
1Scientific RepoRts | 7:41226 | DOI: 10.1038/srep41226

www.nature.com/scientificreports

Selective inhibition of Ebola entry 
with selective estrogen receptor 
modulators by disrupting the 
endolysosomal calcium
Hanlu Fan1,*, Xiaohong Du1,*, Jingyuan Zhang1,*, Han Zheng1,*, Xiaohui Lu1, Qihui Wu2, 
Haifeng Li1, Han Wang3, Yi Shi3, George Gao3, Zhuan Zhou2, Dun-Xian Tan4 & Xiangdong Li1

The Ebola crisis occurred in West-Africa highlights the urgency for its clinical treatments. Currently, no 
Food and Drug Administration (FDA)-approved therapeutics are available. Several FDA-approved drugs, 
including selective estrogen receptor modulators (SERMs), possess selective anti-Ebola activities. 
However, the inhibitory mechanisms of these drugs remain elusive. By analyzing the structures of 
SERMs and their incidental biological activity (cholesterol accumulation), we hypothesized that this 
incidental biological activity induced by SERMs could be a plausible mechanism as to their inhibitory 
effects on Ebola infection. Herein, we demonstrated that the same dosages of SERMs which induced 
cholesterol accumulation also inhibited Ebola infection. SERMs reduced the cellular sphingosine and 
subsequently caused endolysosomal calcium accumulation, which in turn led to blocking the Ebola 
entry. Our study clarified the specific anti-Ebola mechanism of SERMs, even the cationic amphiphilic 
drugs (CADs), this mechanism led to the endolysosomal calcium as a critical target for development of 
anti-Ebola drugs.

Ebola virus, a member of the Filoviridae family, is an enveloped RNA virus that causes hemorrhagic fever in 
humans and non-human primates with species dependent lethality ranging from 50 to 90%1,2. Entry of Ebola 
virus into the cells, which is mainly mediated by its sole glycoprotein (GP), is a target for therapeutic inter-
vention3–7. Ebola entry is unusual in that it requires proteolytic-priming of GP followed by engagement of 
Niemann-Pick C1 (NPC1)8–11, Recently, it has been proven that the Ebola virus enters cells through the endolys-
osome that contain both NPC1 and the two-pore segment channel 2 (TPC2)12.

As of March 31, 2016, the recent Ebola crisis in West Africa (Guinea, Sierra Leone, and Libya) reportedly 
cause 11,323 deaths13. Unfortunately, there are still no FDA-approved vaccines or anti-Ebola therapeutics1,14. 
Considering the time-consuming process of developing new drugs, it is more cost- and time-effective to screen 
for effective anti-Ebola drugs from among the drugs that are already FDA-approved. Some groups have identi-
fied 80 FDA-approved drugs with selective anti-Ebola activity, including the SERMs3,4,6,7. Many of these iden-
tified drugs selectively inhibit the infection of Ebola virus and do not inhibit vesicular stomatitis virus (VSV) 
or the lymphocytic choriomeningitis virus. While the mechanism of inhibition is unknown, it is clear that 
these drugs do not inhibit the internalization of Ebola virus to the lysosomal associated membrane protein 1 
(LAMP1)-positive lysosome, the acidification of the endolysosome, or the processing of Ebola GP cathepsin3,4,6. 
Moreover, the inhibition of Ebola entry by SERMs is independent of expression of the estrogen receptors, making 
the mechanism by which SERMs inhibit Ebola infection difficult to ascertain15.
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Recently, it is reported that toremifene can bind to and destabilize the Ebola GP trimer, and trigger premature 
release of GP2, thereby preventing fusion between the viral and endolysosomal membranes16. Compared to the 
ethyl chlorine of toremifene, the corresponding groups in tamoxifen, clomiphene and raloxifene make weaker 
(even no) interations with the binding sites in Ebola GP16 (Supplementary Fig. S1). However, tamoxifen, clomi-
phene and raloxifene all can effectively inhibit the Ebola infection3,4,6,7, making the interaction with Ebola GP 
not the key mechanism in Ebola inhibition by these SERMs. These uncertain mechanisms need further studies.

Interestingly, 45 of the 80 drugs found to have selective anti-Ebola activity are CADs, including the SERMs. 
Moreover, several studies have showed that some of the CADs (including the SERMs) have some incidental bio-
logical activities, i.e., drug-induced phospholipidosis (DIP)17–21, cholesterol accumulation22, steatohepatitis23–26, 
and functional inhibition of acid sphingomyelinase (ASM) and acid ceramidase (AC)27,28. Much of the incidental 
biological activities of the CADs are related to their structural properties; several CADs are weak bases which are 
protonated after entering the low pH of the endolysosome. The ionized form of the CADs cannot pass through the 
hydrophobic core of the phospholipid bilayer that surrounds the endolysosome compartment, and are, therefore, 
trapped and concentrated inside17. The concentrated CADs in the endolysosome could disturb phospholipid 
metabolism, the transport of lipids and proteins, and the activity of enzymes in the endolysosome.

Based on the above facts, we hypothesized that these incidental biological activities of the CADs could be a 
plausible mechanism for the observed inhibition of Ebola infection. In this study, we explored the relationships 
between Ebola infection inhibition and the adverse effect of SERMs. Using an LC-MS/MS assay and imaging of 
endolysosomal calcium release, we demonstrated that SERMs could reduce the cellular sphingosine levels and 
subsequently induce accumulation of endolysosomal calcium. Moreover, chelating luminal endocytic calcium 
with high-affinity Rhod-dextran induced the specific inhibition of Ebola infection without inhibiting the inter-
nalization of Ebola virus-like particle (VLP) to the TPC2+  endolysosome. These data support our hypothesis 
that SERMs (and potentially other CADs) induce sphingosine defects and subsequent endolysosomal calcium 
accumulation, which in turn inhibit the release of Ebola from the TPC2+  endolysosome.

