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Summary
In the last decade, the revolution in sequencing technologies has deeply impacted crop

genotyping practice. New methods allowing rapid, high-throughput genotyping of entire crop

populations have proliferated and opened the door to wider use of molecular tools in plant

breeding. These new genotyping-by-sequencing (GBS) methods include over a dozen reduced-

representation sequencing (RRS) approaches and at least four whole-genome resequencing

(WGR) approaches. The diversity of methods available, each often producing different types of

data at different cost, can make selection of the best-suited method seem a daunting task. We

review the most common genotyping methods used today and compare their suitability for

linkage mapping, genomewide association studies (GWAS), marker-assisted and genomic

selection and genome assembly and improvement in crops with various genome sizes and

complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping

data. WGR is well suited to genotyping biparental cross populations with complex, small- to

moderate-sized genomes and provides the lowest cost per marker data point. RRS approaches

differ in their suitability for various tasks, but demonstrate similar costs per marker data point.

These approaches are generally better suited for de novo applications and more cost-effective

when genotyping populations with large genomes or high heterozygosity. We expect that

although RRS approaches will remain the most cost-effective for some time, WGR will become

more widespread for crop genotyping as sequencing costs continue to decrease.

Introduction

The study of DNA polymorphisms forms the basis of modern

genetics. By analysing the genomic variation between individuals

and populations, polymorphisms can be used to identify geno-

types, and connect them to phenotypes. Since the advent of

high-throughput sequencing technologies, the abundant and

heritable single nucleotide polymorphisms (SNPs) have emerged

as the most widely used genotyping markers. These can be used

for linkage mapping, analysis of quantitative trait loci (QTL),

association studies, marker-assisted selection (MAS) and genomic

selection (GS) in crops. Moreover, their generally low mutation

rate means they can be used for genetic diagnostics and

germplasm identification. The versatility of SNPs has also led to

their widespread use in phylogenetics and phylogeography

(McCormack et al., 2013). A major advantage of the single-base

resolution of SNPs is that it allows better detection of ‘perfect’

markers, which are causally linked to agronomic traits. A widely

used range of methods for detecting SNPs using high-throughput

sequencing is known as genotyping-by-sequencing (GBS)

(Andrews et al., 2016; Deschamps et al., 2012; He et al., 2014;

Poland and Rife, 2012; Voss-Fels and Snowdon, 2016). In

comparison with earlier more complex and costly genotyping

approaches such as those based on restriction fragment length

polymorphism (RFLP) and simple sequence repeats (SSR), GBS can

provide higher quantities of informative data by orders of

magnitude. Although commercial SNP arrays still provide greater

marker densities and are easier to analyse, they can be substan-

tially more costly than GBS (Bajgain et al., 2016). Here, we review

common GBS approaches and software tools to help researchers

decide which approach best suits their research goals and to

provide a perspective on future developments in plant genotyp-

ing.

Reduced-representation sequencing and whole-
genome resequencing approaches

GBS is now fuelling the transition from population genetics to

population genomics, allowing high-throughput identification of

markers in crop populations at low costs (Voss-Fels and Snowdon,

2016). Many important crops have been investigated using GBS

to aid breeding endeavours, for example chickpea (Kujur et al.,

2015), canola (Bayer et al., 2015; Bus et al., 2012), maize (Elshire

et al., 2011; Gore et al., 2009), potato (Uitdewilligen et al.,

2013), rice (Huang et al., 2009; Spindel et al., 2015), sorghum

(Morris et al., 2013) and wheat (Poland et al., 2012b). Combined

with phenotypic data, GBS approaches provide a powerful basis

for rapid mapping and identification of genes underlying agro-

nomic traits, which can then be introgressed into crop germplasm

(Abe et al., 2012; Edwards et al., 2013).

Although GBS was initially developed as a reduced-representa-

tion sequencing (RRS) approach using restriction enzymes to

decrease genome complexity before sequencing (Baird et al.,

2008; Miller et al., 2007), whole-genome resequencing (WGR)
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approaches were soon applied to allow higher genomic resolution

(Huang et al., 2009). Since the inception of GBS, it has

undergone continuous development, giving rise to at least 13

approaches based on RRS and four on WGR (Table 1). Both RRS

and WGR approaches profit from prior genomic information,

although it is a prerequisite only for some WGR methods. This

relative independence from prior genomic information means

that RRS shows particular promise for characterizing the genomes

of nonmodel species and previously neglected crops. Neverthe-

less, the increasing availability of crop genomes and further

genetic resources indicates that whole-genome approaches with

high resolution may provide viable alternatives to RRS methods,

particularly in plant breeding. Indeed, the reducing cost and

changing type of NGS data being produced may cause a shift in

the sequencing methods used by researchers towards more WGR

approaches.

RNA sequencing and exome sequencing

RNA sequencing (RNA-seq) and exome sequencing represent

important alternative reduced-representation approaches. Both

of these approaches allow more selective sequencing, enabling

focus on protein-coding regions. Although coding sequences may

amount to only 1%–2% of the genome (Pennisi, 2001), these

sequences are likely to contain a high number of functional

variants (Li et al., 2012) and a low number of repetitive regions.

RNA-seq generally uses direct sequencing of complementary DNA

(cDNA) derived from RNA to obtain transcriptome sequences and

quantify RNA transcript levels (Wang et al., 2009). While RNA-seq

is commonly applied for gene expression analyses, it is also a

useful genotyping tool (Haseneyer et al., 2011). It has been used

successfully for SNP genotyping in a number of crops. To help

improve alfalfa cell wall composition, a total of 10 826 SNPs was

detected using RNA-seq of divergent cultivars (Yang et al., 2011).

