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p53 on the crossroad between regeneration and cancer
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Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas
tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is
unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process.
We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity
during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive
proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of
the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for
implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
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Facts

� Molecular pathways and gene expression patterns under-
lying regeneration and tumorigenesis are akin.

� Fluctuations in p53 levels in the regeneration process were
observed during salamander limb regeneration, as well as
during liver and nerve regeneration in mice.

� Following liver regeneration, TP53-deficient mice acquire
more chromosomal segregation errors than their p53 wild-
type counterparts.

� p53 serves as a regeneration coordinator that blocks the
shift from regeneration to carcinogenesis.

Open questions

� Does proper regeneration restrain malignant transforma-
tion or may impaired regeneration lead to carcinogenesis?

� What are the roles of tumor suppressors during the
regeneration process?

� What is the contribution of liver stem/progenitor cells to liver
regeneration process? What is the role of TP53 in
these cells?

The link between regeneration and cancer

Regeneration is a homeostatic process of renewal that
comprises well-coordinated restoration of cells, tissues and
organs that have been damaged or lost. Hence, regeneration
enables maintenance of structural and functional integrity of
the tissue/organ. This is manifested by restoration in states of
injury and pathology, as well as by cells turnover under normal

physiological conditions. At large, tissue regeneration is
characterized by three different overlapping stages; inflam-
mation, tissue reconstruction and remodeling.1 The process
of regeneration entails extensive cellular proliferation that
is tightly controlled by specific signals, eventually resulting
in a finite number of cells. Cellular processes, such as
senescence,1 apoptosis2 and differentiation,3 are evoked at
different stages of regeneration to ensure controlled expan-
sion. Apoptosis-induced proliferation was also documented in
regeneration processes. In this case, damaged or faulty cells
undergoing apoptosis are signaling their healthy neighboring
cells to proliferate.4 Finally, once the regeneration process is
completed, specific signals are released for the termination of
the cell proliferation.
Regeneration may be accomplished by several different

mechanisms that vary depending on the given organism
species, organ type or cell fate (Table 1). For example, in
amphibians such as adult newts, regeneration may be
mediated by differentiated post-mitotic cells that re-enter the
S-phase of the cell cycle and undergo dedifferentiation.5,6 In
planarians, flatworms, the main regeneration mechanism
involves proliferation of resident adult somatic stem cells
(SCs).7,8 Similarly, utilization of dedicated SCs to sustain
normal cell turnover is evident in mammalian organs such as
skin and intestine, which consist of highly proliferative
tissues.9 Conversely, it was suggested that quiescent tissues
such as liver or pancreas, display alternative regenerative
mechanisms involving dormant SCs activation, trans-differ-
entiation, metaplasia and compensatory proliferation of
mature cells.10,11 Importantly, one should bear in mind that
activation or formation of SCs should be tightly controlled in
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order to prevent the acquisition of cancer SCs (CSCs)
phenotype (Box 1). SCs and CSCs often share similar
regulatory factors that modulate their biological functions.12

Although the regulation of normal SCs division and differentia-
tion remains under physiological control, in CSCs these
processes are unleashed.13,14 The absence of proper regula-
tion leads to asymmetric and uncontrolled divisions, which
give rise to a bulk of tumor cells and a CSC with the capability
to initiate new tumors.15

Moreover, growing experimental evidence indicates that
regeneration and tumorigenesis are related processes,
whereby dysregulated regeneration process may lead to
tumor development.16,17 It is well known that chronic
inflammation and preceding injuries serve as a precondition
for tumorigenesis.17 This notion was initially postulated in
1863 by Rudolf Virehow.18 Later, in 1972, Sir Alexander
Haddow19 suggested that ‘tumor production is a possible of
over healing’. Finally, the association between the term
‘wound’ and cancer was proposed by Dvorak20 who stated
that tumors are wounds that do not heal. The basis suggested
for this statement is that both tissue regeneration restoring
wounded organ, as well as carcinogenesis encompass cell
proliferation, survival and migration that are regulated by
growth factors and cytokines, as well as inflammatory and
angiogenic signals. However, in contrast to wound healing,
cancer is not self-limiting resulting in uncontrolled cell
proliferation, invasion and metastasis.21 Twenty years later,
the statement that regeneration and cancer share common
features was corroborated by the study of Riss et al.,22 who
compared microarray data from a model of renal regeneration
and repair (RRR) with gene expression of renal cell carcinoma

