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Abstract

Introduction—Over the last decade, tremendous progress has been made in defining the genetic 

architecture of atrial fibrillation (AF). This has in part been driven by poor understanding of the 

pathophysiology of AF, limitations of current therapies and failure to target therapies to the 

underlying mechanisms.

Areas covered—Genetic approaches to AF have identified mutations encoding cardiac ion 

channels, and signaling proteins linked with AF and genome-wide association studies have 

uncovered common genetic variants modulating AF risk. These studies have provided important 

insights into the underlying mechanisms of AF and defined responses to therapies. Common AF-

risk alleles at the chromosome 4q25 locus modulate response to antiarrhythmic drugs, electrical 

cardioversion and catheter ablation. While the translation of these discoveries to the bedside care 

of individual patients has been limited, emerging evidence supports the hypothesis that genotype-

directed approaches that target the underlying mechanisms of AF may not only improve 

therapeutic efficacy but also minimize adverse effects.

Expert commentary—There is an urgent need for randomized controlled trials that are 

genotype-based for the treatment of AF. Nonetheless, emerging data suggest that selecting 

therapies for AF that are genotype-directed may soon be upon us.

1. Introduction

Atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, is associated 

with significant morbidity and mortality. Despite recent advances in catheter-based and 

surgical treatments, responses to therapies continue to remain highly variable, e.g., ~25% of 

patients with paroxysmal AF fail to maintain sinus rhythm after catheter ablation. Possible 

reasons for this variability relate in part to the heterogeneous nature of AF, limitations of 

current therapies and poor understanding of the underlying molecular mechanisms of AF. 

Over the last decade, tremendous progress has been made in defining the genetic 

architecture of AF. Linkage analyses, candidate gene approaches and next generation 

sequencing have identified mutations encoding cardiac ion channels, transcription factors 

and signaling proteins linked to early-onset familial AF. Conversely, large population-based 

Correspondence to: Dawood Darbar, MD, Division of Cardiology, University of Illinois at Chicago, 840 S. Wood Street, 920S (MC 
715), Chicago, IL 60612, Phone : (312) 413 8870, Fax: (312) 413 2948, darbar@uic.edu. 

Declaration of interest
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or 
financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, 
honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

HHS Public Access
Author manuscript
Expert Rev Cardiovasc Ther. Author manuscript; available in PMC 2017 October 01.

Published in final edited form as:
Expert Rev Cardiovasc Ther. 2016 October ; 14(10): 1119–1131. doi:10.1080/14779072.2016.1210510.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies have uncovered common single nucleotide polymorphisms (SNPs) that modulate AF 

risk with the strongest association at the chromosome (chr) 4q25 locus.

Genetic approaches to AF have provided important insights into the underlying genetic 

mechanisms of AF and defined responses to therapies such as antiarrhythmic drugs (AAD), 

and ablation therapy. However, the translation of these discoveries to the bedside care of 

patients has thus far been limited. While possible reasons for this failure include poor 

understanding of the underlying genetic modulators of response to therapies in general, 

heterogeneity of AF and lack of genotype-directed trials, emerging data from proof-of-

concept studies supports the hypothesis that genotype-directed therapies for AF may target 

therapy to those most likely to benefit. Furthermore, the development of more mechanism-

based therapies for AF will not only improve therapeutic efficacy but also reduce the 

likelihood of adverse effects.

2. Pharmacologic Therapy for AF

Despite continued advances in surgical and catheter-based ablation, AADs still remain one 

of the cornerstones of treatment for symptomatic AF. Current ACC/AHA/HRS treatment 

guidelines1 recommend rate control for asymptomatic patients with AF based on data from 

the AFFIRM trial and other studies.2, 3 However a post hoc on-treatment analysis of data 

from the AFFIRM trial revealed that patients had improved survival when sinus rhythm was 

successfully achieved and maintained using a rhythm control approach.4 Thus, the latter 

approach is generally preferred over rate control in certain situations, such as when the onset 

of AF is at an early age, when symptoms of AF are severe or frequent enough to affect 

quality of life, and when adequate rate control cannot be achieved and is believed to result in 

hemodynamic compromise, exacerbation of heart failure, or contributes to development of 

cardiomyopathies with left ventricular systolic dysfunction.

The long-term treatment durability of most current AADs is modest at best, with only 30–

50% of patients are able to maintain sinus rhythm at 6–12 months.5, 6 Furthermore, there is a 

paucity of evidence-based data for guiding AAD selection and practitioners are more apt to 

choose a particular membrane-active drug based upon its toxicology profile rather than 

potential clinical efficacy or targeting the underlying mechanism of AF. Despite knowledge 

of its cumulative potential for severe extra-cardiac toxicity, amiodarone remains the most 

frequently used AAD for AF today, representing ~45% of all drug prescriptions. It is also 

the most effective AAD as 65% of patients are able to maintain sinus rhythm at 1 year, due 

to a lessened degree of ion channel remodeling as it essentially exhibits properties of all the 

AAD classes. Historically, the use of AADs has been associated with increased mortality 

(5% per-patient year on AADs vs. 2% per-patient year without AADs) in patients with AF;7 

therefore selection of the “right” AAD in clinical practice often focuses on minimizing side 

effects rather than on clinical efficacy, hence a “once-size” fits all approach.

3. Catheter Ablation of AF

In 1983, Cox et al. introduced the first successful surgical approach that resulted in long-

term control of AF.8 Early catheter ablation techniques for AF were directed at replicating 
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the Cox-Maze procedure but were only partially successful.9 In a landmark study in 2008, 

Haissaguerre et al. demonstrated that AF could be spontaneously initiated by ectopic foci 

originating within the pulmonary veins (PVs) and that abolishing these foci using 

radiofrequency ablation (RF) could reduce recurrence of AF.10 Currently catheter ablation is 

widely employed as a second-line treatment for rhythm control in patients with paroxysmal 

and persistent AF who have failed AAD therapy for control of their symptoms.