In a panel of diverse maize germplasm, 351 710 SNPs covering

22 830 annotated genes were identified with RNA-seq (Hansey

et al., 2012). Furthermore, based on SNP discovery in 27 000

wheat genes analysed with RNA-seq, Ramirez-Gonzalez et al.

(2015) found markers for Yr15, a major disease resistance gene

for wheat yellow rust.

An important advantage of RNA-seq is that no prior genomic

information is required (Wang et al., 2009). A further advantage

of RNA-seq is that the data generated for genotyping can also be

used for expression analysis, shedding more light on the functional

context of SNPs. However, RNA-seq is limited by the bias in

transcript abundance caused by the dependence of expression on

tissue and time. Variants may go undetected because transcripts

were not present in the sample while others may be overrepre-

sented, leading to an increase of cost and effort if a more

complete picture of the genotype is required. Additionally, RNA

fragmentation during library preparation can introduce multiple

further biases (Wang et al., 2009). RNA-seq also requires high-

quality samples, which need to be processed rapidly because of

the fast degradation of mRNA. Finally, the number of SNPs in

coding regions is lower than in noncoding regions, so the variants

obtained from RNA-seq data may not be sufficient for GWAS,

particularly in crops with high linkage disequilibrium.

The exome is the collection of all exons of protein-coding genes

in the genome. In a generalized exome sequencing workflow,

genomic DNA is fragmented and probes are used to selectively

hybridize to known target regions. Next, the probes bind to

magnetic streptavidin beads in solution or microarrays, and the

nontargeted DNA fragments are washed away. The bound DNA

is subsequently enriched using PCR and then sequenced. Exome

sequencing kits have been designed for numerous crops including

wheat (Winfield et al., 2012) and barley (Mascher et al., 2013a).

The wheat exome kit has allowed for discovery of previously

unidentified markers in the genome which can be used in future

genetic studies and marker-assisted selection (Allen et al., 2013).

Additionally, the barley kit has since been used to identify a

mutation in the gene HvPHYTOCHROME C which is involved in

flowering time, an important agronomic trait (Pankin et al.,

2014). Exome sequencing has also been used to analyse variation

in 94 eucalyptus genes related to wood properties, identifying

5905 SNPs (Dasgupta et al., 2015). Finally, exome sequencing has

helped detect 1 395 501 SNPs in switchgrass (Evans et al., 2014),

97 075 SNPs in Picea mariana (Pavy et al., 2016) and 129 156

sequence variants in potato (Uitdewilligen et al., 2013).

Although exome sequencing does not allow analysis of gene

expression levels, it enables sequencing of unexpressed alleles and

genes that would not be found with RNA-seq. In further contrast

to RNA-seq, targeted capture is scalable and can capture dozens

to many thousands of genes. However, exome sequencing

approaches rely on the existence of high-quality reference

genomes with accurate annotation. Low-quality annotation of

genomes can lead to variants being missed because probes are

not designed for all relevant sites. Moreover, exome sequencing

costs more than other RRS approaches such as RNA-seq or GBS.

In a US sequencing centre at internal prices for human samples

including data analysis, exome sequencing can cost approxi-

mately $1000 per sample, while RNA-seq can cost approximately

$600 per sample (https://systemsbiology.columbia.edu/genome-

Table 1 Genotyping-by-sequencing methods currently available,

divided into reduced-representation sequencing (RRS) and whole-

genome resequencing (WGR) methods

RRS Methods References

Restriction site-associated DNA sequencing (RADseq) Baird et al. (2008)

Elshire genotyping-by-sequencing (Elshire GBS) Elshire et al. (2011)

Two-enzyme GBS Poland et al. (2012b)

Double-digest RAD sequencing (ddRAD) Peterson et al. (2012)

Sequence-based genotyping (SBG) Truong et al. (2012)

ezRAD Toonen et al. (2013)

Restriction fragment sequencing (RESTseq) Stolle and Moritz

(2013)

Specific length amplified fragment sequencing

(SLAF-Seq)

Sun et al. (2013)

2bRAD Wang et al. (2012)

Multiplexed shotgun genotyping (MSG) Andolfatto et al.

(2011)

Reduced-representation library (RRL) Van Tassell et al.

(2008)

Complexity reduction of polymorphic sequences

(CRoPSTM)

Van Orsouw et al.

(2007)

RAD Capture (Rapture) Ali et al. (2016)

WGR Methods

Sliding window WGR Huang et al. (2009)

Parental inference WGR Xie et al. (2010)

Parental inference WGR with individualized model Rowan et al. (2015)

Skim genotyping-by-sequencing (SkimGBS) Bayer et al. (2015)
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center). Although exome sequencing is thus substantially more

expensive than RNA-seq, costs vary widely depending on

sequencing coverage, choice of library preparation, location and

sequencing provider. Compared to GBS, RNA-seq and exome

sequencing have the advantage that most transcripts and exons

can be annotated using existing databases, which provides a

functional context for SNPs. Most SNPs yielded by GBS, on the

other hand, lie outside coding regions and are not easily

annotated. Nevertheless, the many biases in RNA-seq and the

high cost and prior requirements of exome sequencing are the

reasons that GBS, and particularly RRS, has become an increas-

ingly popular genotyping method in diverse fields of biology

(Andrews et al., 2016).