(RCC). The data analysis suggested that the majority (77%) of
the genes expressed in RRR and RCC were concordantly
regulated, whereas only 23%were discordant (i.e., changed in
opposite directions), thus supporting the hypothesis that
cancer is an aberrancy of the physiologic processes of wound
healing.
Interestingly, it was suggested that the regeneration process

may restrain transformation.23 For example, simultaneous
exposure of dorsal and ventral iris of newt to carcinogen
showed that the regenerating dorsal iris was persistently
resistant to carcinogen, whereas the ventral iris, which cannot
regenerate, was more susceptible to tumor induction.24

Furthermore, it was shown that blastemal cells, which are a
mass of cells capable of growth and regeneration into organs,
are resistant to tumor formation.25 Therefore, it is intriguing to
understand the mechanisms that assure the high fidelity of
regeneration progression.
Cancer is known to be restricted by the action of tumor

suppressors.26 Interestingly, tumor suppressors were pro-
posed to possess ‘regeneration suppressor’ activities by
which they orchestrate major aspects of the regeneration
process and ensure its robustness.21 In this review, we will
focus on the role of the pivotal tumor-suppressor TP53 in the
regeneration process at large, and on its contribution to the
fidelity of the regeneration process, in particular.

The transcription factor p53 – more than a tumor
suppressor

TP53 is one of the most important tumor-suppressor genes
that is activated via different stress signals and functions to

Table 1 Cellular sources tangled in regeneration processes of different tissues and organisms

Cell type Process Regenerating tissue/organism Reference

Interstitial stem cells Differentiation to zymogen gland cells Hydra head 107

Zymogen gland cells Trans-differentiation to granular mucous cells Hydra head 108

Mesenchymal stem cells/neoblasts Self-renewal and pluripotent differentiation potential Lethally irradiated planarians 109, 110

Liver progenitor cells Differentiation to hepatocytes Chronic liver injury in mice 77,78 111

Hepatocytes Proliferation Partial hepatectomy in mice 88,89,90 111

Cardiomyocytes Proliferation and differentiation Damaged heart in zebrafish 112, 113

Pigmented epithelial cells Dedifferentiation, proliferation and differentiation to lens
cells

Lens regeneration in newt 114

Syncytial skeletal myotubes Dedifferentiation to mononucleate cells that are able to
proliferate

Appendage regeneration in
urodele

25, 115

Skeletal muscle satellite cells Activation Limb regeneration in salamander 116

One of the essential processes underlying tissue regeneration is production of new cells. These new cells can be derived from distinct origins such as amplification and
differentiation of resident stem and progenitor cells, proliferation of mature cells, dedifferentiation of cells to a more stem state or trans-differentiation of one cell type to
another cell type.106 In the table above, the different cell types involved in specific regeneration processes are listed

Box 1 Cancer stem cells

1. Cancer stem cells (CSCs) are rare quiescent cells within the tumor that possess augmented tumorigenic potential and drug resistance.
Alike normal SCs, CSCs are able to self-renew and differentiate. CSCs account for tumor heterogeneity and are able to give rise to a
complex tumor bulk following injection into immune-compromisedmice. CSCswere found to contribute to various aspects of tumorigenic
process including tumor initiation, progression, invasiveness and metastasis.99