Today the most frequently performed ablation technique is an anatomical approach whereby 

the pulmonary veins (the most common source of ectopic foci) are electrically disconnected 

from the left atrium (LA) by a circumferential line of ablation which is done using RF or 

cryoballoon ablation. An important consideration regarding interpretation of the AFFIRM 

trial and previous studies comparing rate and rhythm control approaches is that they were 

conducted prior to the modern era of catheter ablation as only a small number of patients 

underwent the surgical maze procedure or AF ablation. Therefore, whether the results of the 

AFFIRM trial, which demonstrated similar outcomes between rate and rhythm control using 

predominantly AAD therapy, are applicable today is uncertain. The findings of the recently 

completed large NIH-sponsored Catheter Ablation Versus Antiarrhythmic Drug Therapy for 

Atrial Fibrillation Trial (CABANA) will provide insights into the role of drugs to maintain 

sinus rhythm and catheter ablation in the management of patients with AF.

4. Understanding Mechanisms Underlying AF

Our understanding of the underlying pathophysiology of AF has significantly improved over 

the last three decades, but much remains unknown. While a unifying hypothesis for AF 

(such as Moe’s multiple wavelet hypothesis11) is likely to remain elusive, it is generally 

agreed that the processes incumbent for the genesis and maintenance of AF are quite 

heterogeneous. Based upon the predilection for AF to manifest in the later stages of life and 

after accumulation of risk factors, it seems likely that multiple mechanisms must be operant 

in a single patient before AF can develop. Thus, AF is probably best thought of as the final 

common phenotype of multiple genetic and acquired contributing factors.

In order for AF to occur, appropriate drivers at the tissue level are required to sustain reentry 

or rapid focal ectopic firing.12 Focal ectopic firing may be caused by abnormal impulse 

formation resulting from increased automaticity due to decreased cardiac inward rectifier 

potassium current (IK1), enhanced activity of the cardiac pacemaker “funny” current (If),13 

or triggered activity. These may be due to early afterdepolarizations (EAD) driven by 

increased L-type Ca2+ current (ICaL)14 or In a large animal model, ranolazine was shown to 

reduce both duration and suppress the re-initiation of ACh-mediated AF.15, 16 Development 

of single reentrant circuits, which can act as rapid focal drivers of AF, and multiple-circuit 

reentry are related to changes in ion channel function and anatomic determinants.17, 18

A major limitation of catheter ablation of AF has been the unintentional creation of gaps in 

ablation lines that may act as anatomical barriers supporting development of reentry circuits 

which, in turn, lead to persistent macro-reentrant atrial tachycardias and ultimately AF. 

Conditions which shorten action potential duration (APD) and atrial effective refractory 

period (ERP), or slow conduction velocity (CV) can also promote development of AF.12 
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Further complicating matters is that the presence of AF itself can over time result in adverse 

structural remodeling hastening development of fibrosis, activation of inflammatory 

pathways, autonomic neural remodeling, and electrical remodeling by altering expression 

and trafficking of ion channels, further favoring development of a reentrant substrate needed 

to maintain AF.19, 20 The time course of adverse remodeling of the atria can vary 

considerably between patients. It is also possible that the relative influence of particular 

pathogenic mechanisms may evolve and is conditioned upon the current stage of the disease 

process.

5. Genetic Approaches to AF

Familial patterns of AF supporting Mendelian inheritance have been recognized since at 

least the 1940’s.21 In 1987 Brugada et al. reported three families with autosomal dominant 

AF and subsequently identified a genetic locus 10q22-24 linked with AF in these kindreds.22 

Although a putative gene responsible for AF was never clearly identified,23, 24 the report 

suggested that AF could be a heritable and monogenic disorder. The idea that altered 

expression of a single gene could be powerful enough to result in an AF phenotype in 

multiple individuals generated the impetus to find and characterize these disease-causing 

genes and the proteins they encode.

Although much can be learned by examining rare disease-causing variants with high 

penetrance, early-onset familial AF accounts for only a minority of the overall prevalence of 

the arrhythmia. Further, incomplete penetrance of the phenotype within family members 

suggests that AF is a multigenic or genetically heterogeneous disorder (Figure 1). Most 

cases of AF in the general population are sporadic and the likelihood of developing AF 

increases with age and presence of other risk factors such as hypertension, diabetes, obesity, 

sleep apnea, heart failure, and metabolic syndrome. However at least 15% of patients 

develop sporadic AF without such risk factors at a relatively early age, a condition 

previously referred to as ‘lone’ but now better defined as early-onset AF.25

Family history of AF itself has been shown to be an independent risk factor for developing 

AF in the general population and this observation has driven research into understanding the 

link between genetics and AF. Data from the Framingham study also supports AF as a 

heritable disorder as offspring of parents with AF had double the 4-year risk of developing 

de novo AF even after accounting for established AF risk factors.26 In an Icelandic 

population, relatives of an affected individual were at increased risk of developing of AF but 

this risk diminished as the degree of relation increased.27 In the Danish Twin Study the risk 

of developing AF was nearly twice as high for monozygotic twins compared to dizygotic 

twins.28 Taken altogether, it is quite likely that an individual’s genetic predisposition also 

plays a role in non-monogenic AF.

5.1 Linkage Analyses and Candidate Gene Studies

Positional cloning and linkage analysis have proven to be powerful tools for detecting the 

chromosomal location of disease-associated genes and is based on the assumption that 

nearby genes on a chromosome tend to remain linked during meiosis (Figure 1). While these 

disease-associated loci are expected to have stronger effect size than common genetic 
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variants in the genome, the primary limitation of this approach is the limited availability of 

large AF kindreds with multiple affected individuals. Regardless, positional cloning and 

linkage analysis have helped identify AF loci and genes with large effect size, including 

11p15.5, 21q22, 17q, 7q35-36, 5p13, 6q14-16, and 10q22-24, although the responsible 

genes are not always clear.