Restriction site-associated DNA sequencing

RRS methods generally employ restriction enzymes to digest

genomic DNA in an initial step, but can differ in several ways

including the number and type of enzymes used. The restriction

enzyme-associated DNA sequencing method (RADseq) follows a

six-step protocol (Baird et al., 2008; Miller et al., 2007). First,

genomic DNA is digested with a single restriction enzyme. For

sequencing of multiple samples in a single lane (multiplexing),

adapters with barcodes are then ligated onto digested ends. After

a sonication step, an adapter is ligated to the randomly sheared

end. In the final steps, the library is size-selected and RAD

fragments with both adapters are PCR-amplified. Elshire et al.

(2011) simplified the RADseq protocol to four steps by imple-

menting digestion and adapter ligation in a single well and

eliminating random shearing and size selection steps, in an

approach referred to here as Elshire GBS. With the Elshire GBS

technique, barcoded adapters and common adapters with an

overhang matching the restriction site are ligated onto digested

fragments in a single sticky-end ligation. Another important step

in the diversification of RAD methods was the introduction of two

enzymes in the double-digest RAD protocol (ddRAD) (Peterson

et al., 2012). Combining a low-frequency and high-frequency

cutter to digest DNA, a barcoded adapter is ligated to one and a

common adapter to the other restriction site. Samples are then

pooled and size-selected. Lastly, PCR is used to enrich the library

and also to introduce a second barcode in the form of an Illumina

index, increasing multiplexing potential. Similar to this approach is

a modification of Elshire GBS known as two-enzyme GBS (Poland

et al., 2012b). The average coverage typically varies between

these RRS methods. For instance, while RADseq and ddRAD

involve sequencing fragments to moderate coverage between 59

and 159 (Fountain et al., 2016), Elshire and two-enzyme GBS

studies tend to reach low coverage ~19 (Swarts et al., 2014).

Costs also differ by method, but vary from country to country and

can undergo rapid changes. A rough estimate of the cost of

Elshire and two-enzyme GBS is <0.001$ per marker data point or

around $30 per sample (De Donato et al., 2013; Poland and Rife,

2012), which is on a par with the cost of ddRAD and RADseq

(Davey et al., 2011; Peterson et al., 2012). There are further less

commonly used RRS methods, which differ from the above

through the use of proprietary kits for adaptor ligation (ezRAD;

Toonen et al. (2013)). New approaches for cheaper, more

effective and universal RRS genotyping are constantly being

developed (e.g., Ali et al., 2016).

The three main pitfalls of RRS are allele dropout, PCR duplicates

and variance in coverage. In allele dropout, polymorphisms in the

restriction enzyme recognition site prevent cutting and can thus

lead to erroneous genotyping (Davey et al., 2013). Similar

genotyping problems can be caused by stochastic uneven PCR

duplication during library preparation, which can lead to biases

towards certain alleles, although this does not affect the PCR-free

ezRAD. Finally, variance in coverage between loci can be caused

by an amplification bias towards fragments of shorter length and

with higher GC content. Beyond these common errors, the

frequent use of methylation-sensitive enzymes in RRS introduces

an ascertainment bias. Single-enzyme RRS using methylation-

sensitive enzymes such as PstI biases the sampling against

intergenic regions, which can harbour almost half of trait-

associated SNPs (Hindorff et al., 2009).

Whole-genome resequencing

WGR differs from RRS in the lack of complexity reduction steps

before sequencing. In a WGR approach known as skim genotyp-

ing-by-sequencing (SkimGBS), SNPs and genotypes are called

using low-coverage genomic reads, typically <19, to make

genotyping large populations viable (Bayer et al., 2015). This

low coverage is common to WGR approaches and is sufficient for

genomic analyses in recombinant populations with high-quality

parental genome sequences (Golicz et al., 2015). To simplify data

analysis, heterozygous alleles are often eliminated by sequencing

recombinant inbred line (RIL) or double-haploid (DH) populations.

The parental genomes and a reference sequence are often

required for these mapping populations (Huang et al., 2009),

although they can also be inferred using hidden Markov models

(Xie et al., 2010), reducing the cost for deep sequencing of the

two parents. Training the model on each individual sample refines

this approach by allowing for variation in error rates (Rowan

et al., 2015). This method is particularly useful in genotyping a

constructed cross population, in which the parental lines are not

known and parental genome sequences are not yet determined.

As with RRS, the costs of WGR per marker data point change

rapidly, vary with laboratory location and depend on the

organism sequenced. However, a rough estimate of the costs

of WGR is <0.0001$ per marker data point or approximately $80

per sample, based on the sequencing costs in Davey et al. (2011)

and the number of SNPs found at 1.39 coverage in canola by

Bayer et al. (2015). These costs per marker data point are an

order of magnitude below those of RRS methods; however, the

cost per sample will mostly remain higher for WGR, depending on

the target coverage. Particularly in plants with large, polyploid

genomes such as wheat, routine genotyping of populations with

WGR is not financially feasible. While WGR is therefore still cost-

prohibitive for smaller laboratories and large genomes, it also

benefits from being mostly unaffected by the biases of RRS

(Table 2).

The advance of long-read sequencing

Although per-base sequencing costs have plummeted during the

last decade, second-generation sequencing remains limited by

short read length (~300 bases). Long-read sequencing platforms

such as Oxford Nanopore technologies and Pacific Biosciences

single-molecule real-time sequencing can achieve reads >10 kb.