2. Accumulated data suggested that CSCs may originate from normal SCs that underwent genetic and epigenetic alterations, or
alternatively by dedifferentiation of progenitor or mature cells induced by specific signals from the microenvironment.100

3. Although wild-type p53 serves as a barrier to CSCs formation regardless of their origin, mutant p53 proteins exhibit their oncogenic gain-
of-function by facilitating the acquisition of CSCs phenotype.44,101
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determine cell fate. TP53 is designated as the ‘guardian of the
genome’ because of its ability to protect cells from DNA
damage and thus to prevent tumor development.27 Therefore,
it is not surprising that TP53 is mutated in 450% of human
tumors. The majority of TP53 mutations rise because of
missense substitutions.28 Importantly, most common TP53
mutations do not only abrogate its tumor-suppressor function,
rather they confer it with new oncogenic functions.29,30

It is well known that cellular stress such as DNA damage,
oncogene activation, hypoxia and telomere shortening can
activate p53 and stabilize its protein levels.31 When activated,
the p53 protein functions as a transcriptional regulator, hence
initiating a cascade of events that determines the cellular
outcome including cell cycle arrest, apoptosis, senescence,
DNA repair, development, differentiation and tissue
homeostasis.32 Interestingly, all these cellular activities are
part of the regeneration process, pointing to p53 as a potential
regeneration coordinator. Notably, besides the full-length p53
protein, different p53 isoforms were identified in multiple
human tissues and in various animal models such as
Drosophila, zebrafish and mouse.33–37 These p53 isoforms
can be generated as a consequence of either alternative
splicing, alternative translation initiation or transcription from
an alternate promoter.38 Apparently, p53 isoforms are
conserved during evolution and involved in various aspects
of cell fate decisions.36,37,39

Indeed, full-length p53 and its isoforms often have a
regulatory role during normal tissue regeneration following
injury. Modulation in p53 levels was observed in different
stages of the regeneration process, in a context-dependent
manner. For example, in the initial stages of the regeneration
process, while mitogenic growth factors promoting cell
proliferation were highly expressed, a concomitant suppres-
sion of p53 was evident. Whereas, at the late stages of
healing, at the remission of the regeneration process, the
suppression of mitogenic growth factors was accompanied by
strong induction of p53 expression, which served to down-
regulate cellular growth.40 Variations in p53 levels were also
found during salamander limb regeneration. It was shown that
at first p53 activity decreased, thus allowing both the formation
of the blastema and the cell cycle reentry of post-mitotic
differentiated cells. Then, p53 level returned to baseline
allowing the re-differentiation to muscle. The authors sug-
gested that the regulation of p53 activity is a pivotal
mechanism that controls the plasticity of the differentiated

state during regeneration.41 The role of TP53 in regeneration-
related processes such as proliferation and differentiation is
conserved through evolution in additional multicellular organ-
isms such as planarians and Drosophila42,43 (Box 2).
Taken together, it is conceivable to assume that p53 may

function as a coordinator of the regeneration process assuring
the quality and quantity of the SCs nourishing the regenerative
site, as well as the differentiated cells, at the end of the
process. This is in line with the notion that p53 functions as the
barrier to CSCs formation,44 by governing the quantity and
quality of various SCs, by restricting either expansion or
dedifferentiation processes of SCs.

The role of p53 in nerve regeneration

Accomplishing successful regeneration and functional recov-
ery following neural damage, because of either physical injury
or pathological conditions, is one of the biggest challenges of
neuroscientists and clinicians. Identification of the molecular
factors and understanding the molecular pathways is a major
step toward achievement of such a goal. The nervous system
comprises the peripheral nervous system (PNS) and the
central nervous system (CNS) possessing different regen-
erative capacities. Although the PNS neurons successfully
regenerate after damage, the CNS has limited regeneration
potential because of the presence of glial inhibitory environ-
ment and suppressive intrinsic molecular networks.45–47