The first gene to be linked to familial AF and validated in functional studies was KCNQ1, 

which encodes the α-subunit of the delayed rectifier potassium channel (KCNQ1). Using a 

candidate gene approach investigators have screened other cardiac ion channels genes 

hypothesized to be mechanistically linked to AF including KCNE2, KCNJ2, KCNE5, 

SCN5A, and SCN10A. Otway et al.29 examined 50 families with a history of AF and 

identified a single mutation (R14C) in KCNQ1 in one family which did not have any direct 

effect on KCNQ1 and KCNE1 channels and corresponding current amplitudes in cultured 

cells. However exposure to hypotonic solution led to swelling of atrial cells and mutant 

channels then exhibited a marked increase in current amplitude compared with wild-type 

channels. Further, only patients with dilated LA chambers carrying the mutation developed 

AF. The concept that certain acquired or environmental conditions must be met before a 

genetic trait manifests itself, could perhaps explain why variable penetrance is observed in 

AF families carrying rare variants with large effect size.30

A significant limitation of the candidate gene approach is that there is generally low pretest 

probability due to the overall frequency of common polymorphisms within the genome and 

single variant associations are often difficult to replicate. For example the 10q22-34 and 

6q14-16 loci were associated with AF nearly a decade ago by linkage analysis; however the 

genes responsible for AF susceptibility remain unknown in these families.

5.2 Genome Wide Association Studies

Although many patients with non-familial AF have known risk modifiers (e.g. hypertension, 

diabetes, metabolic syndrome), most people in general population do not go on to develop 

AF despite carrying the same risk factors. A concept, known as the “two-hit hypothesis,” has 

been proposed whereby common genetic variants are thought to increase susceptibility to 

AF in patients harboring other identifiable risk factors.30 Next generation sequencing has 

made it possible to sequence hundreds of thousands of single nucleotide polymorphisms 

(SNPs) across the human genome in a feasible manner to test for association between 

affected and unaffected subjects (Figure 1). Given that such a large number of genes are 

tested without a priori assumption regarding their potential disease association, the effect 

size of many disease-associated SNPs tend to be smaller and their association may be 

difficult to replicate, especially across different ethnic populations.

In the first GWAS performed in 2007, two non-coding SNPS on the chr4q25 locus were 

found to be independently associated with AF in an Icelandic population. This association 

was then replicated in Asian31 and European populations32 and in patients after coronary 

artery bypass graft (CABG) surgery.33 The nearest gene to this locus is the paired-like 

homeodomain transcription factor 2 (PITX2) gene, which encodes a transcription factor 

important for PV development34 and determination of left and right atrial asymmetry during 

embryogenesis,35 including suppression of formation of the LA sinus node.36 Interestingly, 
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the severity of cardiac developmental malformations appears correlated to the degree of 

PITX2 expression37 as complete absence of Pitx2 function in mice leads to embryonic 

lethality while homozygous null embryos exhibit severe cardiac defects.38 Heterozygous 

Pitx2+/− mice, which are fully viable, have higher rates of atrial arrhythmias with 

programmed stimulation. The role of PITX2 in the development of the LA and pulmonary 

veins fits well with our understanding that in many cases of paroxysmal AF the arrhythmia 

is triggered by ectopic foci originating from PV myocardial sleeves.

Two additional susceptibility loci were subsequently identified on chromosomes 16q22 and 

1q21.39 The AF-associated SNP on chr1q24 is located upstream of paired related homeobox 

1 gene (PRRX1) encoding a homeodomain transcription factor which is highly expressed in 

the developing heart and affects development of the great vessels and PVs.40 Knockdown of 

the PRRX1 ortholog in zebrafish was shown to cause in atrial dilation and shortening of 

atrial APD.41 Given the efficacy of PV isolation in some patients with AF,10 the 

identification of susceptibility alleles for PITX2 and PRRX1 suggest a common mechanism 

through which genetic variants may increase susceptibility to AF through alteration of LA 

and PV developmental pathways.

The SNPs most associated with AF on the 16q22 locus were mapped to the first intron of a 

gene encoding the zinc finger homeobox 3 (ZFHX3).42 While ZFHX3 is expressed in 

human heart tissue, direct correlation between ZFHX3 and the susceptibility SNPs have not 

been shown. However ZFHX3 regulates the transcription of the POU1F1 (encoding POU 

class 1 homeobox 1), which not only facilitates DNA binding, but also modulates 

transcriptional activity of PITX2.30 Importantly, ZFHX3 also modulates formation of atrial 

fibrosis in response to inflammation through TGF-β signaling.

A meta-analysis of a GWAS from 2012 identified six more susceptibility alleles,39 and more 

recently the AFGen Consortium identified five novel genes and SNPs.43 Additional AF-

susceptibility loci encoding cardiac ion channels or protein modifiers include the small 

conductance Ca2+-activated potassium channel gene KCNN3 on chr1q21; the potassium/

sodium hyperpolarization-activated cyclic nucleotide-gated channel gene HCN4 on 

chr15q24, which has been linked with sinus node dysfunction; and the caveolin-1 gene 

CAV1 on chr7q31, which encodes a cellular membrane protein selectively expressed in the 

atria and involved in signal transduction.

6. Insights into Genetic Mechanisms of AF

Given the clinical and genetic heterogeneity of AF, the arrhythmia should best be viewed as 

the common final phenotype of multiple diverse pathways. The pathophysiology of AF is 

highly complex and even in the absence of identifiable risk factors multiple structural or 

ionic mechanisms may be operant in a single patient with AF. Orderly propagation of 

electrical conduction across myocardial cells is dependent upon a balanced interplay 

between structural features and ionic components of the atrium that are potentially 

determined by a combination of genetic, environmental, and acquired factors. So far most of 

the identified mutations seem to affect pathways in cardiac development, generation and 

propagation of electrical impulses, inflammation signaling pathways, atrial remodeling, and 
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development of fibrosis. In general, conditions that slow CV and shorten APD or atrial ERP 

favor development of AF.44

6.1 Modulation of APD by altered gene expression

Data from candidate genes and in vitro functional studies have strongly suggested that many 

of the mutations affecting cardiac ion channel genes increase susceptibility for AF through 

modulation of atrial APD. In patients with persistent and permanent AF cellular and 

electrophysiological studies have demonstrated marked reductions in the densities of the 

ultra-rapid delayed rectifier potassium current, (IKur), the L-type voltage-gated ICa,L, and the 

muscarinic potassium current (IKACh), but increase in IK1 density.45

The first culprit mutation for familial AF was identified in 2003 as a S140G mutation in 