Observed error rates on both platforms, however, have been

higher than in conventional short-read sequencing at ~15% (Jain

et al., 2015; Korlach, 2013). Despite these high error rates, long-

read data have been used successfully for full-length de novo

assemblies of microbial (Goodwin et al., 2015; Loman et al.,

2015; Quick et al., 2014), plant and human genomes (Berlin

et al., 2015). The availability of long reads is important when

assembling genomes because they allow improved locus
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identification and discrimination of paralogous or repetitive

sequence by anchoring these within uniquely occurring parts of

the genome. Sequencing chemistry is expected to develop

further, improving long-read sequencing accuracy (Jain et al.,

2015). Already, hybrid approaches combining short-read and

long-read data are proving viable (Koren et al., 2012; Madoui

et al., 2015), although long-read sequencing is still often cost-

prohibitive. While long-read sequencing is unlikely to be cost-

effective for genotyping studies in the near future, improvements

in existing reference genomes will benefit genotyping. As the

costs of long-read sequencing decrease in the future, together

with an increase in read quality, we can expect genotyping

methods to make more use of this technology.

Applications of GBS

Linkage and QTL mapping

Genetic linkage maps show the relative distances between

markers along the chromosomes as determined by their recom-

bination frequency. Such maps are important in breeding

programmes as they facilitate QTL and association analysis. These

analyses are powerful tools to identify genetic loci governing

traits of interest using the principle of genetic linkage (Collard

et al., 2005; Mohan et al., 1997).

RRS methods have been widely used in genetic mapping

studies. RADseq was used to develop linkage maps and conduct

QTL analysis in crops including aubergine (Barchi et al., 2011,

2012), barley (Chutimanitsakun et al., 2011) and cultivated

strawberry (Davik et al., 2015). The GBS method was originally

tested with 276 RILs from a maize mapping population, which led

to the identification of 200 000 markers (Elshire et al., 2011).

This method has seen wide use for linkage mapping and QTL

analysis in diverse crops including rice (Spindel et al., 2013, 2015)

and sweet cherry (Guajardo et al., 2015). The ddRAD method has

been employed, for instance, to genotype canola (Chen et al.,

2013) and for genetic linkage mapping in cultivated peanut (Zhou

et al., 2014) and kiwifruit (Scaglione et al., 2012). WGR with

imputation of parental genotypes has also proven effective for

QTL mapping of 241 rice RILs sequenced at � 0.069 coverage. A

total of 270 820 high-quality SNPs were identified, and a genetic

linkage map was constructed, which allowed the identification of

grain weight QTL (Yu et al., 2011). Furthermore, genotyping-by-

resequencing has been applied frequently in rice, yielding a total

of 1 493 461 SNPs identified in 150 RIL sequenced at 0.029

coverage. Using recombination bins to construct a linkage map, it

was then possible to identify 49 QTL, including four linked to

plant height (Huang et al., 2009). In sorghum, the same

approach for 244 RILs sequenced at ~0.079 coverage led to

the discovery of 7.76 million high-quality SNPs and, after map

construction, several major QTL for heading date and plant height

(Zou et al., 2012). An ultradense genetic linkage map of wheat

was also made using WGR of 90 DH individuals at 1.49 coverage

(Chapman et al., 2015). Finally, genotyping of chickpea and

canola identified 511 624 SNPs and 794 837 postfiltering SNPs,

respectively. Based on these SNPs, numerous crossovers and gene

conversions in both species could be identified (Bayer et al.,

2015).

Linkage mapping and QTL analysis is carried out using all GBS

methods, but these methods differ in their results. The number of

markers required for a well-resolved linkage map with high

detection power depends on various factors including the level of

recombination. When recombination is low, large numbers of

closely placed markers such as those generated by WGR may be

partially redundant. Moreover, when linkage disequilibrium is

high among markers within a genomic region, only one may be

selected for the analysis. In these cases, RRS approaches will be

more cost-effective while also providing sufficient markers for

high-resolution mapping. This can be the case in biparental

populations, where several thousand markers may be sufficient

(Beissinger et al., 2013). Nevertheless, with RRS approaches the

mapping resolution remains fixed by the density of restriction

sites. For this reason, linkage and QTL mapping in diverse

populations can benefit from WGR. Further, WGR can identify

causative SNPs, which is hard to achieve with RRS methods.

Within the RRS group of methods, RADseq, Elshire and two-

enzyme GBS have been used frequently for linkage mapping and

QTL analysis, but have some drawbacks when compared to

ddRAD. Unlike the other two methods, ddRAD uses two

restriction enzymes, which allows greater reproducibility in the

recovery of a specific subset of the genome after size selection

and reduces the size of the subset sampled leading to greater

coverage (Peterson et al., 2012). Using Elshire and two-enzyme

GBS can produce highly skewed coverage of genomic positions

(Beissinger et al., 2013). Thus, ddRAD is considered to provide

more effective SNP genotyping compared with RADseq or Elshire

and two-enzyme GBS (Peterson et al., 2012). Nevertheless, when

prior genomic information such as a reference panel is available,

the lower and more uneven coverage of Elshire and two-enzyme

GBS can be compensated for with imputation (Torkamaneh and

Belzile, 2015).

