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Abstract

Temporally modulated input mimics physiology. This chemical communication strategy filters the 

biochemical noise through entrainment and phase-locking. Under laboratory conditions, it also 

expands the observability space for downstream responses. A combined approach involving 

microfluidic pulsatile stimulation and mathematical modeling has led to deciphering of hidden/

unknown temporal motifs in several mammalian signaling pathways and has provided mechanistic 

insights, including how these motifs combine to form distinct band-pass filters and govern fate 

regulation under dynamic microenvironment. This approach can be utilized to understand 

signaling circuit architectures and to gain mechanistic insights for several other signaling systems. 

Potential applications include synthetic biology and biotechnology, in developing pharmaceutical 

interventions, and in developing lab-on-chip models.

Introduction

Signaling pathways transmit specific information from a cell’s external microenvironment to 

downstream effectors to bring about physiological or phenotypic changes. Often, the 

microenvironment presents dynamic inputs and cells must be able to discern these to their 

advantage. Conventional methods to investigate these pathways, such as exposing cells to 

step changes in ligand concentration, can fail to provide a systems-level quantitative 

understanding of signal circuit architecture and its physiological implications under dynamic 
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inputs. Additionally, these signaling pathways are often non-linear and function on wide 

range of time scales. Therefore, to fully characterize them requires probing at different 

frequencies. Investigation of cellular networks using pulsatile stimulation and mathematical 

modeling can provide new insights into signalling pathways.

Broadly speaking, this approach has three advantages. First, pulsatile stimulation may mimic 

physiology and thus provide relevant insights. Second, pulsatile stimulation synchronizes 

responses at the single cell level via phase-locking or entrainment, thus reducing noise in the 

read-out. Third, pulsatile stimulation can provide mechanistic insights into the consequences 

of temporally varying inputs. These insights can be helpful in dissecting circuit architecture, 

in discerning temporal encoding and decoding, in understanding fate regulation, and in 

illuminating emergent behavior. Pulsatile stimulation along with mathematical modeling has 

been used successfully in dissecting several such temporal mechanisms, providing a new 

direction for the field. Here, we describe how this approach has been useful in investigating 

a few of these signaling pathways, and has contributed to deciphering hidden or unknown 

signaling motifs or delineating mechanisms, focusing on the mammalian signaling 

pathways. We also discuss its prospects in uncovering hidden or unknown motifs in other 

signaling systems, and other potential applications in synthetic biology, biotechnology and 

lab-on-chip model systems.

Dynamic microenvironment expands the observability space

The microenvironment surrounding cells in tissues of a multi-cellular organism can change 

rapidly due to various metabolic and signalling processes1,2. In general, these dynamic 

patterns include changes in amplitude, duration of stimulation, gradients, or periodicity of 

input signal (Fig. 1A). We can exploit a cell's ability to discern these dynamics in our 

experiments, and use information gathered to help understand signaling circuit architecture3 

(Fig. 1B). The central hypothesis for such investigation is that cells are able to discern time-

varying inputs and have evolved to take advantage of temporal information available in their 

microenvironment. Cells may utilize these dynamics to make appropriate decisions.

Understanding complex signaling pathways primarily depends on robust discernment of 

signaling circuit architecture. This requires comparing and evaluating multiple response 

features. One could look at every signaling node as a read-out, but this has practical 

limitations. However, we can think of an "observability space" that comprises non-redundant 

and informative read-outs in the space-time domain that can be created by temporally 

varying inputs. In this observability space, rather than evaluating responses at each signaling 

node, we can alternatively evaluate responses at fewer signaling nodes, but with several 

temporally varying inputs. Most commonly, responses are measured for step changes in the 

input only, and therefore, the observability space is quite narrow. To expand the observability 

space, temporally varying stimulations such as pulsatile stimulation with input parameters of 

duration of stimulation, rest period between the stimulations and duty cycle ratio can be used 

(Fig. 1C). The space can be further expanded by introducing distinct temporal patterns such 

as gradients, ramp-in and ramp-out. Thus, the same read-out can be measured dynamically 

for several input conditions. This expansion of observability space can play an essential role 
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in weeding out non-conforming circuit architectures 4, as well as in gaining mechanistic 

insights into how temporal information is processed in a particular signaling circuit.

Advantages of microfluidics and pulsatile stimulation

Signaling circuit investigations at the single cell level with pulsed stimulation requires 

delivery of time-dependent ligand or drug molecule input. Large fluid volumes in 

macroscale systems prevent rapid changes in concentrations, thus making these systems 

inaccurate and low throughput. To this end, microfluidic devices have recently been 

designed and developed that can deliver handle microliter and sub-microliter volumes of 

fluids, and can precisely mimic and manipulate the cellular microenvironment in both 

timescales as well as length scales 5–7. Advantages of microfluidics and pulsatile stimulation 

can be broadly classified into (but not limited to) the following:

Mimicking physiology

Several physiologically relevant stimuli, including neurotransmitters, metabolic enzymes, 

hormones, and growth factors, are released in pulsatile bursts (Fig. 2A) 8–12. Time scales for 

these bursts vary widely from milliseconds to several hours. Consequently, downstream 

activation of effector molecules may vary significantly for time varying inputs as compared 

to step changes1,13,14. Microfluidics allows the study of cells under controlled fluid flow, in 

particular, under controlled ligand stimulation5,15. Complex time varying patterns of ligands 

such as pulsatile bursts can be delivered with high temporal resolution using microfluidic 

devices, thus mimicking the dynamic physiological microenvironment in a controlled 

fashion.

