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we develop an optimization method for the design of patient-specific FD devices that
maintain high levels of porosity.

Methods: An automated structure optimization method for FDs with helix-like wires
was developed by applying a combination of lattice Boltzmann fluid simulation and
simulated annealing procedure. Employing intra-aneurysmal average velocity as the
objective function, the proposed method tailored the wire structure of an FD to a
given vascular geometry by rearranging the starting phase of the helix wires.

Results: FD optimization was applied to two idealized (S and C) vascular models

and one realistic (R) model. Without altering the original device porosity of 80%, the
flow-reduction rates of optimized FDs were improved by 5, 2, and 28% for the S, C, and
R models, respectively. Furthermore, the aneurysmal flow patterns after optimization
exhibited marked alterations. We confirmed that the disruption of bundle of inflow is of
great help in blocking aneurysmal inflow. Axial displacement tests suggested that the
optimal FD implanted in the R model possesses good robustness to tolerate uncertain
axial positioning errors.

Conclusions: The optimization method developed in this study can be used to
identify the FD wire structure with the optimal flow-diversion efficiency. For a given
vascular geometry, custom-designed FD structure can maximally reduce the aneu-
rysmal inflow with its porosity maintained at a high level, thereby lowering the risk of
post-stenting stenosis. This method facilitates the study of patient-specific designs for
FD devices.

Keywords: Intracranial aneurysm, Flow diverter, Design optimization, Computational
fluid dynamics

Background

Flow diverter (FD) intervention has become increasingly attractive for the treatment of
wide-neck and fusiform intracranial aneurysms (IAs), which has been studied inten-
sively by many groups [1-4] in recent years. Meanwhile, clinical follow-ups revealed that
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ED recipients might incur post-stenting complications such as delayed aneurysm rup-
tures and post-stenting stenosis [5-7].

The conventional, commercially available FD devices such as Pipeline embolization
device (PED; Irvine, CA, USA) and SILK (Balt, Montmorency, France) are constructed
by homogeneous helix-like wires. The porosity of FD device is associated with post-
stenting stenosis as suggested by prior studies [8], since a high metal-to-arterial tissue
ratio resulted from low device porosity may pose the risk of vascular injury. Animal
experiments, on the other hand, have confirmed that a lower device porosity promotes
a complete thrombotic occlusion of an aneurysm [9, 10]. Therefore, simply modify-
ing FD wires by decreasing or increasing the porosity may result in an increased risk
of post-stenting stenosis or long-term thrombosis formation. To accelerate thrombotic
occlusion and avoid post-stenting stenosis, a possible solution may be the application
of patient-specifically tailored FDs with porosity maintained at a high level. Attempts of
introducing optimization to FD structures have been made to improve the flow-diver-
sion efficiency [11-13]. However, a practical optimization strategy that can be feasibly
applied to the conventional FDs has not yet been developed.

In this study, we demonstrate an automated optimization method on a conventional,
homogeneous, helix-like FD to adapt its wire structure to an assigned aneurysm. The
proposed optimization was designed to rearrange the starting phases of FD wires, so
that the original device porosity was kept to maintain the metal-to-arterial tissue ratio.
After the FD structure with the highest flow-diversion efficiency was identified, its
robust performance was then investigated by axial displacement test.

Methods

Figure 1 shows the scheme of our proposed optimization method, which includes vas-
cular model reconstruction, FD modeling, random modification, computational fluid
dynamic (CFD) simulation, and a simulated annealing (SA) procedure.

Vascular model
Aneurysmal local hemodynamics is sensitive to the morphological characteristics of the
parent artery. Thus, three vascular geometries were used to investigate the proposed

optimization method under various hemodynamic conditions.

Idealized aneurysm geometry

Two idealized aneurysm models—the Straight (S, Fig. 1a) model and the Curved (C,
Fig. 1a) model—were constructed; for both models, the aneurysmal diameter (D) was
4.8 mm, the neck diameter (N) was 2.8 mm, and the arterial diameter (d;) was 3.5 mm.
The curvature radius () of the C model was 6.0 mm [14].