When a low number of markers is needed or the genome size

is large, RRS methods are often more cost-efficient and should be

preferred to WGR. In uncommon cases, when genomes are

complex and large, transcriptome and exome sequencing may

prove effective at overcoming genotyping difficulties, as recently

shown in hexaploid wheat (Akhunov, 2016). Generally, WGR

offers the greatest cost-efficiency per marker data point, and is

particularly useful when recombination is high and many markers

are needed for a well-resolved genetic map in a species with a

small- to moderate-sized genome. WGR has the added benefit of

increasing the chances of finding causative SNPs or genes, which

allows development of ‘perfect’ markers. In the light of the

decreasing costs of sequencing and the high cost of candidate

gene validation, the use of WGR to increase the resolution of

mapping studies is likely to become more common in the future.

Genomewide association studies

Genomewide association studies (GWAS) use ancestral recombi-

nation events to identify the genetic loci underlying traits at high

resolution. By employing association panels consisting of diverse

genotypes, GWAS is able to pinpoint candidate genes precisely

when linkage disequilibrium is relatively low, overcoming the

limitations of less exact methods such as QTL mapping. Although

commercial SNP arrays have been widely used for GWAS in crops

such as rice, maize and soybean (Hwang et al., 2014; Li et al.,

2013; Zhao et al., 2011), GBS methods are increasingly con-

tributing data for GWAS. This is advantageous because GBS

produces raw sequence reads, which can be reused more easily

by other researchers.

In the potential energy crop Miscanthus sinensis, more than

100 000 SNPs were identified using RRS, which were used for a

GWAS to detect associations between genetic variants and

phenotypic traits such as cell wall composition, biomass and plant

height (Slavov et al., 2014). Using Elshire GBS, 14 loci were
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identified in sorghum for the inflorescence branch length trait

(Morris et al., 2013), and in soybean, loci associated with

resistance to fungal stem rot and oil and protein content could

be detected with similar methods (Bastien et al., 2014; Sonah

et al., 2013). In canola, ddRAD detected two loci significantly

associated with oil content of seeds (Fu et al., 2016). Finally,

GWAS was used to dissect agronomic traits in rice landraces using

low-coverage WGR data, identifying 80 loci for 14 agronomic

traits (Huang et al., 2010) and 32 further loci associated with

flowering time and with ten grain-related traits (Huang et al.,

2012). The same approach was used to carry out a GWAS in

Setaria italica (foxtail millet) varieties, which detected 512 loci

associated with 47 agronomic traits (Jia et al., 2013).

The use of high-density SNP data is crucial for the genetic

dissection of important phenotypes in crop plants with GWAS.

For this reason, genotyping methods producing low or medium

marker densities may not be adequately powerful to find QTL

with both large and small effects. WGR provides high marker

densities and is well suited for GWAS, although high levels of

heterozygosity can make WGR cost-prohibitive because of the

increased coverage required. While RRS using methylation-

sensitive enzymes or targeted sequencing of coding regions

would introduce bias to the GWAS, the use of two enzymes in

ddRAD or similar approaches would generate a more evenly

sampled genomewide panel of markers (Peterson et al., 2012).

Sampling noncoding regions is especially important as these may

harbour the majority of trait-associated markers (Hindorff et al.,

2009). Alternatively to less biased RRS approaches, WGR can also

achieve a sampling with low bias but at higher cost.

The structure of the genotyping population should be

considered when selecting from the different GBS methods.

Inbred lines derived from biparental crosses with the single-seed

descent or double-haploid method are almost completely

homozygous and thus better suited to WGR because coverage

can be low and imputation is less problematic. Wild populations,

on the other hand, may contain high degrees of heterozygosity.

This means that higher coverage is needed to avoid missing too

many heterozygous alleles, as imputation is not as accurate.

Imputation of missing alleles plays an important role in

increasing the cost-efficiency of the low-coverage sequencing

data generated particularly by WGR and Elshire and two-enzyme

GBS (Andolfatto et al., 2011; Huang et al., 2015; Li et al.,

2011). Researchers should thus consider the population struc-

ture and its effect on imputation when deciding which method

to use. Low read depth in WGR and variation in read depth in

Elshire and two-enzyme GBS (Beissinger et al., 2013) can cause

problems when genotyping heterozygotes, indicating that these

methods are not well suited for the analysis of heterozygous

populations. As with linkage mapping, genome size is a further

important factor in deciding which genotyping method is best

suited to GWAS. Sequencing a large population of a species

with a large genome is best suited to RRS methods, which can

achieve the required coverage without the substantial costs

involved for WGR.

Genome assembly validation and improvement

Many published genome assemblies remain works in progress

because repetitive sequences and erroneous reads prevent

accurate assembly. Assembly validation and improvement is

therefore an important task. Usually, this is performed via the

physical anchoring of genetically mapped markers. By linking the

physical map (genome sequence) to the genetic linkage map,

scaffolds can be anchored and ordered. In this way, linkage maps

produced with high-resolution GBS can be used to validate and

fix assemblies (Mascher et al., 2013b).

For instance, placement of scaffolds in the recently published

chickpea genome was validated with 5953 SNPs detected with

RADseq. Mapped scaffolds containing SNPs enabled validation of

scaffold structure based on the coherence of genotype calls,

which allowed orientation of 75% of scaffolds (Varshney et al.,

2013). RADseq also aided in assigning and ordering 83% of the

genome of a Heliconius butterfly (Heliconius Genome Consor-

tium, 2012). Similarly, two-enzyme GBS has played an important

role in anchoring the barley physical map to a genetic map

(International Barley Genome Sequencing Consortium, 2012).