It should be emphasized that impaired tissue regeneration is
often associated with aging, carcinogenesis and augmented
degenerative disease.48 p53 and its isoforms are associated
with development of neurodegenerative diseases such as
Parkinson's and Alzheimer's because of its induction of cell
death in response to stress and interaction with distinct cellular
factors that have the ability to facilitate the development of
these diseases.49–52

Recent accumulating data suggest that p53 has a role in
regulation of PNS regeneration. Di Giovanni et al.53 have
shown that TP53 null mice exhibited limited nerve regenera-
tion and suggested that this is due to the transcriptional activity
mediated by p53, which activates the axon regenerating
genes Coronin 1b and Rab13. p53 exhibited dual activity that
may lead to diverse outcomes depending on the different
stages of the regeneration process. Indeed, it was demon-
strated that following neurons injury p53 exerted its pro-
apoptotic effect via transactivation of noxa, 54,55 as well as

Box 2 The p53 duality: p53 can differentially regulate numerous molecular pathways dependent on the cell fate and cellular surroundings

� p53 is termed the ‘guardian of the genome’27 because of its profound role in preservation of cell genomic fidelity. Following exposure to
cellular insults, p53 activity may lead to dual outcomes, such as cell cycle arrest or cell death dependent on various circumstances.

� p53 has a dual role in cancer and aging. Although p53 activation blocks cancer development, it promotes aging by and may restrict normal
tissue turnover and regeneration.102

� p53was found to control autophagy by two opposingmechanisms, depending on its cellular localization: the nuclear p53 induces autophagy,
whereas, the cytoplasmic p53 may repress it.103

� p53 in the liver is activated following tissue damage and acts as two-edged sword. In the short term, p53 activity prevents carcinogenesis,
however, in the long term, same p53 activities may contribute to progress of liver disease, which may eventually lead to cancer
development.104

� Drosophila p53 exhibits dual roles in cells death and cell differentiation. On one hand, p53 induces apoptosis via the hid gene, on the other it
attenuates the differentiation of the photoreceptor neurons and cone cells in the eye, independently of cell death induction.105

Regeneration and cancer
M Charni et al

10

Cell Death and Differentiation



promoted cell cycle arrest by the MAPK, JNK and p38
signaling pathways.56–58 However, it was found that p53
enhanced proliferation and axonal outgrowth that are required
for axonal regeneration following injury, through other
mechanisms.59,60 Furthermore, ample data indicate that
post-translational modifications affect p53 pro-regenerative
activity. For instance, acetylation of p53 by CBP/p300 enables
its regulation of GAP-43, which expression is essential for
axonal outgrowth and regeneration.61–63

Although the regeneration capacity of the injured CNS is
restricted, in some cases it may bemediated via modulation of
the neuronal intrinsic potential of neuronal stem/progenitor cell
(NSCs/NPCs) populations.64 p53 was suggested to have a
role in maintaining self-renewal and differentiation of NSCs
under homeostatic conditions. In the absence of p53, the
number of differentiated neurons increases.60 Moreover, p53
was also suggested to be critical for the CNS regeneration
upon damage.65 Following brain injury, p53 was shown to
inhibit Rho kinase activity leading to axonal growth and
motility, eventually resulting in axonal regeneration.66 In
addition, it was reported that regeneration and axonal
sprouting can be attenuated by the MDM4/2-p53-IGF1
signaling complex. Accordingly, inhibition of the triad or one
of its components promoted functional recovery after spinal
cord injury.67

Taking together, it seems that p53 has a role in both PNS
and CNS regeneration upon nerve damage. p53 acts beyond
its pro-apoptotic regulation activity and facilitates axonal
proliferation and regeneration. Yet, to date, the underlying
mechanisms are not fully deciphered and more research is
needed to uncover the specific molecular networks. With our
growing understanding and the emergence of novel findings, it
is conceivable to hope that in the future pharmacological
reagents modulating p53 activity, which are currently applied
for cancer treatment, may be also implemented in neurode-
generative therapy.