Realistic aneurysm geometry

The 3D patient-specific geometry of a human internal carotid artery (ICA) with an aneu-
rysm was reconstructed (R model, Fig. 1a). The parent artery had an inlet diameter (d,)
of 3.8 mm [15].
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Fig. 1 The schematic of the proposed optimization procedure. AAV aneurysmal average velocity

FD model

Commercially available, braided FD devices are usually made of helix-like woven wires
with uniform structural arrangements. In this study, the FD was assumed to comprise
eight helices (four clockwise and four counterclockwise); wire thickness and width were
both 50 um. Each helix trajectory of the deployed FD was individually described by the

following equations:

Clockwise :

x = [R+ r*sin(wy + 6,)] * cos (a)ﬁ)
y = [R+rxsin(wy + 0,)] * sin (a)ﬁ)

z =r%*cos (wy + 6,)

ey

Page 373 of 382



Zhang et al. BioMed Eng OnLine 2016, 15(Suppl 2):159 Page 374 of 382

x = [R+ 1% cos(wy + Oy)] * cos (a)ﬂ)
Counterclockwise : { y = [R + r * cos(wy + 0)] * sin (a),g) 2)
z = r*sin (wy + 0)

where r and R denote the radius and curvature radius of a helix, respectively; w, and wg
are parameters associated with the length and pitch of a helix, respectively; and 6, or 6,
indicates the starting phase of a helix. To imitate FD devices with uniform structures,
the starting phase conditions satisfied

6, =201 —1) - %and 3)

0 —2( —1> T
m=2(m=5) o @

where norm € (1, 2, 3, 4) indicates the sequence of either the four clockwise (1) or the
four counterclockwise (1) helical subsets.

The helix radius r varied with respect to the discrete points along the centerline of the
parent artery and was associated with the maximum inscribed sphere radius (MISR) cor-
responding to each point. The coordinates of discretized points and their corresponding
MISRs were measured using the open library vascular modeling toolkit VMTK v1.2 [16].
Given the above FD parameters, the FD porosity can be calculated according to a previ-
ously defined equation [17]

Stotal =S
Porosity (%) = —wal —2metal 19 5)

Stotal
where S,,,; and S,,,,,; denote the surface area of the FD’s generalized cylinder and the
FD’s metal wires, respectively. The device porosity was fixed at 80% in this study.

Random modification

Random modification was designed to modify an FD structure while maintaining its
original device porosity. During each stage of random modification, one of the eight hel-
ices was arbitrarily chosen, and a stochastic variable A8 € (—%, %) was then added to

the starting phase 0 (either 8, or 8,,) of the selected helix:
ecurrent = Gprevious + A6 (6)

In this manner, the modification resulted in the axial displacement of the arbitrar-
ily selected helix along the centerline of the parent artery, whereas the device porosity
remained unchanged (Fig. 1).

Hemodynamic simulation

The open source library Palabos (version 1.4) [18] based on lattice Boltzmann method
(LBM) was used as the CFD solver for its high flexibility and parallelism. LBM is a
mesoscopic approach which exhibits good agreement along with its similar numerical
stability to other CFD tools [19-21]. In LBM, fluid is described in terms of the density
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distribution f; (7, £) of idealized fluid particles moving and colliding on a regular lattice.
These collision-propagation dynamics can be written as

fi(r+ Atvi,t + At) = f; (r,t) + % (1 - f£), (7

where f* and 7 are the local equilibrium distribution and relaxation time, respectively
[22]. Because LBM uses a Cartesian mesh, manual computational grid generation was
avoided, allowing the optimization procedure to be entirely automated.