Results
SERMs selectively inhibit the entry of the Ebola pseudovirion, but not through the estrogen 
receptor pathway. As all stages of Ebola entry (binding to and internalization from the cell surface, as well 
as trafficking to and fusion with the limiting membrane of endolysosome) are mediated by trimeric GP spikes 
arrayed around the Ebola particles29,30, so the pseudovirion model with Ebola GP can simulate the stages of 
wild-type Ebola entry, and several groups have studied the Ebola entry mechanism and screened the anti-Ebola 
entry drugs with Ebola pseudovirion model3,6,31,32. We choose the pNL4-3-Luc-R−E− based Ebola pseudovirion 
to study the Ebola entry, and the Ebola VLP-mcherry (composed by GP, VP40 and VP40-mcherry) to study the 
Ebola internalization. Then, we treated the hepatocellular carcinoma cell line HepG2 with two SERMs (tamoxifen 
and clomiphene), and infected them with the Ebola pseudovirion. Both SERMs selectively inhibited the Ebola 
entry more than 90%; however, they did not inhibit the entry of the VSV or Influenza A (A/WSN/33(H1N1), 
WSN) pseudovirions (Fig. 1a). Treatment with estrogen and estrogen receptor (ER) antagonists did not inhibit 
the Ebola pseudovirion entry (Fig. 1a), excluding the possibility that SERMs inhibit the Ebola entry through the 
ER pathway.

To determine the effect of SERMs on Ebola internalization, we transfected the HepG2 cells with the 
TPC2-EGFP and LAMP1-BFP vectors, and infected the cells with Ebola VLP-mCherry. Co-localization of 
TPC2-EGFP, LAMP1-BFP and VLP-mCherry demonstrated that SERMs did not inhibit Ebola internalization to 
the TPC2+  lysosome; rather, they blocked Ebola VLP release from the lysosome (Fig. 1b).

SERMs do not interact with NPC1 domain A or domain C. It was reported that U18666a, also a CAD, 
interacts with and inhibits NPC1, and also inhibits the Ebola entry8,33. We also observed that U18666a selectively 
inhibited the entry of Ebola pseudovirion (no entry inhibition was observed for the VSV or WSN pseudovirions)  
and did not inhibited Ebola VLP internalization to the TPC2+  lysosome (Supplementary Fig. S2a, S2b). 
Considering the critical role of NPC1 domain C in Ebola entry in our previous study and the similar structural 
properties of the CADs displaying selective anti-Ebola activity34, we speculated that the CADs with selective 
anti-Ebola activity may target NPC1 to inhibit Ebola entry. To test this possibility, we expressed and purified the 
domains A and C of NPC134,35. Then, we carried out MicroScale Thermophoresis (MST) and Isothermal Titration 
Calorimetry (ITC) to detect the interactions between tamoxifen, clomiphene, or U18666a and the NPC1 domains 
A and C. In all cases, we did not detect interactions by MST or ITC (Supplementary Fig. S3a, S3b, respectively).

Equal dosages of SERMs inhibit Ebola pseudovirion entry and induce cholesterol accumulation.  
Considering the similar structural properties and the reported incidental biological activities of the CADs, it is 
possible that the incidental biological activities of the SERMs are related to the mechanism of Ebola entry inhi-
bition by the SERMs. To verify this hypothesis, we compared the effective SERMs dosages for both cholesterol 
accumulation and Ebola entry inhibition. The Ebola pseudovirion assay demonstrated that SERMs inhibit Ebola 
entry starting from 1 μ M (Fig. 2a). Filipin staining also indicated that SERMs induce cholesterol accumulation 
at approximately 1 μ M (Fig. 2b,d, Supplementary Fig. S4). Therefore, the dosages of SERMs required to induce 
cholesterol accumulation matches the dosages of SERMs required for Ebola entry inhibition, which implies that 
this incidental biological activity of SERMs are related to the Ebola entry inhibition mechanism. Intriguingly, the 
cholesterol accumulation appeared after 8 h of SERMs incubation (Fig. 2c,e), whereas the Ebola virus has already 
entered the cytoplasm at approximately 2 h36. Thus, we speculated that intercellular changes within 2 h after 
SERM treatment should mediate the cholesterol accumulation and the inhibition of Ebola entry.
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Figure 1. SERMs selectively inhibit the entry of Ebola pseudovirion, but not through the estrogen receptor 
pathway. (a) Effects of E2, ICI, tamoxifen, and clomiphene on Ebola/WSN/VSV pseudovirion entry. HepG2 
cells were pretreated with 10 nM E2, 100 nM ICI, 10 μ M tamoxifen, and 10 μ M clomiphene for 1 h and infected 
by Ebola/WSN/VSV pseudovirion with compounds for 24 h. The cells were then lysed, and the luciferase assay 
was carried out. NH4Cl serves as a negative control. (b) Representative images of colocalization of VLPs (red, 
marked by mCheery-VP40) with TPC2 (green, marked with EGFP) and LAMP1 (blue, marked with BFP) from 
10 μ M tamoxifen or 10 μ M clomiphene treated HepG2. White arrows indicate examples of colocalization. Data 
are expressed as the means ±  SEM (n =  3). Significant differences versus control group are presented by asterisks 
(*), **P <  0.01, ***P <  0.001, ns means no significance.
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SERMs reduce the cellular sphingosine. As an Ebola entry inhibitor, U18666a induces sphingosine 
accumulation within 10 min; moreover, sphingosine treatment also induces cholesterol accumulation37. We spec-
ulated that SERMs may act in the same way as U18666a by inducing accumulation of sphingosine and cholesterol. 

Figure 2. Equal dosages of SERMs inhibit Ebola pseudovirion entry and induce cholesterol accumulation. 
(a) Dose-response inhibition of Ebola entry for tamoxifen, clomiphene and U18666a. Data are expressed as the 
means ±  SEM (n =  3). (b) Dose-response cholesterol accumulation for tamoxifen, clomiphene and U18666a. 
(b) Time-response cholesterol accumulation for tamoxifen, clomiphene and U18666a. Black arrows indicate 
examples of cholesterol accumulation. (d,e) The quantification of cholesterol accumulation stained with filipin. 
Data are expressed as the means ±  SEM (n ≥  4). Significant differences versus control group (0 μ M or 0 h) are 
presented by asterisks (*), *P <  0.05, **P <  0.01, ***P <  0.001, ns means no significant.
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To detect the effect of SERMs on sphingosine storage, we carried out the liquid chromatography–tandem mass 
spectrometry (LC-MS/MS). Surprisingly, both U18666a and SERMs significantly decreased the sphingosine of 
HepG2 and Hela cell lines after 1 h treatment (Fig. 3, Supplementary Fig. S5).

SERMs upregulate the endolysosomal calcium levels. It has been reported that the sphingosine 
could regulate the levels of endolysosomal calcium37, and we demonstrated that SERMs could decrease sphin-
gosine in this study. To establish a correlation between SERMs and endolysosomal calcium, we imaged Gly-Phe 
β -naphthylamide (GPN)-sensitive (endolysosomal) calcium release to detect the effect of SERMs on endolys-
osomal calcium levels. The results demonstrated that both SERMs and U18666a significantly up-regulated the 
calcium release from the GPN-sensitive endolysosomal calcium store after 1 h treatment (Fig. 4a–c).