Controlled and synchronized responses

In vitro cultures show significant cell-to-cell variability16–18. Under step stimulation of a 

signaling pathway, cells tend to vary widely in their responses19–21. While some cells exhibit 

oscillatory responses, others may exhibit peak-and-plateau, single spike or no response. 

Biochemical noise, also known as cell-to-cell variability or extrinsic noise, is believed to 

contribute to this wide range of responses, making it difficult to interpret signal pathway 

dynamics. However, under external periodic stimulation, signaling systems may exhibit 

synchronized or phase locked responses4 that are easier to interpret and quantify (Fig. 2B).

Gaining mechanistic insights

Pulsatile microfluidics also provides several mechanistic insights about the signaling system, 

including:

Dissecting circuit architectures—Signaling circuits often have their own time scales of 

responding to a stimulus that depends on the circuit architecture of the motifs that constitute 

the pathway. Variation in stimulation parameters such as duration of stimulation or rest 

period between the stimulations may reveal whether a particular pathway prefers rapid (high 

pass) or slow (low pass) stimulation to elicit optimum response (Fig. 3A). A retrospective 

approach using such frequency response analysis provides insights into the constituent 

motifs that may be present in the signaling pathway.
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Discerning temporal encoding and decoding—Ligand stimulation often leads to 

signaling via second messengers. These second messengers often encode temporal 

information that leads to distinct downstream responses depending on how signals from the 

second messengers are integrated downstream. Thus, the same oscillation in a second 

messenger or a transcription factor may result in complete integration, or partial integration 

or even no integration downstream, which may result in three distinct phenotypic responses 

(Fig. 3B). Pulsatile stimulation provides a platform to quantify how a particular pulsed 

signal is processed downstream, and thus provides mechanistic insights into the temporal 

encoding and decoding of a particular signaling pathway.

Fate regulation—Several studies have shown that transcription factor activation and gene 

transcription vary significantly between step changes and pulsatile stimulation 1,13,14,22. The 

dynamics of activation and deactivation of transcription factors, or nuclear translocation and 

back-translocation, may determine whether a continuous or a pulsatile stimulation leads to 

higher activity. Consequently, for two distinct transcription factors (say Z1 and Z2), the 

amount of activation may differ for different temporal inputs. This may lead to several 

combinations of gene activation, consequently determining the fate of the physiological/

phenotypic response (Fig. 3C) and underscoring the importance of understanding how 

dynamic stimulation of cells may control physiological responses and cell fate.

Emergent population behavior—Pulsatile microfluidics can also be used as a tool for 

externally phase locking or synchronizing a cell population to study emergent population 

behaviour in vitro (Fig. 3D). Several physiological phenomena, such as hormonal secretion 

and heart contractions, are rhythmic or oscillatory at the tissue/organ scale. Such rhythmic 

activities indicate synchronization of millions of cells. 23,24. Microfluidics allows mimicking 

these tissue scale conditions in an in vitro system. These features have also been explored to 

develop organ-on-chip and human-on-chip systems 25–27.

Mathematical modeling of signaling pathways

Mathematical and computational modeling has been used extensively to describe and make 

predictions for dynamical systems in biology, including predator-prey dynamics 28,29, 

microbial growth 30, embryonic morphogenesis 31, cell cycle dynamics 32 and cell signaling 

pathways 33,34. Investigation of biochemical pathways is aided by quantitative model 

predictions that can be tested experimentally, with insights feeding back to improve the 

models. These models can be deterministic, e.g. described by ordinary or partial differential 

equations (ODEs and PDEs, respectively), or stochastic, e.g. described by dynamic Monte 

Carlo methods. Combinations of deterministic and stochastic modeling are also used 35, as 

well as newer approaches such as Bayesian networks. Appropriate selection of a modeling 

approach depends on the information available and questions of interest. For modeling 

signaling pathways, the availability of experimentally determined kinetic parameters and the 

capability of getting time-dependent or space-dependent read-outs are important, especially 

when developing a detailed ODE or PDE model of a signaling pathway. Signaling events 

that involve discrete and random waiting times (such as binding of a transcription factor to a 

gene sequence or low copy numbers of signaling molecules interacting with each other), or 

processes where the continuum assumption is not valid, are best described by stochastic 
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processes. Because parameter values in models are seldom known with certainty, uncertainty 

and sensitivity analyses are an important aspect of mathematical and computational 

modeling 36–38. Techniques to efficiently sample the parameter space and to determine the 

correlation of the signaling response with each of the parameter varied are helpful 39,40.