A previous study suggested that the peak value of hemodynamic parameters computed
for pulsatile flow matches those of the corresponding steady flow [23]. Therefore, we
performed steady flow simulation with standard D3Q19 lattice topology [22] in consid-
eration of hundreds of CFD simulation steps in the following optimization procedure.

The bounce-back rule was used to impose the no-slip boundary conditions as well as
to define FD wire structures. The spatial discretization (Ar) was set at 0.05 mm after sen-
sitivity tests, in which we found no obvious differences in the intra-aneurysmal average
velocity and flow patterns after doubling the lattice grid resolution. The numbers of fluid
cells for the S, C, and R models were 3.57 x 10 3.01 x 10°, and 4.06 x 10°, respectively.

The blood flow was assumed to be an incompressible Newtonian fluid. To reach the
same Reynolds number (Re) of 200, velocity was defined as parabolic profiles at inlets
of 0.23, 0.23, and 0.21 m/s for the S, C, and R models, respectively. A constant pressure
boundary was imposed at the outlets. The density and kinematic viscosity were assumed
to be constant at 1040 kg/m® and 4.0 x 107° m?/s, respectively. The kinetic viscosity of
the lattice (v, 5) was chosen as 0.012, giving a relaxation time 7 of (6v;g + 1)/2 = 0.536.
We assumed that the simulation had reached a convergent state when the change in the
average energy of fluid cells was less than 107° kg m?/s?.

Simulated annealing

To control the random modifications progressing towards the optimal solution, a SA
procedure (Fig. 1) was implemented to identify the FD structure with the lowest intra-
aneurysmal average velocity within a certain range of temperature drop [24, 25]. We
selected intra-aneurysmal average velocity as the objective function of SA because of its
possible correlation to thrombotic occlusion [26].

Optimization began with the homogeneous FD structure and was completed when
the lower temperature limit was reached. The initial and lower temperature limits were
decided in this manner: (1) Prior to the SA procedure, hundreds of random modifica-
tions were performed to calculate the mean alteration of objective function for assign-
ing the initial temperature an acceptance probability of 0.5; (2) the optimization was
assumed to involve 60 decreases in temperature and the lower limits for all cases were
calculated accordingly as shown in Table 1. During optimization, the FD structure was

Table 1 Initial temperatures and lower temperature limits for the S, C, and R models

S model C model R model

Initial temperature 6.02 x 107 127 x 107 101 x 1073
Lower temperature limit 1.08 x 107/ 228 x 107/ 181 x107°
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first modified, and CFD was then performed to obtain the corresponding intra-aneurys-
mal average velocity in each stage.

We used the scalar parallel computing system (SGI UV2000) at the Institute of Fluid
Science, Tohoku University. The computational times for one stage of CFD simulation
(using 256 cores) were approximately 30, 45, and 70 min for the S, C, and R models,

respectively.

Axial displacement test (ADT)

The manual operation of FD delivery and deployment leads to an uncertain axial dis-
placement during the interventional procedure. An axial displacement test (ADT) is
designed to investigate the robustness of a given FD structure. For a given FD struc-
ture, we sequentially added the variable 6, ranging from —m to m, to the starting phase
0 of each helix to mimic the axial displacement along the centerline of the parent artery.
A CFD simulation was subsequently performed to calculate the difference in velocity

resulting from the displacement.

Flow reduction (FR) rate
To quantitatively evaluate the flow-diversion efficiency of a given FD structure, a flow

reduction (FR) rate index was introduced as

Vwjo — VwitheD

R (%) = 7

x 100, (8)
where V,,,, and V- are the intra-aneurysmal average velocities without FD interven-

tion and after FD implantation of a given wire configuration, respectively.

Results

For each case, optimization was performed until the lower temperature limit was
reached; this required 916, 1035, and 976 iterations for the S, C, and R models, respec-
tively. In all three cases, the FR improved markedly during the initial few hundred itera-
tions and then stabilized (Fig. 2). The intra-aneurysmal average velocity without FD
intervention and the R, values after FD implantation with the initial and optimal con-
figurations are shown in Table 2.