To determine whether endolysosomal calcium is involved in the mechanism of Ebola entry inhibition, we 
treated HepG2 cell line with a high-affinity Rhod-dextran to chelate intraluminal calcium, and infected the cells 
with Ebola, WSN, or VSV pseudovirions. Interestingly, chelation of endolysosomal calcium significantly and 
specifically inhibited the entry of Ebola, while no inhibitory effects were observed for the VSV or WSN pseudo-
virions (Fig. 5a). Chelation did not inhibit the internalization of Ebola VLP to the TPC2+  lysosome (Fig. 5c). 
Moreover, chelation of endolysosomal calcium also induced the cholesterol accumulation (Fig. 5b).

Discussion
SERMs were identified as new and specific inhibitors for Ebola infection from a screen of FDA approved 
drugs3,4,6,7; however, the definite mechanism by which the SERMs inhibit the infection of Ebola is still uncertain. 
Because the possibilities of the disturbed acidification, cathepsin activity, or internalization of Ebola have been 
excluded previously4, we attempted to ascertain the relationship between the inhibition of Ebola infection and 

Figure 3. SERMs reduce the cellular sphingosine. (a) Standard curves for quantification of Sph (0.1–100 ng/mL) 
with C17-Sph (10 ng/mL) as the internal standard. (b) Measurement of changes in intracellular levels of Sph in 
HepG2 cells. Cells were treated with 10 μ M tamoxifen, clomiphene or U18666a for 1 h, then lipids were extracted 
and the levels of Sph were analyzed. Data are expressed as the means ±  SEM (n =  3). Significant differences versus 
control group are presented by asterisks (*), ***P <  0.001.
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the adverse effect of SERMs. In this study, our results indicated that both tamoxifen and clomiphene specifically 
inhibit the release of Ebola from TPC2+  lysosome, and this inhibition is independent of the estrogen receptor 
pathway.

Entry of Ebola virus into the cells, which is mainly mediated by its sole glycoprotein (GP)29,30, is initiated by the 
binding of Ebola GP to C-type lectins and the viral envelope phosphatidylserine to phosphatidylserine receptors38.  
Ebola virion is thought to be internalized into endolysosome primarily through micropinocytosis39–41,  
meanwhile the heavily glycosylated mucin-like domain and glycan cap of GP1 is removed by the low 
pH-dependent Cathepsins L and B, resulting in a 17- to 19-kDa GP142,43. Proteolytic processing of GP expose 
the GP1 receptor binding domain (RBD), which interact with the NPC1 domain C within the endolysosome44,45. 
This interaction between GP1 and NPC1 domain C and low pH conditions are essential for subsequent mem-
brane fusion15,34,46. However, whether there is other membrane fusion trigger factor remains unclear. Recently, 
it has been proven that TPC2 plays a key role in Ebola virus infection and the Ebola virus enters cells through 
the endolysosome that contain both NPC1 and TPC247,48. Although the definite role of TPC2 is uncertain, as a 
calcium channel, it may involve the movement of endosomes containing Ebola virus or the membrane fusion.

Previous results had demonstrated that NPC1 mediates the entry of Ebola, and some small molecular inhibitors 
block the infection of Ebola by disturbing the interactions between NPC1 domain C and Ebola primed GP9. Thus, 
we first speculated that the CADs with selective anti-Ebola activity may interact with NPC1 to disturb the interac-
tion between NPC1 domain C and Ebola primed GP. However, we did not detect any interactions of tamoxifen/
clomiphene/U18666a with NPC1 domains A or C. In accordance with our results, another group also showed that 
clomiphene and U18666a do not disturb the interaction of NPC1 domain C and Ebola primed GP3. Recently, a study 

Figure 4. SERMs upregulate the endolysosomal calcium levels. (a) Representative images of the 
endolysosomal calcium release of HepG2 detected by Fluo8-AM calcium indicator at 1 s, 60 s, 90 s, 330 s,  
390 s, and 420 s after incubation of 10 μ M tamoxifen, clomiphene or U18666a for 1 h. (b) The calcium release 
of HepG2 loaded with 1 μ M TG at 60 s for 30 s and 200 μ M GPN at 330 s for 60 s. HepG2 cells were pre-treated 
with 10 μ M tamoxifen, clomiphene or U18666a for 1 h. (c) The quantification of calcium release induced by 
200 μ M GPN. Data are expressed as the means ±  SEM (n >  20). Significant differences versus control group are 
presented by asterisks (*), ***P <  0.001.
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Figure 5. Chelation of endolysosomal calcium specifically inhibits the entry of Ebola pseudovirion.  
(a) Effects of endolysosomal calcium specific chelator on Ebola/WSN/VSV pseudovirions entry. HepG2 cells 
were pretreated with used 0.25 mg/ml calcium high-affinity Rhod-dextran for 1 h, and infected by Ebola/WSN/
VSV pseudovirion with compounds for 24 h, then was lysed and to carry out the luciferase assay. NH4Cl serves 
as a negative control. (b) Representative images of co-location of VLPs (red, marked by mCheery-VP40) with 
TPC2 (green, marked with EGFP) and LAMP1 (blue, marked with BFP) from 0.25 mg/ml calcium high-affinity 
Rhod-dextran treated HepG2. White arrows indicate examples of colocalization. (c) Representative images of 
cholesterol accumulation in HepG2 induced by treatment of 0.25 mg/ml calcium high-affinity Rhod-dextran 
for 24 h. Black arrows indicate examples of cholesterol accumulation. Data are expressed as the means ±  SEM 
(n =  3). Significant differences versus control group are presented by asterisks (*), **P <  0.01, ns means no 
significant.



www.nature.com/scientificreports/

8Scientific RepoRts | 7:41226 | DOI: 10.1038/srep41226

demonstrated that U18666a interacts with the NPC1 sterol-sensing domain (SSD) to inhibit NPC1 function and 
cholesterol transport; however, the authors emphasized that the inhibition of Ebola requires 100-fold higher concen-
trations of U18666A. They therefore excluded the possibility that U18666a interacts with the SSD of NPC1 to inhibit 
the Ebola entry49. Thus, these data demonstrate that NPC1 is not the target of CADs during Ebola entry inhibition.