KCNQ1, which encodes the pore forming α-subunit of the slow component of the delayed 

rectifier potassium current (IKs). This gain-of-function mutation shortened atrial APD.30 The 

pathogenic role of APD shortening by modulating IKs has been reinforced by identification 

of additional KCNQ1 mutations46 and a R27C mutation of the KCNE2 gene, which encodes 

the shared β-subunit of IKs and IKr, identified in AF kindreds.47 In a patient with non-

familial AF, a missense L65F mutation in the KCNE5 gene was identified. KCNE5 is 

believed to down regulate Iks activity by competing with the KCNE1 β-subunit for the 

KCNQ1 α-subunit. In vitro transfection of KCNE5-L65F into Chinese hamster ovary 

(CHO) cells failed to suppress Iks activity, suggesting shortening of APD as the underlying 

mechanism by which the mutation causes AF.48 Notably a “private” variant caused by a 

V93I mutation in KCNJ2, the gene which encodes the Kir2.1 channel mediating IK1, was 

found and demonstrated in an in vitro study increased potassium current.49 Increase in IK1 

expression and shortened APD has been demonstrated in patients with chronic AF.45

The first non-ion channel gene linked with familial AF was identified in 2008. A frameshift 

mutation in NPPA gene resulted in encoding of a mutant atrial natriuretic peptide (ANP) 

that, when infused in a rat whole-heart Langendorff’s preparation, shortened the monophasic 

APD and ERP.50 NPPA may also be involved in inflammatory pathways and regulation of 

electrical and structural remodeling.30 In one family, an autosomal-recessive mutation in 

NPPA was identified which resulted in massive atrial dilation associated with atrial standstill 

in multiple family members.51 To investigate this mechanism further, Galimberti et al. 

generated a transgenic mouse that overexpressed the human mutant ANP. A triple FLAG-tag 

was fused in-frame with the 3′ end of either the human wild-type NPPA (WT–NPPA–

FLAG) cDNA or the mutant NPPA peptide containing the COOH-terminal 12-amino-acid 

extension (mut–NPPA–FLAG) isolated from individuals with familial AF.26 In vitro assays 

showed that that the FLAG-tag did not diminish NPPA biological activity. Transesophageal 

pacing at 16 weeks induced more and longer-lasting episodes of AF in the mut–NPPA–

FLAG mice than in the WT–NPPA–FLAG mice (incidence of AF: 62.5 ± 5.6% versus 30.4 

± 5.7%, P <0.05; total time in AF: 19.1 ± 2.7 s versus 5.3 ± 1.4 s, P <0.05). Even more-

compelling results were observed in telemetry-monitored NPPA mice when they were 

challenged with isoproterenol: 67% of the mutant NPPA mice developed AF that persisted 

for 20 min, whereas wild-type mice remained in sinus rhythm throughout the duration of the 

isoproterenol infusion.52
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Pharmacologic therapies developed to target electrophysiological mechanisms by 

lengthening atrial ERP are not always universally effective for treating AF and may even 

lead to drug-induced atrial arrhythmias.12 In a cohort of patients with lone AF, a A302V 

mutation in KCNQ1 resulting in loss-of-function of IKs function was found to be associated 

with early-onset lone AF.53 In another lone AF cohort, a loss-of-function E375X mutation in 

KCNA5 was identified. Heterologous expression of recombinant E375X mutant Kv1.5 

channel protein led to APD prolongation and EADs in human atrial myocytes. The data also 

predicted increased vulnerability to stress-induced triggered activity, and carriers of this 

KCNA5 variant were prone to develop AF when challenged with isoproterenol.54 In a family 

with early-onset AF, a KCNA5 mutation was identified which disrupts proline-rich motif 

needed for regulation of Ikur. The mutation reduced Ikur current and also rendered the 

channel resistant to kinase activity, suggesting that tyrosine-kinase signaling pathway may 

be a target for therapy in the future.55 Interestingly a missense L65F mutation in KCNE5 
was identified in a patient with non-familial AF.

Finally, mutations in sodium channel genes may also play an important role in the 

pathogenesis of AF. Screening for SCN5A variants in a large AF cohort found mutations in 

5.9% of those with AF.56 A recent meta-analysis of over 7,000 African American patients 

across 5 cohorts found that the common SCN5A variant rs7629265 was associated with 

increased AF risk and shorter PR interval. However no evidence exists associating the 

variant rs7629265 and sudden cardiac death in the general population.57 In a mouse model 

expressing a FLAG epitope–tagged human F1759-Nav1.5 variant, Wan et al. showed 

increase in persistent sodium current leading to heterogeneously prolonged APD and 

development of wavelets and rotors in the atria. The same group found that acute inhibition 

of the sodium-calcium exchanger with the drug SEA-0400 led to markedly reduced burden 

of AF and ventricular ectopy in the mouse model.58

The common variant rs6795970 for SCN10A, which encodes the Nav1.8 channel, has also 

been found to be associated with AF. In particular the A1073 variant which was shown to 

confer gain-of-function to Nav1.8 and thus prolong APD, increased susceptibility to AF.57 

In a cohort of 274 patients with early-onset AF from the Vanderbilt AF Registry, rare 

SCN10A variants encoding Nav1.8 were identified in 6.6% of patients. In-vitro functional 

studies demonstrated profoundly altered function in all three of the high-priority variants 

identified.59 While the exact role of altered Nav1.8 function is unclear, its channel properties 

are such that Nav1.8 current activates much more slowly than Nav1.5 current, which may 

contribute dispersion of propagation within the atria predisposing to AF. It is also known 

that Nav1.8 is normally expressed in the dorsal root ganglia and cardiac ganglionic plexi. In 

a canine study blockade of Nav1.8 channels suppressed the effects of vagal nerve 

stimulation on cardiac conduction and AF inducibility, presumably through inhibition of 

neural activity of the cardiac GP.60

6.2 Modulation of gap junction expression

Aging, structural remodeling, and development of fibrosis are all known to increase the 

likelihood of developing AF as the disturbance of uniform cell-to-cell impulse propagation 

and the variability in regional CV creates a substrate for reentry.61 Both germ-line and 
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somatic mutations in the GJA5 gene, which encodes connexin-40, and a common variant in 

the promotor region of of this gene have been shown to be associated with early-onset lone 

AF.62, 63 Mutations in GJA5 have also been identified in patients with familial AF64 and 

knock-out mouse models exhibit increased vulnerability to atrial arrhythmias. Similar to 

acquired cases of AF, genetic variants for genes encoding gap junction proteins likely 

mediate increased risk for AF by reduced expression of gap junctions which causes slower 

and more heterogenous atrial conduction.