Figure 3b, d depict the streamlines (color-coded by velocity magnitude) and iso veloc-
ity surface (corresponding to 0.01, 0.015, and 0.1 m/s for the S, C, and R models, respec-
tively) of the three geometries with no stent and stents before and after optimization.
Figure 3a, c illustrate the velocity components perpendicular to and velocity vectors
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Fig. 2 The SA procedure of S, C, and R models, respectively (Vertical axis: R, horizontal axis: SA iteration)
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Table 2 Intra-aneurysmal average velocity and the R; under non-stent, initial stent,
and optimal stent placements of S, C, and R models, respectively

Non-stent Initial stent placement Optimal stent placement

leo (mm/s) Vinitial (mm/S) Rf (%) Voptimal (mm/s) Rf (%)
S model 2.827 0.269 90.48 0.123 95.65
C model 10.629 0.528 95.04 0.249 97.65
R model 39.309 13.071 66.75 2.025 94.85

(1) (2) (3) (2) (3)
Fig. 3 Visualizations of velocity vectors (Block a), streamlines (Block b), velocity components perpendicular
to neck orifices (Block c), and I1SO-velocity surfaces (Block d) of non-stented cases (Column 1 of each block),
initial FD placements (Column 2 of each block), and optimal FD placements (Column 3 of each block), respec-
tively; S model, C model and R model are in row (i), row (ii), and row (iii) of each block, respectively

generated from the aneurysm orifice. Figure 4 illustrates the intra-aneurysmal average
velocity differences with respect to the axial displacements for both the initial and opti-
mized FD structures.

Aneurysmal inflow is observed as a flow bundle entering from the aneurysm orifice.
The concept of bundle of inflow (BOI) area describes the inflow feature of an aneu-
rysm [13]. Likewise, the bundle of outflow (BOO) area indicates the region(s) where the
bloodstream exits an aneurysm. To demonstrate the unique features of different flow
patterns, the red and blue arrows/circles are used in Fig. 3b, ¢ to indicate the BOI and
BOO areas, respectively; the yellow circles with dotted lines in Fig. 3a, b, d depict the



Zhang et al. BioMed Eng OnLine 2016, 15(Suppl 2):159

X Optimized Structure + Homogeneous Structure
103m/s 103m/s 103m/s
0.8 24 32
0006 x
20000, 2% * x
06 Pl 2 18 25 0 24 g 7
x < . : o, 2
0.4 x x 12 L. o 16 e ¥ o
x < « . oy &
x Iy M B Y 2
02 e 0.6 X x 8 % »
X X ; 5 2%
P *
’Xx%x e
0 0 0
T 0 T - 0 i T 0 T
S Model C Model R Model
Fig. 4 The ADTs of S, C, and R models, respectively (Vertical axis: aneurysmal average velocities, horizontal
axis: phase displacements)

areas where BOI concentrates. The black arrows in all figures are used to identify the
flow directions.

S model

Before FD stent implantation, the flow enters the aneurysm from the distal end and exits
through the proximal end. After FD implantation with the initial structure, the sym-
metric flow distribution was disrupted; the flow circulation inside of the aneurysm sac
became irregular and sparse. The BOI area shifted from the central distal end to the
proximal end with a negative Y offset; meanwhile, the outflow zone switched to the dis-
tal end (Fig. 3c). A marked reduction in both the breadth and magnitude of the BOI
was observed for the optimized FD structure (Fig. 3b). Rotational flow circulations were
found inside the aneurysm. The optimized wire structure showed a concentration of FD
wires inside the BOI area, resulting in a denser strut distribution in the proximal orifice
end (Fig. 3a).