The role of p53 in liver regeneration

One of the primary characteristics of the liver is its ability to
regenerate.68 As the liver is themain site of drug detoxification,
being constantly subjected to a myriad of toxic chemicals that
may induce injury, its remarkable regeneration capacity is of
great importance. Moreover, high hepatic regeneration poten-
tial permits the use of surgery as amajor strategy for treatment
of liver diseases including hepatocellular carcinoma (HCC)
and liver fibrosis.69 The liver structure is composed of many
sub-units named the ‘hepatic lobules’. These well-organized
structures contain diverse cell types that reside in different
compartments of the lobules. The central part comprises the
central veins and contains mainly hepatocytes. The peripheral
part named ‘canal of Hering’ contains the portal tracts and
is primarily populated with the biliary epithelial cells (BECs).
In addition, other cells types found in the lobules are
fibroblasts, endothelial cells and the macrophage-like cells
(Kupper cells).70,71

Apparently, mechanisms underlying the liver regeneration
process vary according to different conditions: the regenera-
tion mechanisms upon normal homeostasis are different from
regeneration upon chronic or acute injury.71

The liver is characterized by slow turnover rate and the
mechanisms underlying its normal homeostasis maintenance
are still debatable. Until recently, the accepted hypothesis has
been the ‘streaming liver’, proposing that the entire lobule is
eventually replaced by sub-population of hepatocytes, which
reside near the portal tracts and possess the ability to
regenerate and to stream along the lobule.72 However, many
studies have refuted this hypothesis as lineage tracing
methods have failed to prove it.73,74 Currently, the prevalent
assumption is that normal liver turnover is maintained by pre-
existing hepatocytes cells.70 Interestingly, recently Wang
et al.75 have identified a small population of cells expressing
Axin2+ that possess self-renewal ability aswell as the capacity
to differentiate into hepatocytes.75 Therefore, this population
of cells was suggested to be referred as hepatocyte SCs,
which participate in maintaining the normal liver homeostasis.
Importantly, in addition to preservation of normal home-

ostasis, the liver has the capacity to regenerate following
damage. Different regeneration mechanisms are executed
upon acute or chronic injury of the liver. Chronic disease of the
liver can be triggered by several agents including viral
infections, alcohol abuse and nonalcoholic steatohepatitis
(NASH). These agents can cause long-term damage that may
lead to liver fibrosis and even to liver cirrhosis, which
eventually may result in HCC.76 Chronic injuries lead to
reduction of hepatocytes proliferative capacity, inducing them
to undergo senescence, mediated by p53. Under these
conditions, the vast majority of the liver is replaced by hepatic
progenitor cells.77,78 For example, it was demonstrated that
upon chronic injury induced by CCl4 treatment, the quiescent
hepatocyte stellate cells (HSCs) become activated and
regenerate the fibrotic scar. p53 was found to attenuate
fibrosis by inducing HSC senescence in non-cell autonomous
mechanism. Thus, p53 regulates the fibrosis response and
may prevent the deterioration to HCC.77,79

To date, many studies have been addressing the question
whether there are specific SCs in the liver.80 The most
prevalent hypothesis refers to the ovals cells as the facultative
SCs of the liver.71 It was suggested that these cells arise upon
injury and have common characteristics of both hepatocytes
and BECs.81 The oval cells reside in a niche inside the canal of
Hering in the liver lobule.82 Nevertheless, several reports
claimed that the oval cells cannot be regarded as liver SCs as
they are incapable of undergoing terminal differentiation into
hepatocytes.71,83 Moreover, it was shown that the oval cells
may promote the progression of HCC.84 Considering the
profound role of p53 in the life of normal SCs and CSC, 44 it is
not surprising that oval cells that were isolated from TP53 null
mice and maintained in culture, gave rise to HCC in vivo.85