Until now, approximately 80 FDA approved drugs have been shown to have selective anti-Ebola activities, 
and a structural analysis revealed that 45 of the 80 drugs are CADs (Supplementary Table S1). The majority 
of these CADs having selective anti-Ebola activity have the similar structural properties (pKa >  8, logP >  3) 
(Supplementary Fig. S6a). Based on their structural properties, most CADs are protonated, trapped, and finally 
concentrated in the acid endolysosome compartment27. Due to the liposolubility of CADs, they insert into the 
lipid bilayer of endolysosome and disturb the metabolism of lipids and the transport of several components, 
leading to the DIP, cholesterol accumulation, and/or functional inhibition of ASM (Supplementary Fig. S6b). 
Moreover, most CADs induce their incidental biological activities at micromolar concentrations, which match the 
concentrations of inhibition Ebola infection by CADs. Thus, it is possible that CADs inhibit Ebola entry through 
their incidental biological activities. A filipin staining and Ebola pseudovirion entry assay demonstrated that 
SERMs and U18666a induce the cholesterol accumulation and inhibit the Ebola entry at the same concentration 
(approximately 1 μ M); however, the cholesterol accumulation (8 h) appeared after Ebola entry into the cytoplasm 
(2 h), implying that something changed within 2 h after the SERMs treatment to mediate the cholesterol accumu-
lation and the inhibition of Ebola entry.

In contrast with this previous report, our data demonstrated that SERMs and U18666a decrease the sphin-
gosine within 1 h. This discrepancy might be due to the different cell types and/or the different treatment dosages of 
U18666a used. In agreement with our results, much research has demonstrated that CADs can induce the detach-
ment of ASM protein from the inner endolysosome membranes leading to inactivation. Several CADs have been 
identified as functional inhibitor of ASM27, and Elojeimy et al. have demonstrated that some CADs also inhibit the 
activity of AC50. Due to the metabolic pathways of sphingomyelin, the inhibition of ASM and AC both decrease the 
cellular sphingosine. It has been reported that Ebola infection requires ASM activity51, so CADs could inhibit Ebola 
entry through the inhibition of ASM activity. However, how ASM is involved in Ebola infection is still unknown; 
future studies are needed to better understand the molecular mechanism of ASM and Ebola entry.

It is well known that intracellular calcium signals involve in vesicular fusion, but whether the fusion of the Ebola 
and endolysosomal membranes also requires a calcium signal is still unclear. In vitro, the conformational change of 
membrane-bound Ebola fusion peptide, which is required for the vesicle fusion, is dependent on calcium concentra-
tions52. Moreover, the proteins in endolysosomal calcium channels, TPC1 and TPC2, recently have been identified 
as key players in Ebola entry. The inhibitors for TPCs can block nicotinic acid adenine dinucleotide phosphate 
(NAADP)-stimulated calcium outflow and Ebola infection47. The sphingosine treatment could induce the dereg-
ulation of endolysosomal calcium53, and a subsequent study demonstrated that TPC1 and TPC2 (mainly TPC1) 
mediate the endolysosomal calcium response to sphingosine54. Consistent with these results, we proved that SERMs 
and U18666a decrease the sphingosine and increase the endolysosomal calcium. In addition, chelating luminal 
endocytic calcium with high-affinity Rhod-dextran also blocks Ebola infection, but not the internalization of Ebola 
VLP to TPC2+  lysosome. Taken together, these results demonstrated that the endolysosomal calcium is involved in 
Ebola infection and is also possible involved in the Ebola-endolysosome membrane fusion event.

Recently, Zhao et al. reported that toremifene can bind to and destabilize the Ebola GP trimer, triggering 
premature release of GP2, thereby preventing fusion between the viral and endolysosomal membranes16. This 
study revealed the mechanism of Ebola inhibition by toremifene, however, binding and destabilize GP may not 
play the major role in other situation. Firstly, the author informed that residues lining the binding site are highly 
conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs, 
but it has been proven that toremifene and clomiphene (even other CADs) could effectively inhibit the infection 
of MARV4,6. Secondly, compared to the ethyl chlorine of toremifene, the corresponding ethyl group in tamoxifen 
and chlorine in clomiphene make weaker interations with the binding sites in Ebola GP16, and the obvious struc-
tural differences of raloxifene (and other CADs with anti-Ebola activities) with toremifene make the interactions 
more weaker (Supplementary Fig. S1). However, all these drugs can effectively inhibit the Ebola infection3,4,6,7. 
Thirdly, many of CADs with anti-Ebola activities inhibit Ebola and/or MARV infection at similar kinetics (inhi-
bition >  90% at 10 μ M)3,4,6,7, which is hard explained by interaction with GP. Therefore, the binding with GP plays 
a major role in Ebola inhibition by toremifene, but may not in the Ebola or MARV inhibition by toremifene, 
tamoxifen, clomiphene, raloxifene or U18666a (even other CADs with anti-Ebola activities).

In this study, we demonstrated that SERMs inhibit Ebola pseudovion entry and induce cholesterol accumu-
lation at equal dosages, and they can reduce the cellular sphingosine and upregulate the endolysosomal calcium 
levels which is regulated by sphingosine through TPC1 and TPC2 54, moreover, chelation of endolysosomal cal-
cium significantly and specifically inhibited the entry of Ebola. Based on previous studies and our results, we pro-
posed a hypothesis of the Ebola infection (Fig. 6). Under normal conditions, Ebola is internalized by the NPC1+ 
/TPC2+  endolysosome55, in which the primed GP interacts with NPC1 domain C34. The ASM and AC in the 
endolysosome then hydrolyze sphingomyelin to sphingosine27. The elevated sphingosine induces endolysosomal 
calcium outflow through TPC1 and TPC254. Both the local calcium flux and the interaction of primed GP with 
NPC1 domain C induce conformational changes in the Ebola fusion peptide, triggering the membrane fusion 
during the Ebola infection34. When treated with CADs that have selective anti-Ebola activities, including SERMs 
and U18666a, the CADs are protonated and trapped inside the acidic endolysosome27. Due to their structural 
properties, these concentrated CADs induce the detachment of the ASM protein from membranes, which inacti-
vates the ASM and in turn leads to a decrease in sphingosine27. Without sufficient sphingosine, the endolysosomal 
calcium outflow mediated by TPC1 and TPC2 are blocked, leading the endolysosomal calcium accumulation. 
Without the calcium flux, there is no conformational change of the Ebola fusion peptide. Thus, there is neither 
membrane fusion nor Ebola infection.
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Materials and Methods
Reagents. 17β -Estradiol (E2), ICI 182,780 (ICI; an ER antagonist), tamoxifen, clomiphene citrate, U18666A, 
and filipin were purchased from Sigma-Aldrich (Sigma, US). D-erythro-sphingosine (Sph) and C17-d-erythro-
sphingosine (C17-Sph) were purchased from Avanti Polar Lipids (Alabastar, US). High-affinity (with the strong 
calcium buffering) Rhod-dextran was purchased from Thermo Fisher (Life technology, US). DMSO (Sigma, US) 
was used as solvent for tamoxifen and clomiphene citrate, PBS was used for U18666a and high-affinity Rhod-
dextran, and methanol (Sigma, US) was used for Sph and C17-Sph.