With the advent of time-lapse microscopy with high spatio-temporal resolution, it has been 

possible to measure time traces of signaling components at the single cell scale. However, as 

discussed earlier, in vitro cultures are prone to cell-to-cell variability. Thus, the single cell 

traces obtained experimentally are often noisy and it is difficult to interpret the signaling 

dynamics. For this reason, mathematical and computational models at the single cell scale 

may also incorporate cell-to-cell variability (commonly termed “extrinsic noise”) by 

choosing initial values of the signaling components from a statistical distribution 41. To 

interpret single cell data, information theoretic analysis has recently been utilized to estimate 

the noise and information components in the signal 19,20. Below we will show how the 

combined approach of pulsatile stimulation and mathematical analysis have led to critical 

insights for signalling pathways.

Examples of signaling pathways investigated

Investigation of cellular signaling pathways with dynamic inputs using microfluidics is a 

research area that has grown significantly in the recent years. Several 

mammalian 1,4,13,14,21,23,24,35,42–46 as well as non-mammalian systems including 

bacteria47–49, amoeba50, yeast51,52, and nematodes22,53 have been investigated. Here we 

discuss in detail a few recent examples from mammalian signaling pathways, but also 

mention briefly examples from non-mammalian systems.

GPCR signaling

G-Protein Coupled Receptors (GPCR) primarily signal through G-Protein coupling, 

resulting in various downstream signaling events through second messengers such as 

cytoplasmic calcium and ATP. These second messengers have oscillatory dynamics because 

of positive and negative feedback 9,54. The receptor itself may undergo dynamic uncoupling 

leading to oscillatory dynamics of G-protein activation55. The oscillatory calcium response 

is widely studied to understand the temporal encoding of calcium-induced transcription 

factors56–59. Several GPCR ligands are released in pulsatile bursts under physiological 

conditions, including glutamate 8 (millisecond to a few second scale) and GnRH 12 

(Gonadotropin releasing hormone) (a few hours) (Fig. 2A). One such example is a 

neurotransmitter, acetylcholine, an agonist for the cholinergic muscarinic M3 receptor. 

Acetylcholine has been observed to be released in pulsatile fashion10 (Fig. 4A). To 

understand its physiological relevance and to elucidate signaling circuit architecture, we 

used pulsatile stimulation of HEK 293 cells stably expressing M3 receptor with carbachol 

(CCh), a chemical analog of acetylcholine 4,42. Upon pulsed CCh stimulations, cells exhibit 

responses phase-locked with the input pulse (Fig. 4A).

We define the phase locking ratio (PLR), a measure of response fidelity, as the ratio of 

number of calcium responses (above a threshold value) to the number of input ligand pulse. 

We showed that the PLR changes with the stimulation parameters concentration (C), 
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duration (D) and rest period (R). The phase-locking analysis provided an expanded 

observability space to compare several models and examine the differences in activation and 

recovery properties between the models, not possible with conventional methods. Utilizing 

these results, we compared several existing models with distinct signaling motifs (positive 

and negative feedbacks) to discover the circuit architecture that best explained the data (Fig. 

4B). The analysis also revealed the importance of basal levels of PLC in generating 

subthreshold peaks. Pulsatile stimulation was also utilized to understand the pathway 

recovery properties in multiple concentration regimes 43. In particular, we found that the 

reduction in phase-locking at low values of C and D and the reduction in signal amplitude at 

high values of C and D for a fixed R can identify the recovery properties of cytoplasmic 

calcium and receptor phosphorylation respectively (Fig. 4C (i)). Pathway recovery properties 

were utilized to improve the GPCR-calcium model by incorporating a receptor 

phosphorylation module (a regulatory motif).

To gain mechanistic insights into the downstream signal regulation, we utilized pulsatile 

stimulation of HEK293 cells stably expressing M3 receptors to generate synchronized 

calcium oscillations of varying frequencies (fast (R = 24s), intermediate (R = 72 s) and slow 

(R = 144 s)) 13. Using two downstream readouts – cytoplasmic calcium and calcium induced 

NFAT (nuclear factor of activated T-Lymphocytes) nuclear translocation, we investigated the 

response dynamics under frequency and amplitude-modulated signals (Fig. 4C (ii)). 

Although the rapid oscillation of cytoplasmic calcium induced artificially using patch-clamp 

has been shown to maximize the downstream transcription factor activation22,56,59, under a 

more physiological condition, fast pulsing led to rapid desensitization of the receptors, thus 

preventing a sustained calcium oscillation, and in turn was unable to maximize the NFAT 

translocation. A slow stimulation did resolve the issue with receptor desensitization but was 

unable to provide sufficient calcium flux for retaining activated NFAT4 in the nucleus. 

Consequently, an intermediate frequency window for receptor stimulation optimized the 

NFAT4 translocation, analogous to the engineering concept of band-pass processing of 

signals (Fig. 4C). Band-pass processing in this GPCR system is a combined effect of low-

pass filtering by the receptor, and high-pass filtering by the calcium induced NFAT motif 

and these parameters determine the band-pass window. To further validate this, we measured 

the band-pass window for another isoform of NFAT (NFAT1), known to have a relatively 

slower kinetics60, and showed that the band-pass regime shifts to slower stimulation 

frequencies (Fig. 4C (ii)). Our analysis suggests that pulsatile stimulations may encode for 

different timings optimized for the activation of distinct downstream signals such as 

transcription factor activation.