6.3 Role in atrial fibrosis and inflammatory pathways

Histologic evidence linking myocarditis to early-onset AF and the high incidence of AF 

following cardiac surgery suggests that pathways involved with inflammation and fibrosis 

play a role in the pathogenesis of AF.65, 66 In animal studies, induction of atrial fibrosis has 

been associated with increased risk for atrial arrhythmias, and in humans, the extent of atrial 

fibrosis has correlated with success of ablation therapy.67 Although the role of many 

common AF risk alleles has not been fully elucidated, there is now increasing evidence that 

atrial fibrosis may be a key mediator for increased risk of developing AF.

Besides its role in the development of the PV myocardium, PITX2 may also play a role in 

structural and electrical remodeling of the atria. PITX2 encodes for the homeobox 

transcription factor PITX2c, which is expressed 100-fold higher in the left than the right 

atrium.68 Pitx2c −/− knock-out mice develop 4-chamber cardiac enlargement, histological 

evidence of atrial fibrosis, and upregulation of collagen precursor genes. In contrast, 

Pitx2c+/− heterozygous mice have no evidence of cardiac enlargement but have increased 

expression of genes regulating Wnt signaling, a key fibrosis pathway.68 Common SNPs at 

the chr7q31 AF locus encode caveolin-1, which internalizes transforming growth factor 

(TGF)-β receptors leading to suppression of this signaling pathway and prevention of atrial 

fibrosis. Variants in CAV1 have not only been associated with myocardial fibrosis but also 

pulmonary hypertension.

The zinc finger homeobox 3 transcription factor encoded by ZFHX3, plays an important role 

when responding to TGF-β signaling.69 SYNP02L and SYNE2 encode cytoskeletal and 

nucleoproteins that link the nucleoskeleton to the nuclear membrane structures and may play 

an important role in cardiac development.70 SYNE2 and emerin interact with a -catenin 

regulating the Wnt signaling pathway. PRRX1 is a transcription factor that is thought to be 

important for normal lung development and has been associated with pulmonary fibrosis. 

Scleroderma fibroblasts stimulated with TGF-β show increased expression of C90RF3. 

Another possible mechanism by which NPPA variants may mediate increased risk for AF is 

by causing both electrical and structural remodeling of the atria with the development of 

atrial fibrosis. Although overexpression of the humanized NPPA variant in mice does not 

seem to cause atrial enlargement, a different NPPA mutation identified in 4 Italian families 

was associated with an atrial myopathy, massive biatrial enlargement, and atrial standstill. 51

7. Translation of Genetic Discoveries into Clinical Practice

Current treatment paradigms for AF remain largely empiric given the lack of evidence-based 

data to support mechanistic-based treatment approaches. The identification of rare and 
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common susceptibility variants through genetic approaches has unlocked new areas of 

investigation into biological pathways responsible for the pathophysiology of AF including 

altered function of cardiac ion channels, signaling pathways, and gap junction proteins. 

Although in vivo and in vitro models offer opportunity for functional validation and provide 

a promising platform for developing and testing mechanism-based pharmacologic treatments 

of rare-disease causing variants, translation of efficacy from the bench to meaningful 

outcomes in clinical practice has thus far been limited.

GWAS studies have identified numerous common genetic variants associated with AF, 

however the effect size of many of these SNPs is small and the contribution to the 

pathophysiology of AF remains unclear for many of them. Given the overall breadth of the 

human genome, one difficulty has been distinguishing benign SNPs from pathogenic 

mutations. Numerous approaches have been proposed including examining the variant type 

and location, segregation of the variant with phenotype in affected family members, and 

analyzing the degree of conservation of encoded amino acids across species. Multiple 

“heuristic” prediction algorithms have also been developed to determine the likelihood of a 

rare variant being pathogenic.

While it has become clear that an individual’s genetic background modulates their risk of 

developing AF and may be useful for development of clinical risk prediction models,71, 72 

incorporation of genetic discoveries meaningfully into novel treatment strategies remains 

limited by our inability to identify the underlying mechanisms responsible for causing AF in 

individual patients, challenges associated with determining efficacy of response to therapies, 

and lack of genotype-directed prospective clinical trials.

8. Identification of Genetic Subtypes with Differential Response to Therapy

Genetic studies have not only uncovered common and rare genetic variants associated with 

AF but have also aided in subtyping of AF to differential responses to therapy. One of the 

first studies to assess influence of genotype on clinical outcomes was a study examining how 

response to AAD therapy was modulated by carrying the angiotensin-converting enzyme 

(ACE) I/D polymorphism in patients with symptomatic AF.73 In another study published in 

2012, Parvez et al. assessed whether the common AF risk loci on chr4q25 (near PITX2), 

16q22 (in ZFHX3), and 1q21 (in KCNN3) modulated response to AADs in patients with 

symptomatic AF.74 The discovery (n = 478) and validation cohorts (n = 198) were age and 

gender matched Caucasian patients enrolled in the Vanderbilt AF Registry. In the study 

response to AAD therapy was defined as successful rhythm control as long as the patient 

remained on the same AAD for a minimum of 6 months with >75% reduction in AF 

symptoms. Multiple clinical variables (including age, hypertension, and early-onset AF) 

failed to predict response to AAD therapy. However, carrying the chr4q25 SNP 

(rs10033464) was significantly associated with successful symptom control (odds ratio 

[OR], 2.97; 95% confidence interval, 1.42–6.21; P = 0.003).