Accumulating experimental evidence indicate that besides
oval cells, other cellular sub-population may also contribute to
liver regeneration upon chronic injury. One example is a sub-
population of liver cells expressing the Lgr5 marker. These
cells, unlike the oval cells, can differentiate to hepatocytes or
BECs after in vitro cultivation.86 Another example is the hybrid
hepatocytes residing at the periportal region of the lobule that
are capable to regenerate after chronic injury without
promoting HCC.87 However, the role of p53 in these diverged
sub-populations of cells is still unknown and requires further
investigation.
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Following acute damage such as hepatectomy, the liver is
able to restore up to 70% of the tissue resection. The main
source of cells that renovate the liver are mature hepatocytes.
This process comprises three major phases. Priming – adult
hepatocytes re-enter the cell cycle and undergo transition from
G0 to the G1 phase. Progression – the cells complete the
mitosis process. Termination – the cells return to the G0 phase
and the liver retains its original size.88–90

Numerous proteins are implicated in the regulation of these
phases, among them is p53. Of note, at first glance it seemed
as if p53 activity is not crucial for liver regeneration following
partial hepatectomy, as TP53 null mice exhibited complete
liver regeneration.91,92 Strikingly, it was later discovered that
p53 function is essential for controlling the robustness of the
regeneration process and its fidelity.93 Similar to the regen-
eration process in the nerves, modulation in p53 levels was
also documented in liver regeneration. In the priming phase,
p53 activity is repressed by c-JUN to enable the hepatocytes
re-enter the cell cycle.94 Ample data suggest that following
liver regeneration hepatocytes are tolerant to nuclear ploidy
without gaining tumorigenic potential.95,96 This phenomenon
may be attributed to the presence of functional p53, which is
known to protect genome stability.97 Indeed, it was recently
demonstrated that TP53-deficient mice acquire more chromo-
some segregation errors following liver regeneration than their
TP53-expressing counterparts. Moreover, it was reported that
p53 is involved in controlling the levels of hepatic ploidy by
direct regulation of specific target genes, such as Foxm1,
Plk2/4, Lats2 and Aurka, at the different phases of the cell
cycle.93,98 Thus, the activity of p53 during the regeneration
process following acute damage of the liver is context and time
dependent. Despite the inhibition of p53 activity in the initial
stage of the regeneration, its function in more advanced steps
is essential for keeping the robustness and assuring the
fidelity of the process.
All in all, liver regeneration is a complex process that is so far

not completely elucidated. It may involve mature hepatocytes
as suggested for regeneration upon partial hepatectomy as
well as vast sub-population of SCs following other injuries and
normal homeostasis turnover. Collectively, it seems that

preservation of DNA fidelity and tumor-suppressor activities
are crucial to ensure proper regeneration and prevent HCC
development.

Concluding remarks

Regeneration and tumorigenesis have been proposed to be
related processes and yet the former is a well-orchestrated
and controlled process, while the latter is an unrestrained one.
As p53 is a major tumor suppressor, it is tempting to speculate
that p53 has a key role in regulation of the regeneration
process, blocking the shift toward tumorigenesis. p53 activity
is fluctuated during regeneration. Although p53 is inhibited
during the initial proliferative steps, it is upregulated toward
the final stage, when preservation of fidelity and integrity of the
regeneration process is of great importance. Activated
p53 may induce a variety of signaling pathways such as
DNA repair, apoptosis, senescence and others that contribute
to the elimination of faulty cells in order to prevent the drifting
from regeneration to malignancy. Thus, induction of p53
activity may serve as the quality control checkpoint in the
regeneration process, thereby preventing carcinogenesis
(Figure 1).
Bearing in mind the great opportunities offered by regen-

erative medicine to repair pathologic tissues, a better under-
standing of the regulatory landscape fundamental for p53
function as a coordinator of regeneration may pave the way for
overcoming the current challenges.
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