NFκB signaling

In mammalian systems, NFκB (nuclear factor κB) signaling is by far the pathway most 

studied using microfluidics and mathematical modeling. The intrinsic oscillatory dynamics 

of the pathway are on the time scale of minutes to hours and can be conveniently 

investigated for frequency modulated signaling 21,35,44–46. Tumor Necrosis Factor – α 
(TNF-α) is an inflammatory signal that activates NFkB and induces its nuclear translocation 

via phosphorylation of the upstream IKKs kinases61. TNF-α is secreted in pulsatile bursts 

by cells neighbouring to the T-cells, thus making the study using pulsatile microfluidics 
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physiologically relevant 46. Kellogg et al showed that pulsatile stimulation provides an 

opportunity to control the activation probability and heterogeneity of response at the single 

cell level 44. Using pulses with varying concentration (C) and duration (D), they showed that 

the shape of stimulation keeping C*D constant determines the heterogeneity of the response, 

whereas the area of the stimulation (C*D) determines the fraction of cells actively 

responding to the stimulation (Fig. 5A). Thus, using an appropriate concentration and 

duration of stimulation, cells may be synchronized for NF-κB responses despite existing 

heterogeneity in the system. The heterogeneity may result from cell-to-cell variability 

(extrinsic noise) and inherent stochasticity associated with biochemical reactions that is 

present in the time series of single cells (intrinsic noise). The effects of noise were 

investigated in LPS-induced NF-κB signaling to show that noise contributes to the 

broadening of the entrainment window for saw-tooth waveforms of pulsatile stimulation45. 

They further showed that entrained cells produce significantly higher transcripts as 

compared to non-entrained cells (Fig. 5B).

Pulsatile stimulation of NF-kB pathway has also been utilized to gain mechanistic insights 

about the pathway. Ashall et al46 utilized pulsatile stimulation of TNF-α to show that a 

minimum ‘reset time’ is needed for complete recovery of NFκB amplitude peak. They found 

that the dampening is contributed not only by the negative feedback from NFκB-induced 

IκB expression, but also from A20 expression that inhibits the activation of an intermediate 

kinase, IKK-α. Thus, they utilized pulsing to figure out a hidden regulatory motif that was 

unknown prior to their investigation. Cells utilize pulsatile stimulation to determine the 

timing and specificity of NFκB dependent transcription. In particular, they showed that the 

four NFκB dependent transcripts viz. RANTES, IκBε, IκBα and MCP-1 are expressed in 

distinct fashion for the various TNF-α pulsatile stimulation patterns (Fig. 5C (i)). These 

results suggest selective high pass filtering of downstream signal activation, similar to 

calcium-NFAT signaling in the absence of receptor regulatory kinetics 13. Thus, oscillatory 

signals are integrated at different paces downstream, resulting in distinct sets of 

transcriptional activation and fate regulation.

Recently, Zambrano et al21 utilized pulsatile stimulation of GFP-p65 knock-in MEF cell 

populations with TNF-α to obtain synchronous NFκB dynamics for studying genome-wide 

transcriptional output. They showed that TNF-α induced NFκB signaling behaves like a 

damped oscillator, with no memory/entrainment, and simply follows the input signal 

dynamics. These conclusions are in contrast with what was observed earlier45 and suggest 

that the observed entrainment may be a signaling circuit effect. The genome-wide analysis 

of transcripts revealed that transcriptional dynamics downstream of NFκB dynamics results 

into three distinct ways of signal integration depending on the rate of mRNA degradation 

(Fig. 5C (ii)). These results along with those from Ashall et al46 support our speculation that 

downstream signaling processes in several other signaling pathways follow distinct high-

pass filters depending upon different rates of signal integration.

Taken together, pulsatile microfluidics and mathematical modeling of NFκB signaling 

revealed hidden negative feedback mechanisms, factors that are essential in getting 

synchronised and entrained response, as well as elucidated the downstream implications of 
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temporally varying signals. Importantly, conventional stimulation, using step changes in the 

ligand concentration, would not have allowed these findings.

ERK signaling

Extracellular-regulated kinase (ERK) signaling plays an important role in cell fate 

regulation, including differentiation and cell proliferation. Stimulation by growth factors 

(GFs) like EGF (epidermal) and NGF (nerve) leads to the activation of GF receptors that 

activate a Ras-GTPase. This triggers the MAP kinase cascade that results in ERK 

activation 62,63. The ligands EGF and NGF are known to have distinct ERK activation 

dynamics that lead to proliferation and differentiation, respectively62,63. Similar to NF-kB 

and GPCR-calcium signaling, continuous stimulation of GFs leads to heterogeneous 

downstream ERK activation, thus complicating our understanding of the circuit architecture 

that differentiates the two input ligands. Although details about the dynamics of release of 

these growth factors are yet unknown, Ryu et al 14 utilized pulsatile stimulation to 

investigate this pathway in PC-12 cells for neurite growth (differentiation) (Fig. 6A). Pulsed 

inputs generated synchronized homogenous ERK signaling. However, the phase locked 

responses differed for fast GF stimulation in case of EGF and NGF, suggesting that the two 

may have different kinetics and mechanisms of regulating the signal despite acting on the 

same signaling pathway (Fig. 6B).