Cell and plasmids. The human hepatoma cell line HepG2, Hela cervical carcinoma cell line and the human 
embryonic kidney (HEK) 293 T cell line were obtained from the Cell Resource Center, Peking Union Medical 
College (licensed from ATCC). HepG2 was maintained in Eagle’s minimum essential medium (Gibco Invitrogen, 
US), Hela and 293 T was maintained in Dulbecco’s modified Eagle’s medium high glucose (DMEM-HG; Gibco 
Invitrogen, US) supplemented with 10% FBS (Gibco Invitrogen, US) and 100 U/ml penicillin (Sigma, US) and 
100 μ g/ml streptomycin (sigma, US). The cells were cultured at 37 °C in a humidified atmosphere of 5% CO2.

The Ebola (Gueckedou strain) GP, Ebola VP40, VSV GP, WSN HA/NA and pNL4-3-Luc-R−E− vector have 
been generated as described previously56,57. We deleted the mucin (313–463aa) of Ebola GP by overlap-PCR to 
reduce the cytotoxicity of Ebola GP. The TPC2-EGFP and LAMP1-BFP expression vector were constructed by 
inserting TPC2 and LAMP1 to pEGFP-N1 and pBFP-N1 vectors.

Expression and purifications of the A and C domains of NPC1. The NPC1 domains A and C were 
constructed, expressed and purified as previously described34,35. Briefly, Sf9 cells infected with NPC1 domain A 
(23–252, N70Q/N122Q/N185Q) baculovirus were used to infect Hi-5 cells. After incubation for 96 h at 27 °C, 
cells were pelleted by centrifugation, and the medium was concentrated by tangential flow filtration. The concen-
trated medium was applied to a Ni-NTA column. Fractions containing NPC1-A were pooled, concentrated. The 
concentrated NPC1-A was then applied to a Superdex 200 gel filtration column.

Figure 6. Proposed hypothesis of Ebola entry inhibition by CADs. Under normal conditions, Ebola is 
internalized by the NPC1+ /TPC2+  endolysosome, in which the primed GP interacts with NPC1 domain C. 
The ASM and AC in the endolysosome then hydrolyze sphingomyelin to sphingosine. The elevated sphingosine 
induces endolysosomal calcium outflow through TPC1 and TPC2. Both the local calcium flux and the 
interaction of primed GP with NPC1 domain C induce conformational changes in the Ebola fusion peptide, 
triggering the membrane fusion during the Ebola infection. When treated with CADs that have selective 
anti-Ebola activities, including SERMs and U18666a, the CADs are protonated and trapped inside the acidic 
endolysosome. Due to their structural properties, these concentrated CADs induce the detachment of the ASM 
protein from membranes, which inactivates the ASM and in turn leads to a decrease in sphingosine. Without 
sufficient sphingosine, the endolysosome calcium outflow mediated by TPC1 and TPC2 are blocked, leading the 
endolysosome calcium accumulation. Without the calcium flux, there is no conformational change of the Ebola 
fusion peptide. Thus, there is neither membrane fusion nor Ebola infection.
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The cDNA encoding NPC1 domain C (374–620) was cloned into pET21a vector. The NPC1 domain C was 
expressed in Escherichia coli strain BL21 (DE3) as an inclusion body and then refolded in vitro using the method 
previously described58. The refolded NPC1-C was then concentrated and purified by gel filtration on a HiLoad 
16/60 Superdex 75 PG column (GE Healthcare).

Isothermal Titration Calorimetry. All ITC experiments were carried out at 25 °C on an iTC200 instru-
ment (MicroCal, US). The sample cell contained NPC1 domain A or C (30 μ M), and tamoxifen/clomiphene/
U18666a (300 μ M of each compound) was added in 20 injections with 2 μ L of each. Data were processed using 
Origin software (MicroCal, US). Each experiment was duplicated three times.

Microscale Thermophoresis. Affinity measurements using MST were carried out with a Monolith NT.115 
instrument (NanoTemper Technologies, Germany). NPC1 domain A was labeled using the NanoTemper NHS 
NT-647 labeling kit (NanoTemper Technologies, Germany). The labeling reaction was performed according to the 
manufacturer’s instructions and applying a final concentration of 20 μ M protein with a 3x molar excess of dye at 
RT for 30 min in the dark. Free dye was eliminated using the supplied dye-removal columns equilibrated with the 
NPC1 domain A storage buffer. Tamoxifen, clomiphene or U18666a was diluted in the NPC1 domain A storage 
buffer creating a dilution series of 12 1:2 dilutions (100 μ M to 0.56 nM for tamoxifen and clomiphene; and 10 μ M  
to 0.06 nM for U18666a). For the thermophoresis experiment, each ligand dilution was mixed 1:1 with labeled 
NPC1 domain A, incubated for 2 min at RT, before applying samples to Monolith NT Standard Treated Capillaries 
(NanoTemper Technologies, Germany). Thermophoresis was measured at RT with 20% LED power and 20%/40% 
MST IR-laser power. Data from at least three independently performed experiments were analyzed (NT Analysis 
software version 1.5.41, NanoTemper Technologies, Germany) using the signal from Thermophoresis+  T-Jump. 
Each experiment was duplicated three times.

