424936 0.24809 1.9005476 3.872669 0.0507626 0.032876
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Delaloge S, Balleyguier C. Computed-aided

diagnosis (CAD) in the detection of

breast cancer. Eur J Radiol 2013; 82:

417–23. doi: http://dx.doi.org/10.1016/

j.ejrad.2012.03.005

6. Ganesan K, Acharya UR, Chua KC, Min LC,

Abraham KT. Pectoral muscle segmentation:

a review. Comput Methods Programs Biomed

2013; 110: 48–57. doi: http://dx.doi.org/

10.1016/j.cmpb.2012.10.020

7. Bick U, Giger ML, Schmidt RA, Nishikawa

RM, Wolverton DE, Doi K. Automated

segmentation of digitized mammograms.

Acad Radiol 1995; 2: 1–9.

8. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe

MJ. Automated analysis of mammographic

densities. Phys Med Biol 1996; 41: 909–23. doi:

http://dx.doi.org/10.1088/0031-9155/41/5/007

9. Méndez AJ, Tahoces PG, Lado MJ, Souto M,

Correa JL, Vidal JJ. Automatic detection of

breast border and nipple in digital mammo-

grams. Comput Methods Programs Biomed

1996; 49: 253–62.

10. Goodsitt MM, Chan HP, Liu B, Guru SV,

Morton AR, Keshavmurthy S, et al. Classifi-

cation of compressed breast shapes for the

design of equalization filters in X-ray mam-

mography. Med Phys 1998; 25: 937–48. doi:

http://dx.doi.org/10.1118/1.598272

11. Heine J, Kallergi M, Chetelat S, Clarke L.

Multiresolution wavelet approach for

separating the breast region from the

background in high resolution digital

mammography. In: Karssemeijer N,

Thijssen M, Hendriks J, van Erning L,

eds. Digital mammography.

Houten, Netherlands: Springer; 1998.

pp. 295–8.

12. Karssemeijer N, Te Brake G. Combining

single view features and asymmetry for

detection of mass lesions. In: Karssemeijer N,

Thijssen M, Hendriks J, van Erning L. eds.

Digital mammography. Houten, Netherlands:

Springer; 1998. pp. 95–102.

13. Kwok SM, Chandrasekhar R, Attikiouzel Y.

Automatic pectoral muscle segmentation on

mammograms by straight line estimation and

cliff detection. The Seventh Australian and

New Zealand 2001 Intelligent Information

Systems Conference; 18–21 November 2001;

Perth, WA, Australia. New York, NY: IEEE

Engineering in Medicine and Biology Society,

2001. pp. 67–72.

14. Grau V, Mewes AU, Alcañiz M, Kikinis R,

Warfield SK. Improved watershed transform

for medical image segmentation using prior

information. IEEE Trans Med Imaging 2004;

23: 447–58. doi: http://dx.doi.org/10.1109/

TMI.2004.824224

15. Thangavel K, Karnan M. Computer aided

diagnosis in digital mammograms: detection

of microcalcifications by meta heuristic

algorithms. ICGST Int J Graphics Vis Image

Process 2005; 5: 41–55.

16. Raba D, Oliver A, Martı́ J, Peracaula M,

Espunya J. Breast segmentation with pectoral

muscle suppression on digital mammograms.
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