Pulsatile stimulation of the ERK signaling pathways also provided several mechanistic 

insights. Sustained EGF stimulation led to an undifferentiated state while sustained NGF 

stimulation led to a differentiated state. Pulsatile stimulation of high concentration NGF also 

led to a differentiated state, except for slow stimulations (D = 3 min, R = 60 min) (Fig. 6C 

(i)). Since low NGF concentrations did not induce differentiation, they inferred that high 

NGF concentrations are required to trigger the pathways involved in differentiation other 

than ERK activation. Both low and high concentrations of EGF under intermediate pulsing 

(D = 3 min, R = 10 min – 20 min) led to significant neurite growth and differentiation, 

similar to our results on NFAT activation13, suggesting the existence of band-pass 

processing. In summary, this study revealed how MAPK network structures differ for the 

two input ligands to provide an explanation for the differential cell fates induced by the two 

GFs and how EGF can be used for differentiation under pulsatile conditions.

The results from Ryu et al also suggest that the two GFs generate different band-pass 

windows for the ERK signaling and subsequent differentiation pathway, consistent with our 

earlier findings in GPCR-calcium-NFAT signaling13. While the EGF acts in a narrow 

intermediate regime window (R = 10 min – 20 min), NGF acts in a much wider window, 

almost as a high pass filter, suggesting that EGF signaling comprises of additional low pass 

filter along with the downstream high pass amplification (Fig. 6C (ii)). This is consistent 

with the findings of Ryu et al, which suggests that EGF induces a fast negative feedback 

through the channels yet unknown. Additionally, the high pass filtering properties of NGF 

that works only with high dosage can be attributed to a positive feedback speculated to be 

present in the NGF signaling network, but not in the EGF signaling network. Gaining these 

valuable insights to determine the precise molecular circuitry was possible only because of 
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using pulsed signals that bypassed cellular heterogeneity to probe specific network 

properties.

TGF-β Signaling

Transforming growth factor β (TGF-β) is a well-known mammalian morphogen that 

conveys positional information and determines cell fate during embryonic development64. 

TGF-β mediated signaling involves phosphorylation of a receptor-activated Smad (R-Smad) 

upon its binding to the TGF-β receptor. The phosphorylated R-Smad undergoes nuclear 

translocation, acts as a transcription factor and brings about transcriptional changes. These 

morphogen levels are not static and may present a dynamic (oscillatory or pulsatile) micro-

environment to the developing embryo 65,66, thus suggesting physiological relevance of 

investigating the pathway with pulsatile inputs. To understand the implication of temporal 

encoding of such dynamic morphogenic signals in embryonic patterning, Sorre et al1 probed 

C2C12 cells using GFP-Smad4 fusion protein in a microfluidic cell culture device and live 

cell imaging. TGF-β stimulation leads to nuclear translocation of Smad4-GFP under various 

temporal inputs (Fig. 7A). Results from synchronized phase locked response with alternate 

high and low TGF-β stimulation suggests that Smad4 activation has no memory of 

stimulation (Fig. 7B), similar to the observations of Zambrano et al21 for NFkB signaling.

Pulsatile TGF-β stimulation also provided several mechanistic insights about the pathway 

and about embryonic development pattern formation. While step changes in TGF-β 
concentration led to partial prevention of differentiation of myoblasts to form myotubes, 

pulsatile TGF-β stimulation was more potent in preventing differentiation (Fig. 7C (i)). They 

also determined that there is a minimum reset time for Smad4 amplitude recovery during 

pulsatile stimulation, similar to the observation of Ashall et al46 in the NFkB signaling, and 

Jovic et al 43 in the GPCR signaling. This suggested that there must exist a negative 

feedback motif (they called it ‘adaptive mechanism’), which was yet unknown (Fig. 7C (ii)). 

A detailed mathematical model analysis revealed that the adaptive mechanism leads to a 

more robust pattern formation in the embryonic development, as compared to the linear 

model without any negative feedback. The existence of negative feedback and lowering of 

Smad4 amplitude upon rapid stimulation also suggests that the system works in a band-pass 

manner similar to GPCR-mediated NFAT translocation13 and EGF mediated 

differentiation14. Thus, a possible implication of band-pass filtering in signaling is to weed 

out the high-pass noise during embryonic development while utilizing the negative feedback 

for robust pattern formation under dynamic microenvironments.

Insulin (RTK) signaling

Understanding synchronized cell behaviour at the tissue scale is fundamental to physiology. 

One such example is insulin secretion from the islets of Langerhans that are mainly 

composed of pancreatic β-cells. It has been known that the glucose levels in blood plasma 

oscillates over time 67 (Fig. 8A). Upon elevated glucose levels, the rate of glycolysis and 

consequently the ATP concentration increases in the β-cells, thus blocking potassium 

channel and opening up calcium channels. Positive feedback from calcium (calcium induced 

calcium release) raises its level and leads to the secretion of insulin granules via exocytosis. 