It was also found that individuals with the chr4q25 SNP responded better to class I versus 

class III AADs in both the discovery and validation cohorts. Interestingly, it has been shown 

in multiple studies that carrying a chr4q25 SNP predicts poorer response to AF catheter 
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ablation compared to presence of the wild-type SNP.75, 76 The chr4q25 SNPs have also been 

shown to be independent predictors of AF recurrence following restoration of sinus rhythm 

after electrical cardioversion.77 Collectively, these data support the concept of selecting AF 

therapies based on a patient’s genotype and predicted response. Also important is that 

although the effect size of common genetic susceptibility markers for AF have not been 

large (OR 1.1 – 1.7), in studies evaluating whether AF risk SNPs modulate response to 

therapy, the ORs were markedly greater than those used to determine predilection for AF 

itself.

While the possibility of tailoring AF therapy based on genotype rather than continuing 

current empiric approaches is exciting, prospective clinical trials are needed to validate the 

role of subtyping of AF by chr4q25 genotyping. Thus far only a few centers have conducted 

such studies and replication in different ethnicities is essential as outcomes may be different 

among populations. In 2009 enrollment started for the CABANA Trial, which is the largest 

prospective international study yet to date comparing catheter ablation to pharmacologic 

rate/rhythm control. Along with the main trial, a substudy called CABANAgene will be 

performed concurrently and will provide a large multinational cohort in which replication 

studies can be performed.

Given the small effect size of AF susceptibility SNPs, measuring quantitatively the burden 

of AF may be preferred over the outcome of “time to first symptomatic episode of AF” 

which has traditionally been used as an endpoint in clinical studies. Furthermore, burden of 

AF may be more clinically relevant as a patient may consider an overall decrease in 

frequency and severity of symptomatic episodes more important than how long it takes for 

AF to recur alone. Because AF burden is less prone to investigator bias, excludes sampling 

error associated with episodic monitoring caused by variable follow- up intervals, and is not 

reliant on patient symptoms, it may be a more robust end-point to assess efficacy of AF 

therapy especially now given the availability of continuous electrographic monitoring and 

implantable cardiac monitors.

Currently an open-label, randomized sequential crossover pilot study at the University of 

Illinois at Chicago is being conducted to determine whether differential response to 

flecainide (class IC) versus sotalol (class III) is modulated by chr4q25 AF risk alleles and 

will provide important data on whether a genotype-based approach to selection of AADs is 

not only feasible but also efficacious (Figure 2).

9. Development of Therapeutic Approaches for Novel Biological Pathways

Although AF is a complex and multigenic disorder, insight into the genetic mechanisms of 

AF have resulted in proof-of-concept studies revealing novel pathways that may provide 

suitable targets for pharmacologic therapies. However despite demonstration of efficacy in 

these models and sound biological plausibility, many promising new therapies have failed to 

show efficacy in prospective clinical studies,78 which can be extremely discouraging 

considering the time and resources invested into the development of new drugs. Knowledge 

of a patient’s genotype may potentially enhance selection of patients most likely to benefit 

from new mechanism-targeting therapies and aid in the execution of future clinical studies.
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9.1 Pharmacologic Agents Targeting Cardiac Ion Channels

9.1.1 Potassium channel antagonists—In collaboration with Dr. George’ s laboratory, 

our group investigated whether WT-KCNQ1 or the KCNQ1-S140G familial AF mutation 

possess distinct pharmacological properties that may enable targeted inhibition of the IKs -

selective blocker HMR-1556.79 Although a low concentration of the blocker had little effect 

on WT-IKs, it was capable of inhibiting the mutant channel. In cultured adult rabbit left atrial 

myocytes, expression of S140G-IKs shortened APD but cells expressing WT-IKs did not. The 

familial KCNQ1-S140G gain-of-function mutation demonstrated increased sensitivity for 

the IKs blocker pointing to the possibility of selective therapeutic targeting.

On the chr1q21 locus, AF risk SNPs have been identified in KCNN3, which encodes the SK 

channel, a member of the Ca2+-activated potassium channel family, which are believed to 

contribute to the shortening of atrial APD. In a large animal model, administration of the 

selective SK inhibitor, NS8593, led to termination pacing-induced AF (>15 minutes of 

continuous AF) and decreased AF duration and vulnerability without affecting ventricular 

conduction and repolarization.80

9.1.2 Sodium channel blockers—AF is also very common in patients with hypertrophic 

and dilated cardiomyopathies and tends to be associated with poorer outcomes. For example 

in patients with mutations in myofibrillar genes, which are responsible for over two-thirds of 

the cases of hypertrophic cardiomyopathy, AF is more likely to occur in those patients who 

are genotype-positive as compared to those who are genotype-negative.81 While genotype 

does not appear to influence the onset and severity of AF, it may a role in response to 

disease-specific antiarrhythmic therapies such as ranolazine, a late sodium blocker.82

Ranolazine also blunts diastolic calcium accumulation in the cytosol, has been shown to 

have efficacy for prevention of post-operative AF, treatment of paroxysmal AF, and 

facilitation of electrical cardioversion, both alone and in combination with amiodarone and 

dronaderone.83, 8485

9.1.3 Ryanodine receptor antagonists—Mutations in the ryanodine receptor (RyR2) 

and in the sarcoplasmic reticulum Ca-binding protein calsequestrin (Casq2) increase the risk 

for AF. Investigators at Vanderbilt examined the underlying mechanisms of AF associated 

with loss of Casq2 and tested a mechanism-based drug therapy for AF.86 Atrial burst pacing 

was used to quantify AF susceptibility in isolated hearts from Casq2−/− and Casq2+/+ mice. 

AF was induced in 11/12 Casq2−/− mice hearts but not in Casq2+/+ hearts. Atrial optical 

mapping revealed multiple independent activation sites arising from the PV region. The dual 

RyR2 and sodium channel blocker R-propafenone significantly reduced frequency and 

amplitude of subthreshold diastolic calcium elevations and DADs in atrial myocytes and 

intact atria and prevented induction of AF. In contrast, S-propafenone, an equipotent sodium 

channel blocker but much weaker RyR2 inhibitor, only partially reduced subthreshold 

diastolic calcium elevations and DADs and failed to prevent AF. These findings strongly 

suggest that targeting AF with R-propafenone may be a more mechanism-based approach to 

treating AF. A multi-site, prospective human study using such a mechanism based approach 

for the treatment of paroxysmal AF is planned in the near future.
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9.1.4 Gap junction modulators—Mutations in gene expressing connexin-40 and 

connexin-43 have been identified in patients with familial and non-familial AF and in mice 

models knock-out of GJA5 expression leads to increased vulnerability for atrial arrhythmias. 