More recently, Mascher et al. (2013b) used two-enzyme GBS and

WGR of barley to produce new genetic maps, which increased

the amount of genetically anchored scaffolds of the genome by a

factor of 3. Comparison of the two genotyping methods revealed

similar mapping results. Lastly, Actinidia chinensis (kiwifruit) has

been genotyped and mapped using ddRAD, which helped anchor

an unmapped 120 Mbp and identify misjoined scaffolds

(Scaglione et al., 2015).

The success of a given genotyping platform in validating and

improving genome assemblies depends particularly on high

marker density in the genetic maps. When a reference genome

is available for validation and improvement and no de novo

assembly is required, low-coverage WGR and Elshire and two-

enzyme GBS approaches will be more efficient because they

provide higher marker density and thus more precise anchoring.

RNA sequencing and exome sequencing in particular may not

provide sufficient evenly distributed markers as these approaches

target the low-diversity coding regions (Hansey et al., 2012).

Nevertheless, when using WGR, Elshire GBS and two-enzyme

GBS approaches the availability of genomic resources for impu-

tation is important to avoid high costs caused by the need for

greater coverage. Genome size and complexity also affect the

choice of genotyping approach for genome assembly validation

and improvement. If enough resources are available for WGR at

moderate coverage, this approach will yield the most markers. In

large or highly repetitive genomes, however, RRS approaches will

substantially lower costs while achieving adequate results.

Marker-assisted and genomic selection

Using genetic data to inform breeding efforts through MAS and

GS is already prevalent in animal breeding, and has great

potential to accelerate plant breeding while also improving its

effectiveness (Varshney et al., 2014). MAS uses linkage disequi-

librium (LD) between genetic markers and QTL to select plants

with traits of interest for breeding programmes. This method has

seen successful use for plant breeding in the public and private

sector (Xu and Crouch, 2008), although the vast majority of

publications on the subject are not considered to have real impact

on breeding efforts (Collard and Mackill, 2008). While most MAS

studies use SNPs, often low-throughput Kompetitive Allele

Specific PCR (KASP) and TaqMan assays are preferred to GBS

because fewer markers are required. However, GBS is reported to

play an increasing role in public and private breeding, for instance

in tomato breeding (Foolad and Panthee, 2012). Different studies

have also used RRS to identify markers useful for MAS such as

those associated with Lolium perenne stem rust resistance

(Pfender et al., 2011) and Lupinus angustifolius (lupin) stem

blight resistance (Yang et al., 2013). Further, Yang et al. (2015)

used WGR to detect and validate markers for MAS in commercial
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lupin cultivars, pointing to increased efforts to bridge the gap

between publication and application.

In contrast to MAS, GS uses all genetic markers for a

genotyped population to predict phenotypes. First, marker effects

are estimated using a genotyped and phenotyped training

population. This information is then used to generate a model

which calculates genomic estimated breeding values (GEBVs) for

the available genotypes. Finally, a breeding population can be

created from selected individuals and used without further

phenotyping (Meuwissen et al., 2001). In this way, GS substan-

tially accelerates crop improvement, especially because of shorter

generation times and the lack of phenotyping. An important

advantage over MAS strategies is that GS can facilitate selection

of complex traits controlled by many genes. Plant scientists have

begun using GBS methods to conduct empirical GS studies,

particularly in wheat. Poland et al. (2012a) and Rutkoski et al.

(2014) applied two-enzyme GBS to sets of elite wheat breeding

lines and developed GS models with high prediction accuracies

for yield and stem rust resistance, respectively. Genomic predic-

tion based on GBS data has also been used in maize, where GBS

performed as well as the more established SNP arrays and showed

potential for harnessing variation for breeding populations

(Crossa et al., 2013; Gorjanc et al., 2016).

Which GBS method is best suited to MAS and GS depends on

the organisms and populations in question and on the budgetary

constraints of the laboratory. Because codominant SNP markers

can be used to develop PCR-based markers, they are particularly

useful for MAS. This is disadvantageous for enzyme-based RRS,

which also produces dominant markers when SNPs lie within the

restriction site, although there are filtering methods to eliminate

dominant markers. Marker density usually differs greatly between

WGR and RRS methods and is crucial not only for QTL analysis but

also for MAS and GS. In general, higher marker density increased

the accuracy of predictive selection (Solberg et al., 2008).

Particularly when LD is low, marker density needs to be high to

maintain accuracy (Zhong et al., 2009). However, Hickey et al.

(2014) use a simulation approach to estimate that an increase

from 10 000 to 100 000 markers had little effect on accuracy.

Their results suggest that substantially higher marker densities do

not necessarily contribute to more accurate predictions, particu-

larly when the number of phenotypes is low. In these cases, RRS

methods may achieve high accuracy at lower cost than WGR.

Bioinformatic tools for analysis and
management of genotyping data

A bottleneck in large-scale SNP genotyping is the analysis and

management of vast amounts of genomic data. In the following,

we outline widely used bioinformatics tools for GBS analysis

pipelines and data management.

Quality control

A preliminary step in the analysis of high-throughput genotyping

data is quality control of the raw sequences. High frequencies of

low-quality base calls and sequence contaminants, for instance,

can impact downstream analyses by leading to higher computa-

tional demands and erroneous results. Tools such as FastQC

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) produce

summary reports, while others such as PRINSEQ (Schmieder and

Edwards, 2011) are also capable of filtering and trimming reads.

The FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) is a

collection of command line tools providing quality reports and

read trimming. A limitation of many quality controls tools is that

quality assessments are produced individually for each sample

and therefore require additional analysis for easy comparison.