Not only is sugar metabolism oscillatory, but so is insulin secretion, both having a period of 
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~ 5 min. How these islets synchronize to generate oscillations in the insulin secretion has 

remained largely unknown. Dhumpa et al 24 used a microfluidic device to investigate how 

step and oscillatory glucose input synchronizes the insulin secretion. They showed that 

under step elevation of the glucose level, the calcium and insulin read-outs in the islet 

remained uncorrelated with no entrainment. In contrast, oscillatory glucose input led to 

oscillations in the calcium as well as insulin secretion in an entrained fashion (Fig. 8B). The 

synchronization index increased with increasing periodic glucose amplitude (Fig. 8C (i)). 

Mathematical modeling of the system revealed that an insulin-dependent negative feedback 

action of the liver on glucose level leads to synchronized oscillations in the islets. In a more 

recent work23, they determined the synchronization window by using a chirped waveform of 

glucose stimulation to find that the strongest resonance between the glucose input and 

calcium oscillations was within 2 min of the natural period of oscillation (~5 min) (Fig. 8C 

(ii)). These studies reveal how feedback mechanisms may induce synchronized oscillations 

at the tissue scale to give rise to emergent behaviours.

Examples from non-mammalian systems

Several non-mammalian systems have also been investigated through temporal modulation 

of input signals using microfluidics and mathematical modeling to elucidate specific 

signaling features. One of the pioneering works in the field was the investigation of 

osmoregulation in Saccharomyces cerevisiae using periodic stimulation of NaCl 68. This 

work illustrated using pulsatile stimulation to dissect circuit architectures such as negative 

feedback. A synthetic oscillatory network inducible with arabinose has been studied in the 

bacterial system using oscillatory arabinose input to quantitatively understand the 

entrainment of biological clocks 49. These bacterial oscillators displayed a wide range of 

tunable frequencies and higher-order resonance. Computational simulation of this system 

indicated that the entrainment robustness of biological clocks may be attributed to the 

presence of a positive-feedback loop. Thus, a hidden or unknown motif could be unravelled 

by simply interrogating the system with pulsatile inputs.

In another work, a social amoeba, Dictyostelium discoideim, was studied to understand its 

coordinated and synchronized cAMP oscillations at population scale under starving 

conditions50. Using pulsatile microfluidic stimulations and mathematical modelling, they 

showed that the intracellular noise (stochastic heterogeneity) is the key driver of the 

population level behavior and that the biochemical noise (cell-to-cell variability) alone was 

unable to reproduce the results.

Hao et al51 studied how transcription factors (TFs) process dynamic input to generate 

diverse range of dynamic responses. Using yeast (Saccharomyces cerevisiae) as their model 

system, they showed that the stress-responsive TF Msn2 is able to distinguish various 

dynamic stress inputs based on upstream kinetics and may process it differently as a tracker, 

as a filter or as a signal integrator. In a more recent work, another group showed that the 

oscillatory stress stimulation in yeast cells results in an intermediate frequency regime for 

which the growth is slowed down significantly 52. These observations strengthen our 

argument that band-pass processing of temporal information must be existing in a wide 

variety of signaling pathways. While they attribute this regime to be non-natural and 
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interpret this as a hidden sensitivity of cellular regulatory networks, the regime ~ 8 min 

period for which the MAPK activation is maximized may have some physiological relevance 

that is yet unknown.

Another model system studied widely with microfluidics is a nematode (Caenorhabditis 
elegans). Tomida et al 22 measured calcium and MAPK activity in sensory neurons of C. 
elegans under pulsatile stimulation of changes in NaCl concentration. The study showed that 

the stimulation parameters (C, D and R) determine the extent of MAPK-1 activation in a 

non-linear fashion attributed to the calcium dynamics which showed dampening at rapid 

stimulations. Although not proven mathematically, we speculate that these results are similar 

to the concept of band-pass filter13 (Fig. 4C).

Insights and perspectives

Investigation of cellular signaling dynamics using microfluidics and mathematical/

computational modeling allows unique advantages in dissecting signaling circuitry by 

utilizing a wide observability space while bypassing response heterogeneity.

Multi-tasking through temporal compartmentalization

Components of signal transduction pathways are often involved in multiple signalling 

pathways, and can perhaps be thought to “multi-task”. One of the best examples is the 

second messenger calcium. It is essential to understand how these components elicit some 

downstream signals but not others. One way these signalling components evolved for multi-

tasking is through the compartmentalization of space, and spatial compartmentalization to 

facilitate complex tasks such as photosynthesis and aerobic respiration have been well-

studied. Compartmentalization within the temporal regime is less understood. In the 

examples discussed in previous section, we found that cells prefer timings that are “just 

right” – not too fast, not too slow. Analogous to compartmentalization of space, we may 

conceptualize time to be compartmentalized as well. In different ‘temporal compartments’ 

the same signalling molecule may be involved in different tasks. Recent findings about 

optimum frequency regimes wherein a signaling molecule may be able to activate two 

distinct downstream responses in two different ‘temporal compartments’ support this 

hypothesis 13.