Cmodel

Under the non-stent condition, a strong inflow jet and two outflow jets were observed
(Fig. 3d). The BOI was located in the proximal area of the neck, whereas the BOOs were
symmetrically dispersed along both sides of the aneurysmal neck. After the initial FD
implantation, the magnitude of the velocity of the BOI decreased considerably (Fig. 3b),
and the outflow bundles were disrupted. For the optimized FD, the velocity magnitude
of the BOI was further reduced. A denser strut distribution inside the BOI region was

observed in the optimized case (Fig. 3a).

R model

Compared with the S and C models, the non-stent R model has a strong and sharp
inflow jet, as seen in Fig. 3d. The bloodstream flows into the deep aneurysm sac through
the orifice and circulates inside the cavity, finally flowing out of the aneurysm as a wide
and strong BOO. After the FD implantation of the initial structure, the width and veloc-
ity magnitude of BOI were reduced; both the size and volume of the isovelocity surface
decreased (Fig. 3d). After the implantation of the optimized FD, the flow circulation
was drastically modified. The depth traveled by the inflow jet into the aneurysm sac
decreased, and rotational flow circulation was clearly observed inside the sac (Fig. 3b).

Page 378 0of 382
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The sac circulation and parent flow were further separated, and both BOI and BOO were
split into two weak and thin streams (Fig. 3c). Similarly, the wire concentration inside
the BOI area of the optimized FD structure can be seen in Fig. 3a.

Discussion

In this study, we have demonstrated an optimization approach to improve the flow-
diversion efficiency of conventional homogeneous FD stents. Our optimization involves
rearranging the starting phases of homogeneous helix wires, thereby modifying FD
structure without altering its porosity, which finally enables the optimal wire configura-
tion to maximally block the aneurysmal inflow.

Selecting the modification parameter for optimization
In consideration of the possible correlation between porosity and post-stenting stenosis,
we chose the starting phase 0 of each FD helix as the modification parameter.

Previous studies on FD structure optimization have introduced various modification
parameters to improve flow reduction effectiveness. Anzai et al. [13] modified the con-
figurations of the strut segments within the aneurysmal neck domain and found that the
flow reduction effectiveness was improved when the stent porosity was strictly main-
tained at 80%, while the isolated and disconnected strut segments denied the manu-
factural possibility of the optimal FD structure. Lee et al. [12] used strut size and gap
spacing as modification parameters and obtained relatively optimal designs. However,
the porosity of FD devices cannot be precisely controlled during modification.

Theta is one of the parameters required in FD design and manufacturing process. For
design optimization, using 0 as modification parameter could maintain the device poros-
ity at a pre-defined value. Our results demonstrate (Fig. 2) that modifying 6 effectively
improves the flow reduction rate of a conventional homogeneous FD structure.

Objective function of optimization and SA procedure

We chose intra-aneurysmal average velocity as the objective function. Anzai et al. [13,
27] used average velocity, while Srinivas et al. [11, 12] used average velocity and vorticity,
and Janiga et al. [28] used wall shear stress for optimization.

It should be noted that the selection of objective function remains a controversial
issue. Corbett et al. [29] reported an in vitro study that thrombosis could occur in a spe-
cific threshold of shear stress or shear rate using bovine blood. A review by Moiseyev
et al. [30] revealed that the shear-induced activation of platelets is a basic element for
blood coagulation. On the other hand, Janiga et al. [28] described that the flow reduc-
tion within an aneurysm is relevant to wall shear stress, and recently, Chung et al. [26]
showed that the average velocity in the aneurysm may be related to a shorter period of
aneurysm occlusion. Revealed by these results, the average velocity seems to be corre-
lated with thrombotic occlusion. However, further in vivo study is still indispensable for
confirming its relevance in clinical practice.

We employed SA procedure to identify a global optimum for the average velocity as
shown in Fig. 2. To prevent optimization from resulting in a local optimum, modifica-
tions to FD structures with inferior flow diversion performance might also be accepted
according to our pre-defined cooling schedule. Our optimization approach could accept
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other objective functions, as long as the initial temperature and cooling schedule are
well established [24, 25].