Recently developed tools such as MultiQC (Ewels et al., 2016)

and Qualimap 2 (Okonechnikov et al., 2016) now enable

multisample quality assessments. If low sequence quality or

contamination is identified, Trimmomatic (Bolger et al., 2014)

and AdapterRemoval 2 (Schubert et al., 2016) offer the highest

throughput and high overall performance for removing contam-

ination and low-quality bases from single- and paired-end FASTQ

files.

Short-read mapping

Aligning the reads of all genotyped samples is a prerequisite for

most downstream analyses such as variant calling. The majority of

widespread high-throughput sequencing platforms generate

short sequence reads, which are aligned to reference genomes

in a process known as short-read mapping. When no reference

sequence is available, it is necessary to generate a de novo

assembly, a particularly challenging endeavour in plants (Birol

et al., 2013; Schatz et al., 2012). Here, we will focus on short-

read mapping, as reference genomes for most major crops are

available. Since the advent of high-throughput short-read

sequencing, many alignment programs have been developed,

often using the fast Burrows–Wheeler transform (BWT) approach,

for example Bowtie/Bowtie2 (Langmead and Salzberg, 2012),

BWA/BWA-MEM (Li, 2013; Li and Durbin, 2009) and SOAP2 (Li

et al., 2009c). BWA-MEM is more accurate than Bowtie2 (Li,

2013), while Bowtie2 is more efficient at dealing with indels and

paralogous sequences which are commonly found in plants

(Langmead and Salzberg, 2012). While BWA/BWA-MEM and

Bowtie/Bowtie2 produce standard SAM output, the SOAP2

output is in a custom format and requires conversion. An

advantage of SOAP2, however, is that it produces highly accurate

alignments at the cost of mapping fewer reads than other

software (Ruffalo et al., 2011). The high accuracy of SOAP2

makes it well suited for use in genotyping studies. Several

software tools such as Stampy have also been developed for

short-read alignment using hash-based approaches that are

slower but more sensitive and can be combined with BWA to

improve speed (Lunter and Goodson, 2011). Applied in-depth

comparisons and reviews of these and other tools have been

published elsewhere (Fonseca et al., 2012; Li and Homer, 2010;

Ruffalo et al., 2011; Trapnell and Salzberg, 2009) and indicate

the performance of different algorithms can depend on the data

used and the quality of the reference genome.

Variant callers

Calling variants is essential for all genotyping analyses, and many

tools have been developed for this purpose (Nielsen et al., 2011).

The most widespread tools feature a probabilistic approach and

include SOAPsnp (Li et al., 2009b), SAMtools (Li et al., 2009a),

FreeBayes (Garrison and Marth, 2012), GATK (DePristo et al.,

2011) and Platypus (Rimmer et al., 2014). However, the detection

of SNPs in high-throughput sequencing data still shows substan-

tial conflict between different variant calling tools (Clevenger

et al., 2015; O’Rawe et al., 2013; Pabinger et al., 2014). This

inconsistency results partly from differences in how variants are

identified. Some tools consider each site individually (SOAPsnp,

SAMtools and GATK UnifiedGenotyper), while others assemble

local haplotypes (GATK HaplotypeCaller, FreeBayes, Platypus).

Both FreeBayes and GATK use Bayesian methods for modelling
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sequencing error, but SAMtools applies a hidden Markov

mapping and assembly quality model to estimate error (Garrison

and Marth, 2012; Liu et al., 2013). Although GATK is less flexible

than other tools, requiring extensive formatting of input, it may

offer increased accuracy by improving alignments locally before

calling variants. GATK and FreeBayes also offer the advantage of

allowing the user to select a ploidy level that is not restricted to

haploid or diploid, which is useful as many crops are polyploid.

Heuristic SNP callers such as VarScan2 (Koboldt et al., 2012) and

SGSautoSNP (Lorenc et al., 2012) use information such as

abundance and quality of data to help improve variant calling.

Because they generally require more computational resources

than probabilistic approaches, they are less commonly used.

SGSautoSNP reduces sources of error introduced by reference-

based SNP discovery, as it identifies variants between the mapped

reads of multiple samples.

Filtering SNPs for read depth, read mapping quality, base

quality and minor allele frequency can be carried out by most

variant calling tools. There are also several stand-alone tools with

extended filtering capabilities such as VCF tools (Danecek et al.,

2011). Comparative studies of different variant calling tools have

supported different tools as the most accurate and efficient

(Clevenger et al., 2015; Liu et al., 2013; Pabinger et al., 2014).

These different outcomes indicate that the result of variant calling

with various tools may also depend on the data analysed. It is

therefore difficult to pinpoint a generally superior tool. Rather, a

consensus approach focusing on variants independently identified

by different tools offers a solution to the conflict (Pabinger et al.,

2014).

Analysis pipelines for read mapping and variant calling have

also been developed specifically for GBS data. Common GBS

analysis pipelines are TASSEL-GBS (Glaubitz et al., 2014), Stacks

(Catchen et al., 2011) and UNEAK (Lu et al., 2013). Compared to

pipelines such Stacks and UNEAK, TASSEL-GBS is specifically

designed to handle large quantities of low-coverage data. UNEAK

and Stacks are better suited for de novo approaches in species

without reference genomes. A recent comparison of GBS

pipelines showed that, similarly to the stand-alone variant calling

tools, the variants found intersect broadly, but a moderate

proportion remains inconsistent between pipelines (Torkamaneh

et al., 2016). Major differences can be expected in pipelines as

they may differ not only in variant calling algorithms and models

but also in read mapping and processing (O’Rawe et al., 2013).