Selectivity amidst heterogeneity

A fundamental problem in biology is to understand how selectivity is achieved in a cell 

population. In case of spatial selectivity (such as cell fate determination during embryonic 

development), several experimental and mathematical insights are available 69. However, 

mechanisms for temporal selectivity, wherein timing alone may be able to segregate 

responsive and non-responsive cells, remains largely unknown. Pulsatile stimulations can be 

utilized to test if a sub-population of cells select a particular response that is distinct from 

the others. Modeling biochemical variability along with pulsed stimulation may lead to 

additional insights into how cellular sub-populations can be selectively activated or 

deactivated.
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Modular signaling through combinatorics

An important inference from the pulsing of signaling pathways is band-pass processing, 

wherein the optimum frequency regimes differ for different upstream and downstream 

motifs. With advancements in synthetic biology, in the near future it will be possible to 

generate cell lines with various combinations of upstream and downstream modules that 

have unique band-pass regimes. One such example existing in nature is the metabotropic 

glutamate receptors. Two of the metabotropic glutamate receptors, mGlu1 and mGlu5, have 

been shown to have distinct functional roles 70–75. While the mechanism through which they 

signal appears the same, they do possess distinct receptor regulation kinetics 71. Upon 

stimulation, mGlu1 receptor desensitizes rapidly and recovers slowly, leading to single peak-

and-plateau type calcium response. In contrast, mGlu5 receptor is phosphorylated and 

dephosphorylated rapidly (known as “dynamic uncoupling”) 55, resulting in robust calcium 

oscillations. Thus, these two receptor subtypes may have different band-pass regimes, and 

they might be sensitive to distinct temporal stimulation patterns. This might be the reason 

why these two sub-types have functionally different roles. It would be interesting to explore 

several other combinatorics as to how they may lead to distinct downstream responses 

downstream simply based on upstream and downstream kinetics.

Recent studies in neuroscience and immunology suggest links between neural reflexes and 

immune responses 76,77. Even our previous study suggests that neurotransmitters such as 

acetylcholine can induce NFAT activation 13. The band-pass analysis also predicts that at a 

longer (and rather more sustained) rest periods, calcium oscillations may elicit NFκB 

response 78. Both NFAT and NFκB play crucial roles in immune response. It would be 

interesting to explore how different rest periods (and different agonists) may elicit immune 

response upon pulsatile stimulation of cells. This study will not only provide scientific 

insights into mechanisms of immune response, but also aid development of relevant and 

more potent therapeutics.

Synthetic biology applications such as coherent cellular responses or ‘cellular lasers’

Results from pulsatile stimulation of cells have demonstrated that phase-locked responses 

under a particular stimulation frequency window lead to maximum downstream 

response 13,45,52. Moreover, recent findings suggest that for most of the cell signaling 

pathways, incoherent response may be due to cell-to-cell variability or biochemical 

noise 19,20,45. Taking these two results together, we hypothesize that by minimizing cell-to-

cell variability using genetic tools and stimulating cells in pulsatile fashion using automated 

microfluidic oscillators, we should be able to get coherent downstream response in a cell 

population, analogous to the concept of lasers in optics. ‘Cellular lasers’ would greatly 

enhance desired output in biotechnology-related applications.

Conclusions

Immense opportunities lie in investigating signaling pathways where external fluctuations 

and dynamics in the microenvironment may be playing a critical role. The advantage of 

utilizing microfluidic pulsatile stimulation and mathematical modeling lies in mimicking 

physiology, synchronizing heterogeneous single-cell responses and gaining several 
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mechanistic insights about the pathway. We show that this approach has been utilized 

successfully to investigate several major mammalian signaling pathways, and has provided a 

deeper understanding about the signaling circuitries. We also speculate that this approach 

will be helpful in understanding several other signaling mechanisms, and it also has potential 

for applications in pharmacology, and synthetic biology. With the advancements in 

microfabrication technology 79–83 and mathematical modeling, we speculate that 

investigating signaling pathways with this approach will provide better understanding of 

such pathways and also lead to several biomedical applications. Advanced mathematical 

approaches such as multi-scale modeling and agent-based modeling will further push the 

investigation at systems scale 84,85. Tools such as optogenetics 86 and high resolution 

imaging will expand the investigation from temporal modulation to spatiotemporal 

modulation 87,88 . These advancements could lead to several synthetic biology applications 

such as on-chip (in vitro) tissue scale fate–regulation. Taken together, this approach has 

created a new paradigm for the investigation of cell signaling pathways.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Dynamic microenvironments expand observability space to facilitate investigation of 
complex network structures
A. Dynamic signaling input patterns observed in biological systems including modulation in 

amplitude, duration, gradient, pulse frequency, and sinusoidal rhythms. B. Examples of 

network motifs present in transcription networks that can sense temporal inputs. C. 