FD design with inhomogeneous wire structure
Our optimization generated modified FD designs with inhomogeneous wire structure.
Similarly, previous studies also reported the benefits of inhomogeneous and asymmetric
FD designs. Rudin et al. [31] showed that a local low-porosity design can decrease flow
velocity inside an in vitro model. By animal experiments, Ionita et al. [32] showed the
good performance of asymmetric stents in occluding rabbit elastase aneurysms. These
studies suggest the possibility of using inhomogeneous device to achieve favorite treat-
ment outcomes. In this study, we demonstrated how a conventional homogeneous FD
can be tailored to an inhomogeneous one by merely changing the values of ‘0, which is
applicable to be modified without affecting the manufacturing possibility.

In addition, our optimization results have revealed a practical approach for the con-
ventional homogeneous FD devices to improve its flow diversion efficiency, that is, com-
pacting FD wires into BOI areas during deployment may achieve a marked difference in

blocking the aneurysmal inflow.

Robust performance of the optimal devices

We performed ADTs to investigate the robustness of the wire structures. The flow
reductions achieved by the optimized FDs were greater than those obtained using the
homogeneous FDs within displacement ranges of —0.25 to 0.25, —0.5 to 0.25, and —0.75
to 0.75 mm for the S, C, and R models, respectively (Fig. 4). It is indicated that a homo-
geneous wire configuration can nonspecifically prevent a strong inflow jet from passing
through an aneurysm orifice; however, its flow-diversion efficiency is inferior to that of
the optimal wire configuration when the device was desirably deployed.

The robustness of an optimized FD is associated with the wire coverage of an aneu-
rysm orifice. After homogeneous FD implantation, if the BOI areas are axially distrib-
uted along the orifice (e.g. R model, Fig. 3c), the robustness of an optimized FD might
be superior. In contrast, if the BOI areas are radially distributed (e.g. S and C models,
Fig. 3c), the optimized FD robustness could be inferior. The optimized FD wires concen-
trate in BOI regions, whereas only a small number of wires are assigned in the remaining
areas where large holes can be found. When axial displacement occurs, the inflow jet
may cross the orifice through the holes, causing considerable fluctuations of Rx

The robustness of an optimized FD may also relate to the shape of an BOI area. When
BOI is strong and concentrates in a small region (e.g. C model, Fig. 3c), axial displace-
ments may result in jet flow entering aneurysm cavity through areas with less wires. It is
implied that the BOI characteristics of the FD recipient needs to be investigated before

an optimized device can be applied.

Limitations

This study has several limitations. We applied steady flow and Newtonian fluid assump-
tions to reduce the computational cost, since the objective of this study is to develop
a feasible and manufacture-oriented optimization approach for FD device. When
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computational cost is no longer a problem, the setting is readily changed by adopting
time-dependent boundary conditions and a non-Newtonian rheology in the LB solver.

Another limitation from the viewpoint of clinical practice is that sending the opti-
mized FD to the aneurysm location could be a challenge for interventionists, since a
larger device displacement after deployment may considerably increase the aneurysmal
inflow. This might be solved in the future by embedding a reliability test into the optimi-
zation loop to achieve improved stability.

It should be noted that we addressed merely the hemodynamic factors that may affect
the FD performance, while the mechanical and material properties of the modified FDs
have not been investigated. In future work, we plan to include these parameters as a part
of objective functions for optimization to improve FD’s hemodynamic compatibility.

Conclusions

A practical optimization method for commercially available helix-wire FDs was devel-
oped in this study. By rearranging the starting phase of each helix subset, the structure of
ED can be tailored to efficiently block the inflow for a patient-specific aneurysm. Using
this optimization method, three optimized FD structures with unchanged device poros-
ity were obtained corresponding to three different vascular geometries. The developed
method potentially enhances the study of the patient-specific design of FD devices.
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