Ebola pseudovirion and VLP preparation. For Ebola entry and trafficking assays, Ebola pseudo-
virion and VLPs were prepared by transfecting HEK 293 T cells using polyethyle-nimine with four plasmids: 
codon-optimized Δ mucin (313–463aa) Ebola (Gueckedou strain) GP and HIV based pNL4-3-Luc-R−E− for 
Ebola pseudovirion. Ebola GP, Ebola VP40 and Ebola VP40 with mCherry fused to its N terminus for Ebola VLP. 
The plasmids were transfected at a ratio of 1:1 and 1:1:1, respectively. VSV and WSN pseudovirions were gener-
ated in an identical fashion, but with the substitution of a plasmid encoding VSV GP or WSN HA/NA. Culture 
supernatant at 24 hour posttransfection (hpt) was collected and replaced with the fresh media. A second harvest 
was conducted at 48 hpt. All harvests were pooled and cleared of cell debris by two sequential centrifugations at 
1070 g for 10 min at 4 °C. VLPs in the cleared supernatant were then pelleted through 20% sucrose [in 20 mM 
Hepes, 130 mM NaCl, pH 7.4 (HNB)] at 112,398 g (25,000 rpm) in an SW28 rotor for 2 hours at 4 °C. Pelleted 
VLPs were then resuspended overnight in 10% sucrose (in HNB; 1/100 of original volume of culture medium 
collected), aliquoted, and stored at − 80 °C.

Ebola entry assay. Approximately 24 h before the experiment, 5 ×  104 HepG2 cells were plated in each well 
of a 96-well dish. Cells were then pretreated for 30 min with the indicated concentration of inhibitor or with 
DMSO vehicle in medium without FBS. These drug concentrations were maintained in all subsequent steps of the 
experiment until lysis. After the preincubation period, the cells were infected with 50 μ L of Ebola pseudovirion for 
48 h and then lysed for the luciferase assay according to the manufacturer’s instructions (Galen, China).

Ebola trafficking assay. HepG2 cells were transfected with TPC2-EGFP and LAMP1-BFP plasmids using 
Lipofectamine 3000 (Invitrogen, US). At 24 hpt, HepG2 cells were pretreated with DMSO, 10 μ M tamoxifen, clo-
miphene, or U18666a for 1 h. HepG2 cells were then incubated with Ebola VLP for 2 h, and then fixed. The cells 
were mounted and then imaged by the Nikon A1 Confocal Microscope System (Nikon, Japan).

Filipin staining. Cholesterol accumulation was monitored by staining HepG2 cells with filipin. The day 
before an experiment, 50,000 cells were plated on glass coverslips in a 24-well plate. The next day, cells were 
treated with inhibitors at the indicated concentrations for 24 h. After fixation with 4% paraformaldehyde, cells 
were washed twice with PBS, incubated in 50 mg/mL filipin (Sigma, US) in PBS for 1 h, and washed 3 times with 
PBS, after which the coverslips were mounted and imaged on a Zeiss Axio Observer fluorescence microscope 
(Carl Zeiss, Germany). Representative images were inverted for clarity and are shown with uniform adjustments 
to brightness and contrast across all images.

Sphingosine measurement. We performed sphingosine measurements using LC–MS/MS (Thermo, US) 
as previously described59. Briefly, cells were washed twice with ice-cold PBS, then cell pellets containing approx-
imately 1∼ 10 ×  106 cells were harvested by scraping cells with ice-cold PBS and transferred to pre-chilled 1.5 mL 
new eppendorf tube on ice. The suspended cells were centrifuged at 1000 rpm for 5 min at 4 °C to remove PBS, 
then cell pellets were resuspended in 100 μ L distilled water for further sample preparation. Cell pellets were stored 
at − 80 °C until use. 25 μ L of HepG2 cell suspension, 10 μ L of internal standards (10 ng/mL for C17-Sph) and 65 μ L 
of methanol were added into a 1.5 mL eppendorf tube. The mixture was vortex-mixed for 10 s followed by centri-
fuged at 12,000 rpm for 5 min, then supernatant was transferred to clean glass vials, and 10 μ L of the supernatant 
was injected into the LC–MS/MS system for analysis. The autosampler was set at 4 °C.

Endolysosomal calcium assay. The endolysosome calcium assay was carried out as previously described 
with some modifications53. HepG2 cells were pre-incubated with 10 μ M tamoxifen, clomiphene or U18666a for 
1 h, and loaded with 5 μ M membrane-permeable calcium indicators Fluo8-AM (Abcam, US) for 5 mins at room 
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temperature, then placed into calcium-free buffer for confocal live imaging, repeating two different ROIs for each 
treatment. The 1 μ M thapsigargin (TG, Sigma, US) was loaded at 60 s for 30 s to release the endoplasmic reticulum 
calcium, and 200 μ M Gly-Phe β -naphthylamide (GPN, Sigma, US) was loaded at 330 s for 60 s to release the acidic 
compartment (endolysosomal) calcium. The GPN induced calcium release was quantified with Image J software 
version 1.42 (Image processing and analysis in Java, NIH, Bethesda, MD; http://rsb.info.nih.gov/ij/download.html).

Statistical analysis. The data were analyzed for statistical significance with the SPSS 12.0.1 Package (SPSS 
Inc., US). Data for all groups were first tested for normality with the Shapiro-Wilk test. If the group’s data were 
normally distributed, they were compared using a one-way analysis of variance. P values <  0.05 were regarded as 
statistically significant. All values are presented as the means ±  SEM (standard error of mean). All of the graphs 
were generated with GraphPad Prism 5.0 (GraphPad Software Inc., US).

References
1. Feldmann, H. & Geisbert, T. W. Ebola haemorrhagic fever. Lancet 377, 849–862, doi: 10.1016/S0140-6736(10)60667-8 (2011).
2. Hoenen, T., Groseth, A., Falzarano, D. & Feldmann, H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends in 

molecular medicine 12, 206–215, doi: 10.1016/j.molmed.2006.03.006 (2006).
3. Shoemaker, C. J. et al. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and 

infection. PloS one 8, e56265, doi: 10.1371/journal.pone.0056265 (2013).
4. Johansen, L. M. et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Science translational 

medicine 5, 190ra179, doi: 10.1126/scitranslmed.3005471 (2013).
5. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53, doi: 10.1038/

nature13777 (2014).
6. Johansen, L. M. et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Science 

translational medicine 7, 290ra289, doi: 10.1126/scitranslmed.aaa5597 (2015).
7. Kouznetsova, J. et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved 

drugs. Emerging microbes & infections 3, e84, doi: 10.1038/emi.2014.88 (2014).
8. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343, doi: 10.1038/

nature10348 (2011).
9. Cote, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348,  

doi: 10.1038/nature10380 (2011).
10. Haines, K. M., Vande Burgt, N. H., Francica, J. R., Kaletsky, R. L. & Bates, P. Chinese hamster ovary cell lines selected for resistance 

to ebolavirus glycoprotein mediated infection are defective for NPC1 expression. Virology 432, 20–28, doi: 10.1016/j.
virol.2012.05.018 (2012).

11. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. The EMBO journal 31, 
1947–1960, doi: 10.1038/emboj.2012.53 (2012).

12. Simmons, J. A. et al. Ebolavirus Glycoprotein Directs Fusion through NPC1+  Endolysosomes. Journal of virology 90, 605–610,  
doi: 10.1128/JVI.01828-15 (2015).

13. CDC. 2014 Ebola Outbreak in West Africa - Case Counts, http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.
html (2016).

14. Sullivan, N. J., Martin, J. E., Graham, B. S. & Nabel, G. J. Correlates of protective immunity for Ebola vaccines: implications for 
regulatory approval by the animal rule. Nature reviews. Microbiology 7, 393–400, doi: 10.1038/nrmicro2129 (2009).

15. Brecher, M. et al. Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant 
conformational change. Journal of virology 86, 364–372, doi: 10.1128/JVI.05708-11 (2012).

16. Zhao, Y. et al. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535, 169–172, doi: 10.1038/
nature18615 (2016).

17. Halliwell, W. H. Cationic amphiphilic drug-induced phospholipidosis. Toxicol Pathol 25, 53–60 (1997).
18. Nioi, P., Perry, B. K., Wang, E. J., Gu, Y. Z. & Snyder, R. D. In vitro detection of drug-induced phospholipidosis using gene expression 

and fluorescent phospholipid based methodologies. Toxicological sciences: an official journal of the Society of Toxicology 99, 162–173, 
doi: 10.1093/toxsci/kfm157 (2007).

19. Lullmann, H., Lullmann-Rauch, R. & Wassermann, O. Lipidosis induced by amphiphilic cationic drugs. Biochemical pharmacology 
27, 1103–1108 (1978).

20. Anderson, N. & Borlak, J. Drug-induced phospholipidosis. FEBS letters 580, 5533–5540, doi: 10.1016/j.febslet.2006.08.061 (2006).
21. Sawada, H., Takami, K. & Asahi, S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction 

mechanism and establishment of a novel in vitro screening system. Toxicological sciences: an official journal of the Society of 
Toxicology 83, 282–292, doi: 10.1093/toxsci/kfh264 (2005).

22. Shim, J. S. et al. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking 
rather than estrogen receptor antagonism. Cancer letters 362, 106–115, doi: 10.1016/j.canlet.2015.03.022 (2015).

23. Schumacher, J. D. & Guo, G. L. Mechanistic review of drug-induced steatohepatitis. Toxicology and applied pharmacology 289, 
40–47, doi: 10.1016/j.taap.2015.08.022 (2015).

24. Amacher, D. E. & Chalasani, N. Drug-induced hepatic steatosis. Seminars in liver disease 34, 205–214, doi: 10.1055/s-0034-1375960 (2014).
25. Akhondi-Meybodi, M., Mortazavy-Zadah, M. R., Hashemian, Z. & Moaiedi, M. Incidence and risk factors for non-alcoholic 

steatohepatitis in females treated with tamoxifen for breast cancer. Arab journal of gastroenterology: the official publication of the 
Pan-Arab Association of Gastroenterology 12, 34–36, doi: 10.1016/j.ajg.2011.01.003 (2011).

26. Saphner, T., Triest-Robertson, S., Li, H. & Holzman, P. The association of nonalcoholic steatohepatitis and tamoxifen in patients with 
breast cancer. Cancer 115, 3189–3195, doi: 10.1002/cncr.24374 (2009).

27. Kornhuber, J. et al. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad 
clinical applications. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and 
pharmacology 26, 9–20, doi: 10.1159/000315101 (2010).

28. Kornhuber, J. et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation 
model. Journal of medicinal chemistry 51, 219–237, doi: 10.1021/jm070524a (2008).

29. Lee, J. E. & Saphire, E. O. Ebolavirus glycoprotein structure and mechanism of entry. Future virology 4, 621–635, doi: 10.2217/
fvl.09.56 (2009).

30. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182,  
doi: 10.1038/nature07082 (2008).

31. Yermolina, M. V., Wang, J., Caffrey, M., Rong, L. L. & Wardrop, D. J. Discovery, synthesis, and biological evaluation of a novel group 
of selective inhibitors of filoviral entry. Journal of medicinal chemistry 54, 765–781, doi: 10.1021/jm1008715 (2011).

32. Basu, A. et al. Identification of a small-molecule entry inhibitor for filoviruses. Journal of virology 85, 3106–3119, doi: 10.1128/
JVI.01456-10 (2011).

http://rsb.info.nih.gov/ij/download.html
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html


www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:41226 | DOI: 10.1038/srep41226

33. Wojtanik, K. M. & Liscum, L. The transport of low density lipoprotein-derived cholesterol to the plasma membrane is defective in 
NPC1 cells. J Biol Chem 278, 14850–14856, doi: 10.1074/jbc.M300488200 (2003).

34. Wang, H. et al. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164, 258–268, doi: 10.1016/j.
cell.2015.12.044 (2016).

35. Kwon, H. J. et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 
137, 1213–1224, doi: 10.1016/j.cell.2009.03.049 (2009).

36. Mingo, R. M. et al. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that 
transport to NPC1+  endolysosomes is a rate-defining step. Journal of virology 89, 2931–2943, doi: 10.1128/JVI.03398-14 (2015).

37. Lloyd-Evans, Emyr, Morgan, Anthony J., He, Xingxuan, Smith, David A. & Elliot-Smith, Elena, Sillence, Daniel J., Churchill, Grant 
C. & Schuchman, Edward H., Galione, Antony & Platt, Frances M. Niemann-Pick disease type C1 is a sphingosine storage disease 
that causes deregulation of lysosomal calcium. Nature medicine 14, 10 (2008).

38. Moller-Tank, S. & Maury, W. Ebola virus entry: a curious and complex series of events. PLoS pathogens 11, e1004731, doi: 10.1371/
journal.ppat.1004731 (2015).

39. Mulherkar, N., Raaben, M., de la Torre, J. C., Whelan, S. P. & Chandran, K. The Ebola virus glycoprotein mediates entry via a non-
classical dynamin-dependent macropinocytic pathway. Virology 419, 72–83, doi: 10.1016/j.virol.2011.08.009 (2011).