In canine models extensive left and right atrial ablation is associated with lower acute 

recurrence of AF but is also associated with decreased connexin-43 near the ablation site 

suggesting the unintended consequence of worsened dispersion of CV which may be 

proarrhythmic. 87 Rotigaptide is a peptide that is believed to modulate gap-junction function 

by increasing PKC-dependent connexin-43 phosphorylation and has been shown to reduce 

AF in chronic mitral regurgitation and acute ischemia models.88, 89 Danegaptide, a dipeptide 

which behaves similarly to rotigaptide, has also been shown to reduce AF inducibility in 

canine models.90 Adenovirus-mediated gene transfer of connexin-40 and -43 was shown to 

reduce AF occurrence through normalization of connexin expression and CV pattern in 

swine models.91 While the clinical applicability of these approaches for AF in humans is 

still to be determined, genotype-based selection of patients with known mutations in 

connexin 40 and 43 genes may improve outcomes with these therapies compared to the 

general population.

9.1.5 Attenuation of the autonomic nervous system response—It is well known 

that autonomic nervous system is an important modulator of AF susceptibility. One clinical 

subtype, known as vagally-mediated AF, is thought to be caused by release of acetylcholine 

(Ach) from the vagus nerve and cardiac GP, leading to enhanced IKACh and heterogenous 

dispersion of APD shortening based on the regional distribution of cardiac ganglia along the 

atria, potentially creating the electrical substrate for stabilizing reentrant rotors. IKACh is 

composed of two homologous GIRK channel subunits: GIRK1 and GIRK4. In an animal 

model simulating sick sinus syndrome in CaV1.3 mice, inactivation of Girk4, the gene 

expressing subunits of the IKACh, led to decreased inducibility of AF suggesting that 

pharmacologic attenuation of IKACh may be useful in the vagally-mediated subtype.

Currently no human genetic variants associated with AF that affect IKACh expression have 

been identified. However genetic variants in SCN10A encoding Nav1.8, which is expressed 

in peripheral nerve tissue, have been associated with early onset AF. In an animal study, 

administration of a Nav1.8 blocker resulted in blunting of the effect of vagal nerve 

stimulation on CV and AF inducibility, presumably due to inhibition of neural activity of the 

cardiac GP. In a small, double-blinded clinical trial of 20 patients with paroxysmal AF and 

pacemakers, administration of BMS 914392 (a selective oral inhibitor of IKACh current) did 

not reduce overall AF burden compared to controls.78 Identification of a pathologic genetic 

variant for IKACh would potentially also allow tailoring of current AADs choices, such as 

disopyramide and dronaderone which are potent inhibitors of IKACh. In a large animal 

model, ranolazine was shown to reduce both duration and suppress the re-initiation of ACh-

mediated AF.92 Suppression of autonomic signaling with pharmacologic therapy may also 

contribute to the efficacy of PV-directed ablation procedures for AF as the effect GP-

targeting ablation strategies depend on successful modification of autonomic innervation 

patterns.
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9.2 Utilizing Genetics to Improve Catheter Ablation Outcomes

Outcomes following AF ablation remain modest despite advances in catheter technology and 

use of new mechanism-based approaches, with freedom from AF being only 20–50% at 1 

year. Investigators have sought to assess whether using common AF-susceptibility alleles 

can help identify genetic subtypes of AF with differential responses to ablation therapy. In 

2010, Husser et al. evaluated whether the common AF-susceptibility SNPs on the chr4q25 

locus modulated response to catheter ablation.76 While none of the clinical or 

echocardiographic parameters predicted the response to ablation, the presence of one of the 

4q25 variant SNPs did positively associate with AF recurrence after catheter ablation (OR 

4.1). This finding was replicated in a large cohort of patients with ‘typical’ AF (associated 

with known risk factors), where the overall recurrence rate was 53% over an 18-month 

period.75 The presence of the 4q25 SNP risk allele predicted a 24% shorter recurrence-free 

time (survival time ratio 0.76) than did the presence of the WT SNP.75 One of the strongest 

predictors of 1-year recurrence of AF after catheter ablation includes carrying one or two 

copies of the chr4q25 AF-risk alleles (Figure 3). It should be noted however, that a recently 

published study of patients of solely Asian descent did not demonstrate a significant 

correlation between AF-associated SNPs and AF recurrence following catheter ablation seen 

in other reports.93

In a recent report, Mohanty et al. sought to examine the association between common AF 

risk SNPs, non-PV triggers, and prevalence of LA scar in 371 patients who underwent 

catheter ablation for AF.94 Of the common variants examined, only the chr16q22 (near 

ZFHX3) SNP rs7193343 was associated with a high risk for non-PV triggers and atrial scar 

formation. While the transcription factor zinc finger homeobox 3 (encoded by ZFHX3) is a 

tumor suppressor-suppressor gene, it associates with another transcription factor (runt-

related transcription factor 3 [RUNX3]) and both translocate to the nucleus in response to 

transforming growth factor (TGF)–β signaling, an important mediator of fibrosis.95, 96 Seven 

of the 16 SNPs examined in the study were associated with atrial fibrosis during endocardial 

scar mapping. It is increasingly appreciated that atrial fibrosis not only plays a prominent 

role in the pathogenesis of AF but may also be a plausible link between genetic variants and 

development of AF.

Interestingly carrying the chr4q25 SNP rs6843082 (near PITX2) was inversely associated 

with development of both non-PV triggers and left atrial scarring. Chinchilla et al. showed 

that homozygous Pitx2c−/− mice have enlarged cardiac chambers with increased expression 

of collagen precursor genes in the atria,97 while the heterozygous Pitx2c+/− mice had 

structurally normal hearts with little or no evidence of atrial fibrosis supporting the 

hypothesis that chr4q25 SNP regulation of Pitx2c leads to primarily atrial electrical 

remodeling especially in those with paroxysmal AF. Conversely other studies have shown 

poorer response to AF ablation when carrying the most common chr4q25 susceptibility 

SNPs.75, 76 In this study the combined presence of the chr4q25 and chr16q22 SNPs was 

associated with a combined OR of 1.9 for non-PV triggers which was higher than the risk of 

this phenotype with either variant alone.