Temporal modulation expands the observability space by providing additional input-output 

responses and aids in distinguishing different network motifs.
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Fig. 2. Advantages of pulsatile stimulation over conventional methods
A. Mimics physiology: Pulsatile stimulation can mimic several time-varying ligand 

secretions that are physiologically more relevant, such as glutamate, Gonadotropin releasing 

hormone (GnRH) and Luteinizing Hormone (LH) are all known to be secreted in pulsatile 

fashion. Data adapted from several sources referenced at appropriate place in the text. B. 

Synchronizes response through phase-locking/entrainment: Pulsatile stimulation results in 

phase-locking or entrainment in several non-linear systems thus filters out the temporal 

variations because of biochemical noise or cell-to-cell variability.
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Fig. 3. Mechanistic insights provided by pulsatile stimulation and mathematical modeling
A. Several circuit architectures can be dissected through frequency response analysis; B. 

Temporal encoding/decoding of the downstream response can be uniquely discerned using 

this approach. C Pulsatile stimulation may also lead to distinct downstream responses, thus 

regulating different fates through the same input. D. Using microfluidics to study behavior 

of entrained/phase-locked cells also provides a platform to study collective population 

behavior often observed physiologically.
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Fig. 4. Application of pulsatile stimulation and mathematical modeling in GPCR-calcium 
signaling
A. Mimics physiology: Acetylcholine, the natural agonist of muscarinic M3 receptor (a 

GPCR), is a neurotransmitter that is released in pulsatile manner. Carbachol, a chemical 

analog of acetylcholine, is delivered in a similar frequency regime to elicit downstream 

calcium responses. B. Phase-locked calcium signal downstream of ligand-induced GPCR 

signaling expands the number of observables. The expanded space is utilized to identify 

appropriate signaling motifs that could best explain the experimental results. C. (i) Pulsed 

stimulation can also be utilized to identify pathway recovery properties. (ii) The circuit 
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architecture of GPCR-signaling thus identified predicts a band-pass filter for the temporal 

ligand inputs. Pulsatile stimulation can select for two different NFAT isoforms depending on 

their band-pass regime.
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Fig. 5. Application of pulsatile stimulation and mathematical modeling in NFkB signaling
A. Short pulses of TNF-alpha mimic physiological TNF-alpha release bursts. These pulsed 

input are controlled for area and shape to determine the fraction of actively responding cells 

and heterogeneity of the downstream NFkB response. B. Pulsatile input phase-locks/

synchronizes the NFkB response. Entrainment facilitated by cell-to-cell variability and 

stochastic noise results in enhanced amount of mRNA production. C. (i) Stimulation with 

various TNF-alpha temporal patterns show differential sensitivities of mRNA transcripts. (ii) 

Genome-wide transcriptome analysis of entrained cells shows that the signals downstream of 
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NFkB may integrate the upstream signals in three distinct ways depending on the rate 

constants for mRNA degradation, thus brining distinct fate regulations.
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Fig. 6. Application of pulsatile stimulation and mathematical modeling in ERK signaling
A. Temporal variations in growth factor (GF) release remains unexplored, but it can still be 

utilized to study GF-induced ERK signaling and neurite differentiation. B. Step stimulation 

leads to peak-and-plateau type ERK response. Fast pulsatile stimulation is capable of 

discerning differences in the ERK activation elicited by the two GFs, viz. epidermal (EGF) 

and nerve (NGF) growth factors. C. (i) Temporally modulated growth factor stimulations, 

EGF and NGF, lead to distinct fates of neurite differentiation based on temporal regimes. 

Red represents no significant differentiation, while green represents the cells differentiated 

significantly. (ii) Experimental and mathematical analysis suggests existence of two distinct 

regulatory pathways for EGF (red) and NGF (blue). GF mediated differentiation can be 

interpreted as two different band-pass regimes for EGF (red) and NGF (blue).
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Fig. 7. Application of pulsatile stimulation and mathematical modeling in TGF-β signaling
A. TGF-β signaling in embryonic development has been observed to be dynamic rather than 

static. Pulsed stimulations result in damped oscillations while step stimulation only gives a 

peak and plateau response. B. C. TGF-β signaling leads to nuclear translocation of Smad4, 

but exact pathway mechanisms are still debated. B. Temporally varying inputs show no 

memory of stimulation and adapts to the external pulsing. C. (i) Pulsatile stimulation is more 

efficient is preventing differentiation of myocytes as compared to step changes in ligand 

concentration. (ii) Dampening of Smad4 oscillations upon rapid TGF stimulation and 

existence of refractory period for signal recovery suggests existence of negative feedback 

that guides an adaptive mechanism of embryonic development.
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Fig. 8. Application of pulsatile stimulation and mathematical modeling in Insulin signaling
A. Plasma glucose levels have been observed to have oscillatory dynamics. B. Calcium and 

insulin secretion show entrainment to synchronize at the tissue scale upon periodic glucose 

stimulation, providing insights into a possible negative feedback in glucose-insulin 

metabolism. C. (i) Extent of synchronization increases with increase in periodic glucose 

amplitude. (ii) The entrainment window for calcium oscillation upon periodic glucose 

exposure is confined ~2min from the natural oscillation frequency found physiologically.
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