40. Nanbo, A. et al. Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS 
pathogens 6, doi: 10.1371/journal.ppat.1001121 (2010).

41. Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-
Like Mechanism and Subsequent Trafficking through Early and Late Endosomes. PLoS pathogens 6, doi: 10.1371/journal.
ppat.1001110 (2010).

42. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein 
is necessary for infection. Science 308, 1643–1645, doi: 10.1126/science.1110656 (2005).

43. Schornberg, K. et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. Journal of virology 80, 
4174–4178, doi: 10.1128/Jvi.80.8.4174-4178.2006 (2006).

44. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. Embo J 31, 1947–1960, 
doi: 10.1038/emboj.2012.53 (2012).

45. Wang, H. et al. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164, 258–268, doi: 10.1016/j.
cell.2015.12.044 (2016).

46. Gregory, S. M. et al. Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. P Natl Acad Sci USA 
108, 11211–11216, doi: 10.1073/pnas.1104760108 (2011).

47. Sakurai, Y. et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 
347, 995–998, doi: 10.1126/science.1258758 (2015).

48. Simmons, J. A. et al. Ebolavirus Glycoprotein Directs Fusion through NPC1(+ ) Endolysosomes. Journal of virology 90, 605–610, 
doi: 10.1128/Jvi.01828-15 (2016).

49. Lu, F. et al. Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. eLife 
4, doi: 10.7554/eLife.12177 (2015).

50. Elojeimy, S. et al. New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS letters 580, 4751–4756,  
doi: 10.1016/j.febslet.2006.07.071 (2006).

51. Miller, M. E., Adhikary, S., Kolokoltsov, A. A. & Davey, R. A. Ebolavirus requires acid sphingomyelinase activity and plasma 
membrane sphingomyelin for infection. Journal of virology 86, 7473–7483, doi: 10.1128/JVI.00136-12 (2012).

52. Suarez, T. et al. Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion. FEBS 
letters 535, 23–28 (2003).

53. Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. 
Nature Medicine 14, 1247–1255, doi: 10.1038/nm.1876 (2008).

54. Hoglinger, D. et al. Intracellular sphingosine releases calcium from lysosomes. eLife 4, doi: 10.7554/eLife.10616 (2015).
55. Simmons, J. A. et al. Ebolavirus Glycoprotein Directs Fusion through NPC1+  Endolysosomes. Journal of virology 90, 605–610,  

doi: 10.1128/JVI.01828-15 (2016).
56. Chaipan, C. et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. Journal of virology 83, 3200–3211, doi: 10.1128/

JVI.02205-08 (2009).
57. Yonezawa, A., Cavrois, M. & Greene, W. C. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped 

human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor 
alpha. Journal of virology 79, 918–926, doi: 10.1128/JVI.79.2.918-926.2005 (2005).

58. Shi, Y., Qi, J. X., Iwamoto, A. & Gao, G. F. Plasticity of human CD8 alpha alpha binding to peptide-HLA-A*2402. Mol Immunol 48, 
2198–2202, doi: 10.1016/j.molimm.2011.05.009 (2011).

59. Lan, T. et al. Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid 
chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 
879, 520–526, doi: 10.1016/j.jchromb.2011.01.015 (2011).

Acknowledgements
This work was supported by grants from the National Science and Technology Major Project (2013ZX10004608), 
Natural Science Foundation of China (NSFC31071316 and NSFC81261130024), National Science and Technology 
Major Project (2012AA020601), Ministry of Science/Technology (2009CB941701), State Key Laboratory of 
Agrobiotechnology grants (2015SKLAB6-13), and the CAU Scientific Fund (No. 2012YJ034).

Author Contributions
D.X.H., F.H.L., S.Y., G.G., Z.Z., T.D.X. and L.X.D. designed these experiments; F.H.L., D.X.H., W.Q.H., L.H.F. and 
W.H. did these experiments; D.X.H., F.H.L. and L.X.D. wrote the main manuscript text; F.H.L. prepared figures. 
All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Fan, H. et al. Selective inhibition of Ebola entry with selective estrogen receptor 
modulators by disrupting the endolysosomal calcium. Sci. Rep. 7, 41226; doi: 10.1038/srep41226 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://www.nature.com/srep


www.nature.com/scientificreports/

13Scientific RepoRts | 7:41226 | DOI: 10.1038/srep41226

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium
	Results
	SERMs selectively inhibit the entry of the Ebola pseudovirion, but not through the estrogen receptor pathway. 
	SERMs do not interact with NPC1 domain A or domain C. 
	Equal dosages of SERMs inhibit Ebola pseudovirion entry and induce cholesterol accumulation. 
	SERMs reduce the cellular sphingosine. 
	SERMs upregulate the endolysosomal calcium levels. 

	Discussion
	Materials and Methods
	Reagents. 
	Cell and plasmids. 
	Expression and purifications of the A and C domains of NPC1. 
	Isothermal Titration Calorimetry. 
	Microscale Thermophoresis. 
	Ebola pseudovirion and VLP preparation. 
	Ebola entry assay. 
	Ebola trafficking assay. 
	Filipin staining. 
	Sphingosine measurement. 
	Endolysosomal calcium assay. 
	Statistical analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  SERMs selectively inhibit the entry of Ebola pseudovirion, but not through the estrogen receptor pathway.
	Figure 2.  Equal dosages of SERMs inhibit Ebola pseudovirion entry and induce cholesterol accumulation.
	Figure 3.  SERMs reduce the cellular sphingosine.
	Figure 4.  SERMs upregulate the endolysosomal calcium levels.
	Figure 5.  Chelation of endolysosomal calcium specifically inhibits the entry of Ebola pseudovirion.
	Figure 6.  Proposed hypothesis of Ebola entry inhibition by CADs.



 
    
       
          application/pdf
          
             
                Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium
            
         
          
             
                srep ,  (2017). doi:10.1038/srep41226
            
         
          
             
                Hanlu Fan
                Xiaohong Du
                Jingyuan Zhang
                Han Zheng
                Xiaohui Lu
                Qihui Wu
                Haifeng Li
                Han Wang
                Yi Shi
                George Gao
                Zhuan Zhou
                Dun-Xian Tan
                Xiangdong Li
            
         
          doi:10.1038/srep41226
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep41226
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep41226
            
         
      
       
          
          
          
             
                doi:10.1038/srep41226
            
         
          
             
                srep ,  (2017). doi:10.1038/srep41226
            
         
          
          
      
       
       
          True
      
   