An unanswered question from the study is why different chr4q25 SNPs would have 

discordant associations with development of non-PV triggers: rs1448817 was associated 
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with a high risk for non-PV triggers whereas rs6843082 was inversely associated. Possible 

explanations include the chr4q25 locus being complex and harboring at least four different 

haplotype blocks that have been associated with AF susceptibility not all of which 

necessarily trigger AF from the PVs;98, 99 different cis- and trans-acting regulatory 

elements; and gene-gene interaction as was recently demonstrated between ZFHX3 and 

PITX2c SNPs.100 Another possibility is that the study was under-powered to test for gene-

gene interactions.

Conclusions

Tremendous advances have been made in not only defining the genetic architecture of AF 

and identifying the underlying genetic mechanisms but also in sub-typing response to 

pharmacologic and other therapies. However, direct impact of these discoveries when it 

comes to the bedside management of an individual patient with typical AF has thus far been 

limited. This may relate in part to the retrospective and observational 26nature of the studies 

demonstrating that response to AADs, ablation therapy and electrical cardioversion is 

modulated by common genetic variants at the chr4q25 locus. The time for conducting 

appropriately-designed clinical trials that are genotype-directed is upon us.
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Expert commentary

Linkage analyses, and candidate gene approaches have identified rare genetic variants 

linked with early-onset atrial fibrillation (AF). In contrast, genome-wide association 

studies have uncovered numerous common single nucleotide polymorphisms associated 

with both early-onset and non-familial AF. These studies have not only provided 

important insights into the underlying mechanisms of AF but also sub-typed response to 

pharmacologic and other therapies. However, direct impact of these discoveries when it 

comes to the bedside care of individual patients has thus far been limited. This is related 

in part to the retrospective and observational nature of the studies showing that response 

to antiarrhythmic drugs, ablation therapy and electrical cardioversion is modulated by 

common SNPs at the chromosome 4q25 locus and the lack of randomized trails that are 

genotype-directed. Nonetheless emerging data suggests that a genotype-based 

individualized approach to selecting therapy for AF may be soon upon us.
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Five-year view

Despite recent progress in identifying the genetic architecture of AF, response in an 

individual patient to pharmacologic and ablation therapy remains highly variable. 

Improved understanding of the underlying mechanisms of AF and randomized controlled 

studies demonstrating the feasibility and efficacy of a genotype-directed approach to AF 

therapy, we can envision a scenario where pre-prescription genotyping of patients with 

AF will become standard of care in five years. Such an approach will not only improve 

efficacy but also reduce adverse effects.
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Key issues

• Positional cloning and candidate gene approaches have identified mutations 

linked with early-onset AF

• Genome-wide association studies have uncovered common single nucleotide 

polymorphisms associated with AF

• These studies have not only provided important insights into the underlying 

mechanisms of AF but also defined response to antiarrhythmic drugs, ablation 

therapy and electrical cardioversion.

• The translation of these discoveries to the bedside management of individual 

patients with AF has thus far been limited.

• There is an urgent need for randomized clinical trials assessing the feasibility 

and efficacy of a genotype-directed approach to the management of AF 

patients.

• Emerging data suggest that selecting therapies for AF that are genotype-

directed may soon be upon us.
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Figure 1. Genetic approaches to defining the genetic architecture of atrial fibrillation (AF)
Linkage analysis, next generation sequencing (NGS) and candidate gene approaches have 

identified rare genetic variants in single genes in large familial kindreds with early-onset AF. 

Conversely, genetic association studies, i.e., genome-wide association studies have 

uncovered common genetic variants associated with AF in many genes. (Filled in symbols 

indicate individuals with AF and unfilled symbols represent controls).
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Figure 2. 
A pilot and open label, randomized sequential cross-over study to evaluate if response to 

sotalol versus flecainide is modulated by chromosome 4q25 associated single nucleotide 

polymorphisms (SNPs). AFEQT, AF-specific quality of life questionnaire; AAD, 

antiarrhythmic drug.
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Figure 3. 
Modulation of response to catheter ablation of AF by common genetic variants. Predictors of 

1-year recurrence of AF after catheter ablation. BMI, body mass index; Chr, chromosome; 

LA, left atrial; LVEF, left ventricular ejection fraction; SNP, single nucleotide 

polymorphism.
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Table 1

Genes encoding cardiac ion channels and signaling proteins that have been associated with early-onset familial 

AF.

Gene Mode of inheritance Effect on function Physiologic effect Associated phenotypes

ABCC9 unknown loss-of-function ↓ atrial APD adrenergic AF

KCNQ1 AD gain-of-function ↓ atrial APD prolonged QT

KCNE1
KCNE5

AD
AD

gain-of-function
gain-of-function

↓ atrial APD
↓ atrial APD

frequent PACs

KCNJ2 AD gain-of-function ↓ atrial APD

GJA5 somatic mutations in 
isolated early-onset AF 

cases

↓electrical cell-to-cell coupling regions of heterogeneous conduction

KCNA5 AD loss-of-function ↑ atrial APD, EADs and TA

SCN5A
SCN1B/2B

AD
AD

gain-of-function and loss-of-function ↑↓ atrial APD EADs, TA HCM, DCM

SCN10A AD enhanced late INa ↑APD, EADs, TA slow ventricular rates

CACNA1C
CACNB2

AD
AD

loss-of-function
loss-of-function

↑APD, EADs, TA
↑APD, EADs, TA

NKX2.6 AD Loss-of-function Reduced transcriptional 
activity of ANP promoter

None

TBX5 unknown Increased expression of ANP and CX40 Early-onset AF

NPPA AD loss-of-function ↓ atrial APD atrial myopathy

NUP155 AR nuclear protein transport (hsp70) sudden cardiac death

Modified from30

AD, autosomal dominant; APD, action potential duration; AR, autosomal recessive; PAC, premature atrial contractions; EAD, early after-
depolarization; TA, triggered activity.
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