Indeed, GBS pipelines increase user-friendliness and ease of

variant calling at the cost of flexibility and transparency of

parameters. A consensus approach to cross-validate variants is

therefore also important for GBS pipelines.

Analysing quantitative trait loci and carrying out
association studies

The statistical analysis of genetic variants to find QTL and carry

out GWAS has a mature well-defined framework. The de facto

standard tools are R/qtl (Broman et al., 2003) for QTL analysis and

PLINK (Purcell et al., 2007) for GWAS. R/qtl provides various QTL

mapping approaches and allows correction for covariates such as

specific experimental treatments. The tool QTLNetwork (Yang

et al., 2008) expanded on these capabilities by introducing more

complex models to take into account subtle factors including

interactions between QTL and the environment. Further tools

commonly used for QTL analysis are MapQTL (Van Ooijen, 2004),

QTL cartographer (Basten et al., 2004) and Mapmaker (Lander

et al., 2009).

PLINK is a command line utility with various functions for

analysis of variant data and built-in diagnostic tools to assess

quality. PLINK employs standard regression for GWAS. However,

standard regression may not be sensitive enough when the

frequency of the variant is low (Ma et al., 2013). Other tools such

as Random Jungle (Schwarz et al., 2010) use fast random forest

methods, which can be more sensitive than traditional statistical

approaches. Further popular tools for GWAS also include TASSEL

(Bradbury et al., 2007) and the R packages GenABEL (Aulchenko

et al., 2007) and SNPassoc (Gonzalez et al., 2007).

Annotation of variants

Variant annotation is important for connecting genetic variants

such as SNPs with phenotypic effects. The annotation of variants

aims to categorize the functional impact of variants on protein-

coding genes and regulatory regions. To enable annotation, an

annotated reference genome or transcript set is required. As most

annotation tools are optimized for human genomes, additional

formatting of reference input is often required. Widely used

variant annotation tools include Annovar (Wang et al., 2010),

SnpEff (Cingolani et al., 2012), Variant Effect Predictor (VEP)

(McLaren et al., 2010) and VariantAnnotation (Obenchain et al.,

2014). The choice of reference genome or transcript set and of

annotation software can have substantial impact on annotation

results. In a comparison between VEP and Annovar, for instance,

the consensus for high-impact variants such as those causing loss-

of-function was between 65% and 87% (McCarthy et al., 2014).

Moreover, predictions of variant effects using common algo-

rithms only found a consensus of 5% for high-impact deleterious

variants (Chun and Fay, 2009). A reason for this moderate-to-low

concordance is that annotation tools define noncoding features

differently. For instance, SnpEff uses 5 kb to define upstream and

downstream regions, while Annovar uses 1 kb. Annotation tools

also differ in their output format. Annovar produces a tab-

separated file, while SnpEff, VariantAnnotation and VEP produce

extended VCF files with annotations included in the ‘INFO’ field.

Unlike other annotation tools, SnpEff groups variants affecting

the transcriptional unit into four categories based on the level of

impact. Variant annotation with common tools is effective but

not yet fully matured. Stringent filtering and consensus

approaches are likely to increase their accuracy in the short term,

while wider adoption of standard ontology terms and more

refined treatment of the potentially functionally important

noncoding regions (Alexander et al., 2010) will improve annota-

tion in the long term.

Management of genotyping data

Data management systems are essential to capture and manage

the vast quantities of genomic data for applied breeding.

However, storage and integration of the increasing amounts of

data are a major challenge (Batley and Edwards, 2009; Lee et al.,

2012). Sequencing instruments typically generate FASTQ files

containing quality encoded sequencing reads. These files are

usually 3–4 times larger than the aligned reads in the standard

BAM format. Once variants have been identified, they are

generally stored in the variant call format (VCF) (Danecek et al.,

2011), which can be compressed with tabix (Li, 2011) to files

about 3–5 times smaller. A major challenge is that potentially

important information is often lost downstream in the analysis

pipeline and during compression. For this reason, it is often not

possible for researchers to delete raw FASTQ files or keep only

compressed data. A solution to the storage of large-scale
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genomic data may lie in the decreasing cost of cloud-based

storage systems such as those offered by Amazon Web Services

(O’Driscoll et al., 2013).

Increasing data protection and efficient access are also

important for the management of genotyping data. Data

management systems such as iRODS (Rule-Oriented Data man-

agement systems) can help simplify data replication and allow

adjustable levels of metadata to enhance accessibility (Chiang

et al., 2011). Finally, broader access to research communities can

be provided with public crop databases hosting genotyping data

such as those established for maize (maizeGDB; http://www.-

maizegdb.org), tomato (http://solgenomics.net) and wheat

(wheatIS; http://wheatis.org). These community databases

increase accessibility of research data and help drive commu-

nity-based storage and analysis solutions.

Conclusion

GBS represents a powerful suite of genotyping approaches with

wide-ranging applications and the potential to accelerate plant

breeding programmes. However, these approaches vary in their

costs per marker data point, in the types of data produced and in

errors and potential biases. When selecting a method, researchers

must therefore consider genome size, population structure, prior

genomic information available and their varying influence on the

different methods. The choice of software tools should be made

consciously with respect to the specific genome and the analytical

goals. While RRS approaches remain cost-effective, WGR meth-

ods, possibly in combination with long-read sequencing, will

increase in use as sequencing costs continue to drop.
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